

Int. School of Nuclear Physics, 39th Course: Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics Erice, Sept. 16-24, 2017

Preparing the start of neutrino mass measurements with KATRIN

KATHRIN VALERIUS, KIT Center Elementary Particle and Astroparticle Physics (KCETA)

Absolute neutrino mass measurement in tritium β decay

- The KATRIN experiment
 - Status: Overview and commissioning results
 - Outlook: Final steps towards tritium data-taking

www.kit.edu

Massive neutrinos

2015 Physics Nobel Prize

"for the discovery of neutrino oscillations, which shows that **neutrinos have mass**"

- Evidence for BSM physics
- Mass generation mechanism?
- Smallness of neutrino masses?

M.C. Gonzalez-Garcia, this session + many other contributions

What is the absolute scale of neutrino masses?

Massive neutrinos

2015 Physics Nobel Prize

"for the discovery of neutrino oscillations, which shows that **neutrinos have mass**"

PERGAMON

Erice, anno 2001 ...

Progress in Particle and Nuclear Physics

Progress in Particle and Nuclear Physics 48 (2002) 141-150

http://www.elsevier.com/locate/npe

• Evidence for BSM physics

- Mass generation mechanism?
- Smallness of neutrino masses?

KATRIN, a Next Generation Tritium β Decay Experiment in Search for the Absolute Neutrino Mass Scale

Ch. WEINHEIMER for the KATRIN COLLABORATION*

Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany New address: Institut für Strahlen- und Kernphysik, Universität Bonn, 53115 Bonn, Germany November 27, 2001

Abstract

With the compelling evidence for massive neutrinos from recent ν -oscillation experiments, one of the most fundamental tasks of particle physics over the next years will be the determination of the absolute mass scale of neutrinos, which has crucial implications for cosmology, astrophysics and particle physics. A next generation tritium β decay experiment, the Karlsruhe Tritium Neutrino experiment (KATRIN), is proposed to reach a sub eV sensitivity on the absolute mass of the electron neutrino.

KATRIN Letter of Intent: arXiv:hep-ex/0109033

What is the absolute scale of neutrino masses?

Complementary paths to the v mass scale

And the second second second

			ⁿ ⁿ ^p ³ H ^v ^e ³ He ⁺
	Cosmology	Search for 0vββ	β-decay & EC
Observable	$M_{\nu} = \sum_{i} m_{i}$	$m_{\beta\beta}^2 = \left \sum_i U_{ei}^2 m_i\right ^2$	$m_{\beta}^2 = \sum_i U_{ei} ^2 m_i^2$
Present upper limit	~0.2 – 0.6 eV	~0.1 – 0.4 eV	2 eV
Potential: near-term (long-term)	60 meV (15 meV)	50 – 200 meV (20 – 40 meV)	200 meV (40 – 100 meV)
Model dependence	Multi-parameter cosmological model	 Majorana v: LNV BSM contributions other than m(v)? Nuclear matrix elements 	Direct, only kinematics; no cancellations in incoherent sum
	M. Archidiacono (today)	A. Piepke, M. Agostini (Mon), A. Poon (Tue) + more	S. Mertens, S. Böser (Thu); Fertl, C. Tully (Mon) + more

K. Valerius, Erice, 17 Sept. 2017

Direct kinematic determination of m(v_e)

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = C F(Z, E) p \left(E + m_{\mathrm{e}}\right) \left(E_0 - E\right) \sum_i |U_{\mathrm{e}i}|^2 \sqrt{(E_0 - E)^2 - m^2(\nu_i)^2}$$

Key requirements:

- Low-endpoint β /EC nuclide: E₀ = 18.6 keV for ³H, 2.8 keV for ¹⁶³Ho
- High-activity source: T_{1/2} = 12.3 yr for ³H, 4.5 kyr for ¹⁶³Ho
- Excellent energy resolution (MAC-E filter or calorimeter)

Kinematic measurement can probe for heavier neutrino states

→ eV-scale and keV-scale sterile v

Spectral distortion measures "effective" mass square:

 $m^2(\nu_{\rm e}) := \sum_i |U_{{\rm e}i}|^2 m_i^2$

Moore's Law of direct neutrino mass searches

High-resolution β spectrometer

7

Ca. 50 authors on the Letter of Intent (*hep-ex/0109033*) Initially: groups from Karlsruhe, Mainz, Troitsk, Seattle, Rez, Fulda

Ca. 140 collaboration members from ~20 institutions in 6 countries

Neutrino mass analysis & sensitivity

Statistical & systematic uncertainties

KATRIN's uncertainty budget (design sensitivity, ~2004):

system characterisation

Windowless gaseous tritium source

12

Transport & pumping sections

- Fully adiabatic, **lossless electron transport** in 5.6 T magnetic field
- Reduction of T₂ flow rate to spectrometers by factor >10¹⁴: magnetic chicane with differential and cryo-pumping
- Ion diagnostics & ion flux blocking by electrostatic barrier

