Electroweak precision tests & constraints on neutrino models

A. Freitas University of Pittsburgh

39th International School of Nuclear Physics, Erice-Silicy

- **1.** Overview of electroweak precision tests
- 2. Constraints on neutrino models
- 3. Future $\mathrm{e^+e^-}$ colliders

W mass

Z-pole observables

Indirect sensitivity to **top**, **Higgs**, and **new physics** through quantum corrections

- Z-pole cross-section $\sigma^0[e^+e^- \to (Z) \to f\bar{f}]$
- Z-boson width Γ_Z
- Partial widths $\overline{\Gamma}_f = \Gamma[Z \to f\bar{f}]_{s=\overline{M}_Z^2}$
- Branching ratios:
 - $\begin{aligned} R_q &= \Gamma_q / \Gamma_{\text{had}} & (q = b, c) \\ R_\ell &= \Gamma_{\text{had}} / \Gamma_\ell & (\ell = e, \mu, \tau) \end{aligned}$

Z-pole observables

Z-pole asymmetries:

$$A_{\mathsf{FB}}^{f} \equiv \frac{\sigma(\theta < \frac{\pi}{2}) - \sigma(\theta > \frac{\pi}{2})}{\sigma(\theta < \frac{\pi}{2}) + \sigma(\theta > \frac{\pi}{2})} = \frac{3}{4} \mathcal{A}_{e} \mathcal{A}_{f}$$
$$A_{\mathsf{LR}} \equiv \frac{\sigma(\mathcal{P}_{e} > 0) - \sigma(\mathcal{P}_{e} < 0)}{\sigma(\mathcal{P}_{e} > 0) + \sigma(\mathcal{P}_{e} < 0)} = \mathcal{A}_{e}$$

$$\mathcal{A}_{f} = 2 \frac{g_{Vf}/g_{Af}}{1 + (g_{Vf}/g_{Af})^{2}} = \frac{1 - 4|Q_{f}|\sin^{2}\theta_{\text{eff}}^{f}}{1 - 4|Q_{f}|\sin^{2}\theta_{\text{eff}}^{f} + 8(|Q_{f}|\sin^{2}\theta_{\text{eff}}^{f})^{2}}$$

 $\sin^2 \theta_{\text{eff}}^f$ = "effective weak mixing angle" $\sin^2 \theta_{\text{eff}}^f = s_{\text{w}} \equiv 1 - M_{\text{W}}^2 / M_{\text{Z}}^2$ at tree-level

Most precisely measured for $f = \ell$

Current status of electroweak precision tests

Standard Model after Higgs discovery:

- Good agreement between measured mass and indirect prediction
- Very good agreement over large number of observables

Current status of SM loop results

- Complete NNLO corrections $(\Delta r, \sin^2 \theta_{eff}^{\ell})$ Freitas, Hollik, Walter, Weiglein '00 Awramik, Czakon '02; Onishchenko, Veretin '02 Awramik, Czakon, Freitas, Weiglein '04; Awramik, Czakon, Freitas '06 Hollik, Meier, Uccirati '05,07; Degrassi, Gambino, Giardino '14
- "Fermionic" NNLO corrections (g_{Vf} , g_{Af}) Harlander, Seidensticker, Steinhauser '98 Freitas '13,14
- Partial 3/4-loop corrections to ρ/T -parameter $\mathcal{O}(\alpha_{t}\alpha_{s}^{2}), \mathcal{O}(\alpha_{t}^{2}\alpha_{s}), \mathcal{O}(\alpha_{t}\alpha_{s}^{3})$

