Testing the low scale seesaw and leptogenesis

Juraj Klarić (TU München) based on 1606.6690 and 1609.09069 with Marco Drewes, Björn Garbrecht and Dario Gueter

Neutrinos in Cosmology, in Astro- Particle- and Nuclear physics

EMFCSC, Erice, Sicily, 17. September 2017

Juraj	Klarić	(TUM)

Conclusions

Some of the missing pieces of the standard model:

BAU baryon asymmetry of the universe WMAP, Planck and Big bang nucleosynthesis:

Neutrino masses Nobel prize 2015 Kajita, McDonald

Erice 2017

EMFCSC

Conclusions

Some of the missing pieces of the standard model:

BAU baryon asymmetry of the universe WMAP, Planck and Big bang nucleosynthesis:

Neutrino masses Nobel prize 2015 Kajita, McDonald

Is there a way to explain both?

Juraj Klarić (TUM)	
Erice 2017	

EMFCSC

Standard Model

Standard Model

BAU baryon asymmetry of the universe WMAP, Planck and Big bang nucleosynthesis:

Neutrino masses Nobel prize 2015 Kajita, McDonald

$$m_{\nu} = -v^2 Y^{\dagger} M_M^{-1} Y^*$$

Erice 2017

EMFCSC

Seesaw Mechanism

• Dirac Mass $m_D = vY^{\dagger}$

Right handed neutrino (RHN) Majorana mass M_M

$$\mathcal{L} \supset \frac{1}{2} \begin{pmatrix} \overline{\nu_L} \\ \overline{N} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & M_M \end{pmatrix} \begin{pmatrix} \nu_L & N \end{pmatrix}$$

Active neutrino masses

Mixing with RHN

$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

$$|U_{ai}|^2 = \left| \left(m_D M_M^{-1} \right)_{ai} \right|^2$$

Juraj Klarić (TUM)

Erice 2017

Constraints on RHN parameters

- Direct constraints past experiments
- Seesaw constraints neutrino oscillation data radiatively corrected Casas-Ibarra parametrization

[Lopez-Pavon/Molinaro/Petcov 1506.05296]

- Cosmological constraints BBN $\tau_N < 0.1 s$
- Indirect constraints
 - neutrinoless double β decay
 - lepton universality
 - CKM universality
 - electroweak precision data
 - *LFV* in rare lepton decays:
 - $\ \ \, \mu \to e\gamma$
 - $\ \ \, \tau \to e\gamma$
 - $\ \ \, \tau \to \mu \gamma$

Juraj Klarić (TUM) Frice 2017 EMFCSC

Direct constraints

[Plot from arXiv:1502.00477]

	-		
Juraj Klarić (TUM)			EMFCSC
Erice 2017		7/23	

Seesaw and BBN constraints

Conclusions

Constraints on flavour patterns: Inverted hierarchy

[[]Drewes/Garbrecht/Gueter/JK 1609.09069]

Juraj Klarić (TUM)		EMFCSC
Erice 2017	9/23	

Global constraints: Inverted hierarchy

Juraj Klarić (TUM)	EMFCSC
Erice 2017	10/23

Global constraints: Inverted hierarchy

Juraj Klarić (TUM)	EM
Erice 2017	10/23

Leptogenesis via Neutrino Oscillations

Erice 2017

11/23

Goals of this work:

 derivation of the density matrix equations from first principles [Drewes/Garbrecht/Gueter/JK 1606.06690]

use the more recent calculations of rates

[Anisimov/Besak/Bödeker 1012.3784] [Garbrecht/Glowna/Schwaller 1303.5498]

inclusion of spectator effects [Barbieri/Creminelli/Strumia/Tetradis hep-ph/9911315] [Garbrecht/Schwaller 1404.2915]

analyitical approximations for different regimes

[Drewes/Garbrecht/Gueter/JK 1606.06690]

 explore parameter space/ phenomenological implications [Hernández/Kekic/López-Pavón/Racker/Salvado 1606.06719]

[Drewes/Garbrecht/Gueter/JK 1609.09069]

violation of generalized lepton number [Hambye/Teresi

1606.00017] [Eijima/Shaposhnikov 1703.06085] [Laine/Ghiglieri 1703.06087]

Schwinger-Dvson Equations Quantum Boltzmann-like kinetic equations Rate equations for number densities

Juraj Klarić (TUM)	EMFCSC
Erice 2017	12/23

Evolution Equations

RHN density matrix

$$\frac{\mathrm{d}n}{\mathrm{d}z} = -\frac{\mathrm{i}}{2} \left[H, n\right] - \frac{1}{2} \left\{\Gamma, n - n^{\mathrm{eq}}\right\} - \tilde{\Gamma} q_{\ell}$$

Active lepton equations

$$\frac{\mathrm{d}q_{\ell}}{\mathrm{d}z} = \frac{S_{\ell}(n)}{T} - Wq_{\ell} + \tilde{W}q_{N}$$

