

Commissioning the KATRIN Experiment with Krypton-83m

Hendrik Seitz-Moskaliuk, KIT-ETP

International School of Nuclear Physics, 39th course, Erice, 16.09.-24.09.2017

The KATRIN Experiment

The KATRIN Experiment

3 17.09.2017

Hendrik Seitz-Moskaliuk - Commissioning the KATRIN Experiment with Krypton-

83m

The KATRIN Experiment

4 17.09.2017

Hendrik Seitz-Moskaliuk - Commissioning the KATRIN Experiment with Krypton-

83m

Krypton-83m: a unique nuclear standard for KATRIN

	Tritium	Krypton-83m
Electron emitter	β decay	Internal conversion
Electron energy	Continuous up to E ₀ =18.6 keV	Several sharp lines between 7-32 keV K32 at 17.8 keV
Half-life	12.3 a	1.83 h
 ⁸³Rb pr Source half-life High ac 	roduced at Rez cy es easy to handle e of ⁸³ Rb ctivity > 1 GBq po	yclotron due to "long" ossible

Krypton-83m: a unique nuclear standard for KATRIN

Krypton-83m: a unique nuclear standard for KATRIN

Krypton sources at KATRIN

17.09.2017 Hendrik Seitz-Moskaliuk – Commissioning the KATRIN Experiment with Krypton-83m

8

Krypton sources at KATRIN

Gaseous ^{83m}Kr source

- ^{83m}Kr decays inside beam tube •
- Homogeneous spatial distribution •
- Ca. 1 GBq of ⁸³Rb •

Krypton sources at KATRIN

10 17.09.2017

^{12 17.09.2017} Hendrik Seitz-Moskaliuk – Commissioning the KATRIN Experiment with Krypton-83m

Gaseous ^{83m}Kr source

Change WGTS operation mode from 30 K (tritium operation) to 100 K (Kr operation)

13 17.09.2017

Gaseous ^{83m}Kr source

14 17.09.2017

Sub mono layer of ^{83m}Kr is condensed continuously on HOPG substrate.

15 17.09.2017

Condensed ^{83m}Kr source

Sub mono layer of ^{83m}Kr is condensed continuously on HOPG substrate.

16 17.09.2017

Implanted ^{83m}Kr source

Advantage: Can be handled easily.

Disadvantage: Solid state effects.

⁸³Rb implemented in Pt or HOPG substrate at Bonn Isotope Separator (BONIS)

17 17.09.2017 Hendrik Se

Implanted ^{83m}Kr source

The Czech Academy of Sciences universitätbonn Monitor spectrometer connected to

 high voltage of main spectrometer.
 → Scan of ^{83m}Kr line position to monitor high voltage stability.

Uncertainty of line position 15 meV after 15 min, 3 MBq source → sub-ppm level

M. Slezak, PhD thesis, Prague, 2015

Advantage: Can be handled easily.

Disadvantage: Solid state effects.

⁸³Rb implemented in Pt or HOPG substrate at Bonn Isotope Separator (BONIS)

The Kr Measurement Campaign: Hardware

- All beamline magnets at their nominal field strength.
- All three Krypton sources operable.

The Kr Measurement Campaign

3 major goals:

- 1. Operation and characterization of KATRIN Kr sources and whole beamline
- 2. Test of overall KATRIN analysis chain

3. Kr spectroscopy

How KATRIN measures conversion lines

Lowering the voltage at the main spectrometer with a constant step size, here: 0.5 V

Measuring at each step with the same time, here: 10 s.

As soon as the energy of the electrons exceeds the retarding voltage, they are transmitted.

14:42

Preliminary results

Preliminary results

KATRIN requirement: HV stability/energy scale stability < 3 ppm per 60 days of running KATRIN.

Karlsruhe Institute of Technology

Preliminary results

Kr atoms are in different ionization states after first transition and are not neutralized before the second one.

→ Lines split in several sub lines.

KATRIN sees this effect in the gaseous source measurements.

Analysis still ongoing.

Other results

Requirement: System stability for KATRIN < 0.2 %/h

Here: Temperature and magnetic field stability of WGTS, two sensors as example.

25 17.09.2017

Other results

83m

Conclusions

Kr-83m is an optimal nuclear standard for monitoring and calibration purposes for KATRIN.

Conclusions

Kr-83m is an optimal nuclear standard for monitoring and calibration purposes for KATRIN.

The three Kr-83m sources of KATRIN have been tested in a measurement campaign of two weeks:

- Electron transport along entire beam line
- Kr-83m spectroscopy
- Stability of the system

➔ Great success

I=1/2-

1=7/

Conclusions

Thank you for your attention!

Hendrik Seitz-Moskaliuk - Commissioning the KATRIN Experiment with Krypton-

83m

KATRIN Transmission Function

WGTS plasma potential

Electrons of the rear side are stronger effected by plasma than electrons from the front side.

Determining the plasma potential of WGTS

Information on potential of front half of WGTS are hidden in unscattered electrons shoulder, information on potential of rear half are hidden in corresponding singly scattered electrons shoulder.

WGTS for KATRIN

34 17.09.2017

2-phase neon cooling

Performance of Pt500 sensors

Measurement uncertainties:		
Sensor dispersion	0.087 K	
+Magnetic field dependence	0.087 K	
+Other (instruments, ageing processes)	<u>0.023 K</u>	
Total:	0.125 K	

Calibration necessary for homogeneity requirement $\Delta T = \pm 30 \text{ mK}$

Grohmann et al., Cryogenics 51 (2011)

36