Measuring the Neutrino Mass Ordering in JUNO

International School of Nuclear Physics Erice, 16 Sep 2017

Michael Wurm Uni Mainz

Outline

Neutrino mass ordering

- motivation
- experimental methods

JUNO experiment

- signature of mass ordering
- detector layout
- systematic effects
- other experimental inputs

Status of 3-flavor oscillations

mass squared differences :

• $\Delta m_{\rm sol}^2 = \Delta m_{21}^2$ \rightarrow small splitting: +8x10⁻⁵ eV² • $\Delta m_{\rm atm}^2 = \Delta m_{32}^2 \approx \Delta m_{31}^2$ \rightarrow large splitting: ±2.5x10⁻³ eV²

Michael Wurm (Mainz)

Neutrino mass ordering in JUNO

Open issues in 3-flavor mixing?

 $\begin{aligned} \mathbf{U}_{\mathbf{3}\times\mathbf{3}} &= \mathbf{U}_{\text{PMNS}} \\ \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_2 \end{pmatrix} \end{aligned}$

Implications of neutrino mass ordering

Implications of neutrino mass ordering

Michael Wurm (Mainz)

JG|U

Concepts for MO measurement

Very-Long Baseline Neutrino Beams

comparison of v_e / \bar{v}_e appeareance

→ imprint of MO-dependent matter effects!

 \mathbf{v}_{μ} or $\mathbf{\overline{v}}_{\mu}$ beam

Concepts for MO measurement

2 Low-energy atmospheric neutrino oscillations

 v_{μ} + \overline{v}_{μ} beam

 ν_{μ}

combined signals: $v_e + \overline{v}_e$ appeareance $v_\mu + \overline{v}_\mu$ disappeareance

imprint of MO-dep. matter effects!

Concepts for MO measurement

3 Mid-baseline reactor neutrino oscillations

ORCA

JUNO in a nutshell

JUNO characteristics

- liquid scintillator detector: 20ktons
- number of PMTs: 17,000 (20")
- energy resolution: 3% at 1MeV
- rock overburden: 700m
- distance to reactors: 53km

Physics objectives

- neutrino mass hierarchy
- sub-% measurement of solar oscillation parameters
- astrophysical neutrinos
- nucleon decay
- eV-scale sterile neutrinos

Reactor antineutrino oscillations

Common three-flavor reactor electron-antineutrino survival probability:

$$P_{ee} = 1 - \sin^2(2\theta_{13})\sin^2\left(\frac{\Delta m_{31}^2}{4E}\right) - \sin^2(2\theta_{12})\sin^2\left(\frac{\Delta m_{21}^2}{4E}\right)$$

 \rightarrow oscillation parameters are extracted from \overline{v}_e disappearance pattern

 \rightarrow however, the formula above implicitly assumes $\Delta m_{31}^2 = \Delta m_{32}^2$

Reactor $\overline{\mathbf{v}}$ oscillations: full 3-flavor picture $JG \cup U$

Survival probability $P_{\overline{e}\overline{e}} = 1 - P_{21} - P_{31} - P_{32}$ $P_{21} = \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$ $P_{31} = \cos^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{31}$ $P_{32} = \sin^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{32}$ $\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{\Delta E}$

 P_{ee}

Reactor $\overline{\mathbf{v}}$ oscillations: full 3-flavor picture $JG \cup U$

Reactor $\overline{\mathbf{v}}$ oscillations: full 3-flavor picture JG|U

Oscillation pattern at 1st solar maximum JG

Oscillation pattern at 1st solar maximum JG

Michael Wurm (Mainz)

Basic detector requirements for JUNO

- reactor antineutrinos at MeV energies
 → Liquid-scintillator detector
 > Detection by inverse beta decay
 - \rightarrow Detection by inverse beta decay

 $\bar{\nu}_e + p \to n + e^+$

- signature in position of spectral wiggles
 → ~3% energy resolution at 1 MeV
 → photoelectron yield: ~1,100 pe/MeV
- large distance to source and high-statistics measurement
 → large target mass: 20 kilotons of LAB
- cosmogenic background
 → rock overburden of ~700 m

JUNO Experimental Setup

JUNO Experimental Setup

New underground laboratory

JUNO Detector layout

Sensitivity to mass ordering ¹

JGU

Scintillator light yield: >10⁴ photons per MeV

Energy resolution: Systematic effects

Energy resolution function

→ calibrations w/ radioactive sources deployed in LS (γ's, e⁺, AmBe for n's etc.)
 → multi-calorimetry with small PMTs ...

Michael Wurm (Mainz)

Neutrino mass ordering in JUNO

Energy scale non-linearities

\rightarrow potentially very dangerous

example of non-linearity curves canceling the signature of MO

\rightarrow systematic studies show that effect can be largely avoided by self-calibration

Cosmogenic backgrounds¹

Cosmic background levels

- rock shielding: 700 m
- μ rate in Central Detector: ~3 s⁻¹
- showering μ rate: ~0.5 s⁻¹

 \rightarrow radioisotopes from ¹²C spallation

Most dangerous: βn-emitters

- ⁹Li → ⁹Be + e⁻ + v_e [τ(⁹Li)~257ms] \downarrow 2α + n
- prompt electron signal
 + delayed neutron capture
- → mimics neutrino (IBD) signature!