- Density matrix of the RHN $n = \begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix}$
- Effective Hamiltonian H of the RHN $\sim M^2$
- Production rate $\frac{\Gamma}{\Gamma} \sim Y^2 T$
- Source term *S*_ℓ of the active neutrinos
- Washout term W

Erice 2017

Evolution Equations

RHN density matrix

$$\frac{\mathrm{d}n}{\mathrm{d}z} = -\frac{\mathrm{i}}{2} \left[\boldsymbol{H}, \boldsymbol{n} \right] - \frac{1}{2} \left\{ \boldsymbol{\Gamma}, \boldsymbol{n} - \boldsymbol{n}^{\mathrm{eq}} \right\} - \tilde{\Gamma} q_{\ell}$$

Active lepton equations

$$\frac{\mathrm{d}q_{\ell}}{\mathrm{d}z} = \frac{S_{\ell}(n)}{T} - Wq_{\ell} + \tilde{W}q_N$$

Temperature (time) scales

$$T_{\rm osc} = \sqrt[3]{T_{\rm com} \left(M_{11}^2 - M_{22}^2\right)}$$
$$T_{\rm eq} = T_{\rm com} \gamma_{\rm av} {\rm Tr} \left(YY^{\dagger}\right)$$

- Possible to solve numerically
- Approximations needed for parameter scans

Juraj Klarić (TUM)

Erice 2017

Temperature scales and observables

[Drewes/Garbrecht/Gueter/JK 1606.06690]

Juraj Klarić (TUM)	EMFCSC
Erice 2017	14/23

Temperature scales and observables

[Drewes/Garbrecht/Gueter/JK 1606.06690]

Juraj Klarić (TUM)	EMFCSC
Erice 2017	14/23

Oscillatory regime: $T_{ m osc} \gg T_{ m eq}$ (small mixing angles)

- oscillations begin long before relaxation to equillibrium
- almost all lepton flavour asymmetry produced during first few oscillations
- lepton number asymmetry produced only through flavour asymmetric washout

[Drewes/Garbrecht/Gueter/JK 1606.06690]

Temperature scales and observables

[[]Drewes/Garbrecht/Gueter/JK 1606.06690]

Juraj Klarić (TUM)	EMFCSC
Erice 2017	16/23

Temperature scales and observables

[[]Drewes/Garbrecht/Gueter/JK 1606.06690]

Juraj Klarić (TUM)	EMFCSC
Erice 2017	16/23

Overdamped regime: $T_{ m osc} \ll T_{ m eq}$ (large mixing angles)

- naively for $T_{\rm osc} < T_{\rm eq}$, already in equilibrium
- requirement of reproducing the neutrino masses only allows one interaction eigenstate to equilibrate
- mixing between interaction eigenstates → equilibration
- approximate B L can postpone the production of BAU, preventing too much washout

[Drewes/Garbrecht/Gueter/JK 1606.06690]

Results: Inverted hierarchy

[Drewes/Garbrecht/Gueter/JK 1609.09069]

[=	
Juraj Klarić (TUM)	EMFCSC
Erice 2017	18/23

Flavour patterns from leptogenesis: Inverted hierarchy

- large mixing angles require a flavour asymmetric washout, which corresponds to a flavour asymmetric mixing
- together with seesaw constraints this imposes constraints on the mixing patterns for large mixing angles

[Drewes/Garbrecht/Gueter/JK 1609.09069]

Conclusions

Leptogenesis and neutrinoless double β decay

Leptogenesis and neutrinoless double β decay

[Eijima/Drewes 1606.06221,

Hernández/Kekic/López-Pavón/Salvado 1606.06719]

- **RHN** can contribute to $m_{\beta\beta}$
- large mass splitting is required to have an observable effect (not always compatible with leptogenesis)
- some leptogenesis scenarios can already be excluded by current results

Full Testability?

- full testability requires a complete determination of the RHN parameters
- in principle possible from a measurement of all mixing angles and masses
- leptogenesis requires degenerate masses hard to resolve in experiments
- remaining parameters could be probed by:
 - neutrinoless double β decay requires large ΔM and U^2

[Eijima/Drewes 1606.06221,Hernández/Kekic/López-Pavón/Salvado 1606.06719]

- CP violation requires ΔM comparable to the decay width
- lepton number violation requires ΔM comparable to the decay width

Conclusions

- adding GeV-scale RHNs to the standard model can explain both the observed neutrino masses and the BAU
- the seesaw mechanism gives constraints on RHN mixing patterns (stronger if δ is measured!)
- testable leptogenesis within reach offuture experiments (SHiP, LBNE, FCC, ILC, CEPC)
- large mixing angles + leptogenesis → even stronger predictions on the flavour patterns
- while complete determination of the RHN parameters is possible in principle, it requires extreme experimental sensitivity

[Eijima/Drewes 1606.06221]

Juraj Klarić (TUM)		EMFCSC
Erice 2017	3/4	

Backup slides

[Eijima/Drewes 1606.06221]

[-3/	
Juraj Klarić (TUM)	EMFCSC
Erice 2017	4/4