KATRIN main spectrometer

Magnetic Adiabatic Collimation and Electrostatic Filter

Detector system

- Ø 90 mm Si-PIN diode
- 148 pixels (dartboard layout)
- ΔE_{FWHM} ~2 keV

15

high detection efficiency

- Iow intrinsic background (passive & active shielding)
- post-acceleration up to 10 kV

Backgrounds in KATRIN

- 8 sources of background investigated and understood
- 7 out of 8 avoided or actively eliminated by
 - fine-shaping of special electrodes
 - inner electrode (wire grids on neg. potential)
 - symmetric magnetic fields
 - cold traps (LN₂-cooled baffles to remove ²¹⁹Rn)

- **1 out of 8 remaining:** ²¹⁰Pb on spectrometer walls (thermal ionisation of neutral H* atoms)
- Countermeasures:
 - extensive bake-out (done)
 - irradiation by strong UV source (ongoing investigation)

KATRIN milestone: gearing up for tritium with ^{83m}Kr

KATRIN krypton campaign: 3-19 July 2017

Hardware readiness from source to detector with ^{83m} Kr as short-lived "tracer"	Data chain from raw data & slow control parameters to high-level analysis tools	System characterization with mono-energetic & isotropic CE: sharp transmission of MAC-E filter, detector properties, system alignment, absolute energy scale calibration,
--	--	---

Krypton measurement programme at KATRIN

٠

٠

Krypton measurement programme at KATRIN

Three different krypton sources -> handle on systematics, extensive characterization

Line stability & absolute calibration (gaseous Kr source)

- Example runs (two out of many line scans)
- Only central detector ring shown (x30 more statistics available)
- High-resolution scans of narrow N_{2,3}-32 doublet (670 meV hyperfine splitting, sub-eV natural widths, background-free at 32 keV) currently being analyzed

Relative line position (meV) 0

-50

-100

0

100

50

- Repeated scans of L₃-32 line •
- Line position stability well within • KATRIN goal of ± 60 meV
- Excellent stability of Krypton source and HV system

Absolute calibration of HV divider with nuclear standard

1

stability goal for 2-month run

2

Time (days)

З

- Line position difference L3-32 K-32
 - \rightarrow source-related systematics cancel
 - \rightarrow ~5 ppm preliminary uncertainty on energy scale (very good agreement with 2013 PTB calibration value!)

In cooperation with German national metrology institute

preliminary

4

Status of tritium-bearing components

tritium source cryostat

differential pumping & cryo-pumping sections

source instruments panel

- > Superconducting solenoids operational
- > Test of ~800 sensors completed
- Installation of tritium loops ongoing (~100 m of piping, valves)

Integration of Calibration and Monitoring System

"Rear Section": major importance for systematics control

24 [Valerius *et al.*, JINST 6 (2011) 01002; Beck *et al.*, JINST 9 (2014) 11020] c. Jan Behrens

K. Valerius, Erice, 17 Sept. 2017

Precision electron source for calibration & monitoring

Concept successfully tested at Monitor and Main Spectrometers:

25 [Behrens *et al.*, EPJ **C**77 (2017) 410; PhD theses Behrens, Erhardt, Barrett, Wierman, Kraus] Rear Section electron source being prepared for commissioning

C. Philipp Ranitzsch K. Valerius, Erice, 17 Sept. 2017

Determining the energy loss function

Measurement of electron transmission at different gas column density

→ determine energy loss function through deconvolution

(here: singular value decomposition, SVD)

Modelling of the β spectrum

Exploring the physics potential

... close to the spectral endpoint E₀:

search for eV-scale sterile v

standard operation mode for KATRIN

... in the presence of non-SM currents

e.g. Formaggio & Barrett, PL B706 (2011) 68; Sejersen Riis & Hannestad, JCAP02 (2011) 011; Esmaili & Peres, PR D85 (2012) 117301

Steinbrink et al., JCAP 06 (2017) 015

Exploring the physics potential

• ... further away from E₀:

search for keV-scale sterile ν as WDM candidates

KeV sterile neutrino white paper [Adhikari *et al.*, JCAP 01 (2017) 025]

Summary & outlook

- β decay allows model-independent, direct access to neutrino mass scale
- KATRIN will exhaust degenerate mass regime: 200 meV (90% CL for 5 yrs of running); reaching sub-eV sensitivity with first few weeks of data
- Interesting physics potential beyond m_v : eV and keV scale sterile v, RH currents, LIV, ...

→ First tritium runs starting in 2018, inauguration ceremony: 11 June 2018

Challenges for further improvement:

- Opacity of gaseous T₂ source (already optimised for KATRIN, ~40% no-loss e⁻)
- MAC-E filter does not scale further, measures integral beta spectrum
- Molecular final state excitations (vib: $\sim 100 \text{ meV}$) as ultimate limitation for T₂