Expected ⁹Li rate: ~80 d⁻¹

- → signal to background < 1:1
- \rightarrow veto based on parent μ mandatory!

Michael Wurm (Mainz)

Cosmogenic backgrounds²

Michael Wurm (Mainz)

Possibilities for vetoing ⁹Li

- radial cut around muon track
- identification of showering muons
 - cuts relative to neutron vertices
 - Iocal (?) dE/dx of muons

□ ...

current veto: ${}^{9}Li/{}^{8}He: 77d^{-1} \rightarrow 1.6 d^{-1}$ 17% loss of exposure

Systematics from oscillation baselines ¹

Systematics from oscillation baselines²

Systematics from oscillation baselines³

Sensitivity to mass ordering²

JUNO, arXiv:1507.05613

Δχ²

+16

-3

-1.7

-1

-0.6

-0.1

S/B ratio (rate)

S/B ratio (shape)

100,000 ev

JUNO's expected sensitivity level

(assuming **3% energy resolution**)

JUNO alone based on 6 years: ~3σ

Michael Wurm (Mainz)

Input from accelerator/atmospheric v's

 JUNO measures reactor antineutrino disappearance v
_e→ v
_e via effective

$$\Delta m_{ee}^2 = \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$$

 Accelerator/atmospheric experiments measure ν_µ → ν_µ disappearance:

$$\begin{split} \Delta m_{\mu\mu}^2 &\simeq \sin^2 \theta_{12} \Delta m_{31}^2 + \cos^2 \theta_{12} \Delta m_{32}^2 \\ &+ \sin 2\theta_{12} \sin \theta_{13} \tan \theta_{23} \cos \delta \Delta m_{22}^2 \end{split}$$
$$\Box \text{ NOvA/T2K} \rightarrow |\Delta m_{\mu\mu}^2| \sim 1\%$$

effective Δm² values can be linked via

$$|\Delta m_{ee}^2| - |\Delta m_{\mu\mu}^2| = \pm \Delta m_{21}^2 (\cos 2\theta_{12} - \sin 2\theta_{12} \sin \theta_{13} \tan \theta_{23} \cos \delta)$$

\rightarrow inclusion of accurate measurement of $|\Delta m^2_{\mu\mu}|$ as prior in the analysis

Sensitivity to mass ordering ³

JUNO, arXiv:1507.05613

JUNO's expected sensitivity level

(assuming 3% energy resolution)

JUNO alone based on 6 years: ~3σ

+ precise data by T2K/NOvA on $\Delta m_{\mu\mu}^2$: 4 σ

defining factors:				
E resolution:	3% at 1MeV			
statistics:	100,000 ev			

Sensitivity budget	Δχ ²
Statistics only	+16
different core distances	-3
reactor background	-1.7
spectral shape	-1
S/B ratio (rate)	-0.6
S/B ratio (shape)	-0.1
information on $\Delta m^2_{\ \mu\mu}$	+8

Global effort on Mass Ordering

- reactor neutrinos: JUNO
- atmospheric v's: INO, PINGU, ORCA
- long-baseline beam: LBNE→DUNE

 $v_e \rightarrow v_e$

energy res. (3-3.5%)

JUNO + future atmospheric v results

Blennow, Schwetz, arXiv:1306.3988

Conclusions

JUNO will offer a rich physics program!

→ Yellow Book, arXiv:1507.05613

Reactor neutrino oscillations

- mass ordering: $3\sigma \rightarrow 4\sigma$ (with input on $\Delta m^2_{\mu\mu}$)
- sub-% measurement of osc. parameters

Neutrinos from natural sources

- Galactic Supernova neutrinos
- Diffuse Supernova Neutrino Background
- Solar neutrinos
- Geoneutrinos
- Neutrinos from dark matter annihilation
- Atmospheric neutrinos
- Short-baseline oscillations (sterile v's)
- Proton decay into K⁺v

JUNO Collaboration

553 collaborators from 72 institutions

Armenia, Belgium, Brazil, Chile, China, Czech Republic, Germany, Finland, France, Italy, Latvia, Pakistan, Russia, Slovakia, Thailand, Taiwan, and the United States

German institutes

Backup slides

Matter effects, mass hierarchy, CP violation^{IG} U

neutrino-antineutrino asymmetry term

 $J = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}$ $\omega eak matter potential A$ $\Delta_{ij} = \frac{\Delta m_{ij}^2}{2E_{\nu}}$ $B_{\pm} = |A \pm \Delta_{13}|$ $A = \sqrt{2}G_F N_e$ $\longrightarrow \nu \leftrightarrow \bar{\nu} \text{ asymmetry if } A \sim \Delta_{13}!$

Michael Wurm (JGU Mainz)

Neutrino Mass Hierarchy

Oscillation patterns for long-baseline beamIG

- Oscillation probabilities differ for $v_{\mu} \rightarrow v_{e}$ vs. $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$
- Enhanced electron-flavor appearance for:

neutrinos \rightarrow normal hierarchy antineutrinos \rightarrow inverted

• Far detector at first atmospheric oscillation maximum:

longer baseline \rightarrow larger energy \rightarrow larger matter effect!