Chetyrkin, Kühn, Steinhauser '95 Faisst, Kühn, Seidensticker, Veretin '03 Boughezal, Tausk, v. d. Bij '05 Schröder, Steinhauser '05; Chetyrkin et al. '06 Boughezal, Czakon '06

$$(\alpha_{t} \equiv \frac{y_{t}^{2}}{4\pi})$$

	Experiment	Theory error	Main source
M_{W}	$80.385\pm0.015~{ m MeV}$	4 MeV	$\alpha^3, \alpha^2 \alpha_s$
Γ_Z	$2495.2\pm2.3~{ m MeV}$	0.5 MeV	$\alpha_{\rm bos}^2, \alpha^3, \alpha^2 \alpha_{\rm s}, \alpha \alpha_{\rm s}^2$
$\sigma_{\sf had}^{\sf O}$	$41540\pm37~{ m pb}$	6 pb	$\alpha_{\rm bos}^2, \alpha^3, \alpha^2 \alpha_{\rm s}$
$R_b\equiv {\sf \Gamma}^b_{\sf Z}/{\sf \Gamma}^{\sf had}_{\sf Z}$	0.21629 ± 0.00066	0.00015	$\alpha_{\rm bos}^2, \alpha^3, \alpha^2 \alpha_{\rm s}$
$\sin^2 heta_{ ext{eff}}^\ell$	0.23153 ± 0.00016	$4.5 imes 10^{-5}$	$\alpha^3, \alpha^2 \alpha_s$

Theory error estimate is not well defined, ideally $\Delta_{th} \ll \Delta_{exp}$

- Common methods: Count prefactors (α , N_c , N_f , ...)
 - Extrapolation of perturbative series
 - Renormalization scale dependence
 - Renormalization scheme dependence

Also parametric error from external inputs (m_t , m_b , α_s , $\Delta \alpha_{had}$, ...)

Oblique parameters:

General parametrization of new physics

- "Integrate out" heavy praticles with mass $m \sim \Lambda$ (expand full result in M_Z/Λ)
- Generate higher-dimensional operators, leading dimension 6 $\mathcal{L} = \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \mathcal{O}(\Lambda^{-3}) \qquad (\Lambda \gg M_Z)$

Possible operators restricted by SM field content and gauge invariance

Buchmüller, Wyler '86 Grzadkowski, Iskrzynski, Misiak, J. Rosiek '10

General parametrization of new physics

Effective field theory:
$$\mathcal{L} = \sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i} + \mathcal{O}(\Lambda^{-3})$$
 $(\Lambda \gg M_{Z})$
 $\mathcal{O}_{T} = (D_{\mu}\Phi)^{\dagger}\Phi \Phi^{\dagger}(D^{\mu}\Phi)$ $\alpha\Delta T = -\frac{v^{2}}{2}\frac{c_{T}}{\Lambda^{2}}$
 $\mathcal{O}_{BW} = \Phi^{\dagger}B_{\mu\nu}W^{\mu\nu}\Phi$ $\alpha\Delta S = -e^{2}v^{2}\frac{c_{BW}}{\Lambda^{2}}$
 $\mathcal{O}_{LL}^{(3)e} = (\bar{L}_{L}^{e}\sigma^{a}\gamma_{\mu}L_{L}^{e})(\bar{L}_{L}^{e}\sigma^{a}\gamma^{\mu}L_{L}^{e})$ $\Delta G_{F} = -\sqrt{2}\frac{c_{LL}^{(3)e}}{\Lambda^{2}}$
 $\mathcal{O}_{R}^{f} = i(\Phi^{\dagger}\tilde{D}_{\mu}\Phi)(\bar{f}_{R}\gamma^{\mu}f_{R})$ $f = e, \mu\tau, b, lq$
 $\mathcal{O}_{L}^{F} = i(\Phi^{\dagger}\tilde{D}_{\mu}\Phi)(\bar{F}_{L}\gamma^{\mu}F_{L})$ $F = \binom{v_{e}}{e}, \binom{v_{\mu}}{\mu}, \binom{v_{\tau}}{\tau}, \binom{u, c}{d, s}, \binom{t}{b}$
 $\mathcal{O}_{L}^{(3)F} = i(\Phi^{\dagger}\tilde{D}_{\mu}^{a}\Phi)(\bar{F}_{L}\sigma_{a}\gamma^{\mu}F_{L})$