MH from atmospheric neutrinos

Source: Atmospheric µ-neutrinos $P(v_{\mu} \rightarrow v_{\mu})$ with Travel Through the Earth - 10 GeV, 179 arth Density (g/cm^3) Energies: 2-20 GeV Normal Hierarch v_{μ} Baselines: 20-13000 km Matter potential: 2 Earth core & mantle **MH** signature 2000 4000 6000 8000 10000 matter effects in $v_{\mu} \rightarrow v_{\mu}$ disappearance

v_µ→v_e appearance

Detector requirements

- relatively low energy threshold
- good angular resolution
- flavor identification
- nice to have: lepton charge ID (v/v̄)

Lenath (km)

Atmospheric v signal observed in PINGU JG

Event statistics

- ν_µ: 5.0x10⁴ yr⁻¹
- v_e: 3.8x10⁴ yr⁻¹
- \rightarrow detectable difference

Detector resolution

- energy resolution: ~20% above 10 GeV
- directional resolution improving with energy

Particle identification

- v_{μ} (CC): tracks
- v_e (CC) + v_x (NC): cascades
- ightarrow distinction of event types

JUNO's liquid scintillator

Required properties:

Light transport over >17m

- ightarrow solvent LAB very transparent
- ightarrow no addition of gadolinium
- \rightarrow Al₂O₃ column purification

High light yield: >10⁴ ph/MeV

→ pure LAB, no addition of paraffins
 → large fluor (PPO) concentration

Radiopurity:

 \rightarrow reactor neutrinos: <10⁻¹⁵ g/g in U/Th

- \rightarrow solar neutrinos: <10⁻¹⁷ g/g
- \rightarrow vacuum distillation

for free:

- Fast fluorescence times

 → good spatial resolution
- Good pulse shaping properties
 → background discrimination, e.g. e⁺/e⁻

LENA-style liquid scintillator

p.e. yield vs. scintillator transparency

Number of detected photoelectrons

Light detection

JGU

Light collection required:

 optical coverage: 75%
 → 17,000 large PMTs (20")
 → additional small PMTs (3") (double calorimetry + timing)

Light detection

Light collection required:

- optical coverage: 75%
- quantum efficiency QE x collection efficiency CE = 35%

т

 \rightarrow photons detected: ~26%

Hamamatsu R12860 (20"PMT)

Parameter	Hamamatsu 20"	new MCP-PMT	front cathode	x12,000
Photocathode	transmission	transmission + reflection		
QE (400nm)	30%(T)	26%(T) + 4%(R)	back-to-back	
relative CE	100%	110%	back cathode	
peak-to-valley ratio	>3	>3		
transit time spread	~3ns	~12ns		
dark rate	~30kHz	~30kHz		MCP-PMT 8" prototype
afterpulsing	10%	3% JUNO		50

Influence of $\Delta m^2_{\mu\mu}$ accuracy

Influence of energy scale linearity

JG

Reactor anomaly: 5 MeV bump

Michael Wurm

- Arrangement of the neutrino masses
 normal ordering: m₁ < m₂ < m₃
 inverted ordering: m₃ < m₁ < m₂
 quasi-degenerate: m₁ ≈ m₂ ≈ m₃
- resolving the degeneracy in the interpretation of δ_{CP} measurements
- target range for sensitivity of
 0vββ decay experiments
- combination with cosmology to resolve neutrino masses

- Arrangement of the neutrino masses
 normal ordering: m₁ < m₂ < m₃
 inverted ordering: m₃ < m₁ < m₂
 quasi-degenerate: m₁ ≈ m₂ ≈ m₃
- resolving the degeneracy in the interpretation of δ_{CP} measurements
- target range for sensitivity of
 0vββ decay experiments
- combination with cosmology to resolve neutrino masses

NOvA: degeneracy of MH and $\delta_{\rm CP}$

Arrangement of the neutrino masses □ normal ordering: m₁ < m₂ < m₃ □ inverted ordering: m₃ < m₁ < m₂ □ quasi-degenerate: m₁ ≈ m₂ ≈ m₃

- resolving the degeneracy in the interpretation of δ_{CP} measurements
- target range for sensitivity of
 0vββ decay experiments
- combination with cosmology to resolve neutrino masses

- Arrangement of the neutrino masses
 normal ordering: m₁ < m₂ < m₃
 inverted ordering: m₃ < m₁ < m₂
 quasi-degenerate: m₁ ≈ m₂ ≈ m₃
- resolving the degeneracy in the interpretation of δ_{CP} measurements
- target range for sensitivity of
 0vββ decay experiments
- combination with cosmology to resolve neutrino masses