In general more operators than EWPOs \rightarrow Some can be constrained by $W \rightarrow \ell \nu$, had., $e^+e^- \rightarrow W^+W^-$

Current constraints on some dim-6 operators

Assuming flavor universality:

 $\mathcal{L} = \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \mathcal{O}(\Lambda^{-3}) \qquad (\Lambda \gg M_Z)$

$$\mathcal{O}_{\mathsf{T}} = (D_{\mu}\Phi)^{\dagger}\Phi \Phi^{\dagger}(D^{\mu}\Phi)$$
$$\mathcal{O}_{\mathsf{BW}} = \Phi^{\dagger}B_{\mu\nu}W^{\mu\nu}\Phi$$
$$O_{\mathsf{LL}}^{(3)e} = (\bar{L}_{\mathsf{L}}^{e}\sigma^{a}\gamma_{\mu}L_{\mathsf{L}}^{e})(\bar{L}_{\mathsf{L}}^{e}\sigma^{a}\gamma^{\mu}L_{\mathsf{L}}^{e})$$
$$O_{\mathsf{R}}^{f} = i(\Phi^{\dagger}\stackrel{\leftrightarrow}{D_{\mu}}\Phi)(\bar{f}_{\mathsf{R}}\gamma^{\mu}f_{\mathsf{R}})$$
$$O_{\mathsf{L}}^{F} = i(\Phi^{\dagger}\stackrel{\leftrightarrow}{D_{\mu}}\Phi)(\bar{F}_{\mathsf{L}}\gamma^{\mu}F_{\mathsf{L}})$$
$$O_{\mathsf{L}}^{(3)F} = i(\Phi^{\dagger}\stackrel{\leftrightarrow}{D_{\mu}}\Phi)(\bar{F}_{\mathsf{L}}\sigma_{a}\gamma^{\mu}F_{\mathsf{L}})$$

Pomaral, Riva '13 Ellis, Sanz, You '14 10/21

Constraints on neutrino models

Heavy sterile neutrinos

Extend SM with one (several) sterile neutrinos

Loinaz, Okamura, Rayyan, Takeuchi, Wijewardhana '02,04 Akhmedov, Kartavtsev, Lindner, Michaels, Smirnov '13

Mass matrix in $(\nu_e, \nu_\mu, \nu_\tau, \nu_s)$ basis:

$$\begin{pmatrix} 0 & 0 & 0 & y_{es} \\ 0 & 0 & 0 & y_{\mu s} \\ 0 & 0 & 0 & y_{\tau s} \\ y_{es}^* & y_{\mu s}^* & y_{\tau s}^* & M \end{pmatrix}, \quad M \gg M_{\mathsf{Z}}$$

 \rightarrow Heavy neutrino mass eigenstate ν_4 with $m_4 \approx M$, small mixing with SM leptons $\epsilon_i = |U_{i4}|^2$, $(i = e, \mu, \tau)$

• Impact on $Z \to \nu \bar{\nu}$: $\Gamma_{\nu} / \Gamma_{\nu}^{SM} = 1 - \frac{1}{3} (\epsilon_e + \epsilon_{\mu} + \epsilon_{\tau})$

Impact on S/T parameter

Heavy sterile neutrinos

Cancellation between tree-level and loop corrections possible \rightarrow Relatively large mixing angles allowed by EWPOs

Additonal constraint: lepton number universality

de Gouvea, Kobach '15

Observable	SM	Observed	$\left g_\ell/g_{\ell'} ight ^2$
$\Gamma(\tau \to \mu \nu \overline{\nu}) / \Gamma(\tau \to e \nu \overline{\nu})$	0.9726	0.9764 ± 0.0030	$ g_{\mu}/g_{e} ^{2} = 1.0040 \pm 0.0031$
$\Gamma(\pi \to e\nu)/\Gamma(\pi \to \mu\nu)$	1.235×10^{-4} [18]	$(1.230 \pm 0.004) \times 10^{-4}$	$ g_e/g_\mu ^2 = 0.9958 \pm 0.0032$
$\Gamma(K \to e\nu) / \Gamma(K \to \mu\nu)$	2.477×10^{-5} [18]	$(2.488 \pm 0.010) \times 10^{-5}$	$ g_e/g_\mu ^2 = 1.0044 \pm 0.0040$
$\Gamma(K \to \pi \mu \nu) / \Gamma(K \to \pi e \nu)$	$0.6591 \pm 0.0031 \ [19]$	0.6608 ± 0.0030	$ g_{\mu}/g_{e} ^{2} = 1.0026 \pm 0.0065$
$\Gamma(K_L \to \pi \mu \nu) / \Gamma(K_L \to \pi e \nu)$	0.6657 ± 0.0031 [19]	0.6669 ± 0.0027	$ g_{\mu}/g_{e} ^{2} = 1.0018 \pm 0.0062$
$\Gamma(W \to \mu \nu) / \Gamma(W \to e \nu)$	1.000 [25]	0.993 ± 0.019	$ g_{\mu}/g_{e} ^{2} = 0.993 \pm 0.020$
$\Gamma(\tau \to e \nu \overline{\nu}) / \Gamma(\mu \to e \nu \overline{\nu})$	1.345×10^6	$(1.349 \pm 0.004) \times 10^6$	$ g_{\tau}/g_{\mu} ^2 = 1.003 \pm 0.003$
$\Gamma(\tau \to \pi \nu) / \Gamma(\pi \to \mu \nu)$	9771 ± 14 [26]	9704 ± 56	$ g_{\tau}/g_{\mu} ^2 = 0.993 \pm 0.006$
$\Gamma(\tau \to K\nu)/\Gamma(K \to \mu\nu)$	480 ± 1 [26]	469 ± 7	$ g_{ au}/g_{\mu} ^2 = 0.977 \pm 0.015$
$\Gamma(D_s \to \tau \nu) / \Gamma(D_s \to \mu \nu)$	9.76 [17]	10.0 ± 0.6	$ g_{\tau}/g_{\mu} ^2 = 1.02 \pm 0.06$
$\Gamma(\bar{B} \to D^* \tau \nu) / \Gamma(\bar{B} \to D^* \mu \nu)$	0.252 ± 0.003 [24]	$0.336 \pm 0.040 \ [20]$	$ g_{\tau}/g_{\mu} ^2 = 1.333 \pm 0.159$
$\Gamma(\tau \to \pi \nu) / \Gamma(\pi \to e \nu)$	$(7.91 \pm 0.01) \times 10^7$ [18, 26]	$(7.89 \pm 0.05) \times 10^7$	$ g_{\tau}/g_{e} ^{2} = 1.000 \pm 0.007$
$\Gamma(\tau \to K\nu)/\Gamma(K \to e\nu)$	$(1.940 \pm 0.004) \times 10^7$ [18, 26]	$(1.89 \pm 0.03) \times 10^7$	$ g_{\tau}/g_e ^2 = 0.974 \pm 0.015$
$\Gamma(W \to \tau \nu) / \Gamma(W \to e \nu)$	0.999 [25]	1.063 ± 0.027	$ g_{ au}/g_e ^2 = 1.063 \pm 0.027$
$\Gamma(\bar{B} \to D^* \tau \nu) / \Gamma(\bar{B} \to D^* \ell \nu)$	0.252 ± 0.003 [24]	$0.318 \pm 0.024 \ [21,\ 22]$	$2 g_{\tau} ^2/(g_e ^2+ g_{\mu} ^2) = 1.262 \pm 0.096$
$\Gamma(\bar{B} \to D\tau\nu)/\Gamma(\bar{B} \to D\ell\nu)$	$0.299 \pm 0.011 \; [23]$	$0.406 \pm 0.050 [21, 22]$	$2 g_{\tau} ^2/(g_e ^2+ g_{\mu} ^2)=1.359\pm 0.171$

Lighter sterile neutrinos

Lighter sterile neutrinos

Future e^+e^- colliders

International Linear Collider (ILC)
Int. lumi at $\sqrt{s} \sim M_Z$: 50–100 fb⁻¹

• Circular Electron-Positron Collider (CEPC) Int. lumi at $\sqrt{s} \sim M_Z$: 2 × 150 fb⁻¹

• Future Circular Collider (FCC-ee) Int. lumi at $\sqrt{s} \sim M_Z$: > 2 × 30 ab⁻¹

	Measurement error				Intrinsic theory		
	Current	ILC	CEPC	FCC-ee	Current	Future [†]	
M_{W} [MeV]	15	3–4	3	1	4	1	
Γ_Z [MeV]	2.3	0.8	0.5	0.1	0.5	0.2	
$R_b [10^{-5}]$	66	14	17	6	15	7	
$\sin^2 heta_{ m eff}^\ell$ [10 ⁻⁵]	16	1	2.3	0.6	4.5	1.5	

→ Existing theoretical calculations adequate for LEP/SLC/LHC, but not ILC/CEPC/FCC-ee!

[†] Theory scenario: $\mathcal{O}(\alpha \alpha_s^2)$, $\mathcal{O}(N_f \alpha^2 \alpha_s)$, $\mathcal{O}(N_f^2 \alpha^2 \alpha_s)$ $(N_f^n = \text{at least } n \text{ closed fermion loops})$

	Measurement		Intrinsic	Intrinsic theory		Parametric	
	ILC	FCC-ee	Current	Future	ILC	FCC-ee	
M_{W} [MeV]	3–4	1	4	1	2.6	0.6–1	
Γ_Z [MeV]	0.8	0.1	0.5	0.2	0.5	0.1	
$R_b [10^{-5}]$	14	6	15	7	< 1	< 1	
$\sin^2 heta_{ m eff}^\ell$ [10 ⁻⁵]	1	2.3	4.5	1.5	2	1–2	

Projected parameter measurements:

	δm_t	$\delta lpha_{ extsf{S}}$	$\delta M_{\sf Z}$	$\delta(\Delta lpha)$
ILC:	50 MeV	0.001	2.1 MeV	$5 imes 10^{-5}$
FCC-ee:	50 MeV	0.0002	0.1 MeV	$3-5 \times 10^{-5}$

Projected bounds on neutrino models

Displaced vertex search

For small mixing $|\theta|^2 = \sum_i \epsilon_i$ and small m_4 , ν_4 propagates in detector before decaying Antusch, Cazzato, Fischer '16 10⁻¹³ lifetime× $|\theta|^2$ [s] 10^{-15} 10^{-7.} 10⁻¹⁷ — numeric 10⁻¹⁹ --- analytic 10⁻²¹ m_W 10-23 $|\theta|^2$ 20 40 60 80 100 0 M [GeV] 10^{-8.} $\delta x_{\rm s}$ CTILC 10⁻⁹ 20 60 40 80 M [GeV] \mathcal{V}

Displaced vertex search

For small mixing $|\theta|^2 = \sum_i \epsilon_i$ and small m_4 , ν_4 propagates in detector before decaying

Drewes, Garbrecht, Gueter, Klaric '16

 \rightarrow see talk by J. Klaric

Summary

- W/Z precision data provides trong constraints on multi-TeV new physics
 Non-trivial test for low-scale seesaw / left-right symmetric models, etc.
- For some neutrino models and regions of parameter space, EWPOs are the most important constraints
- Future e^+e^- colliders will probe new, theoretically motivated parameter space

Backup slides

Theory challenges

Evaluation of loop integrals:

- In general not possible analytically
- Numerical methods must be automizable, stable, fastly converging
- Need procedure for isolating divergent pieces