Milad Alanssari University Münster

Precision mass measurements in the context of neutrino-nuclear physics ----- Ονββ decay and g_A -----

Erice, September, 2017,

WESTFÄLISCHE WILHELMS-UNIVERSTÄT MÜNSTER

Outline

- Double beta (ββ) decay
 - \rightarrow neutrinoless double beta ($0\nu\beta\beta$) decay NME
 - \rightarrow the specialties of ⁹⁶Zr/ ⁹⁶Nb for β and $\beta\beta$ decay
- Mass measurements using the JYFLTRAP ion trap
- Results and the issue of the axial vector coupling g_A
- Proposal for a μ -capture experiment at RCNP to "measure" g_A

Double beta decay

$A(Z,N) \rightarrow A(Z+2,N-2) + 2e^{-} + 2\overline{\nu}_{e}$

- \succ allowed in Standard Model (Δ L=0)
- observed experimentally
- NME can be measured (charge-exchange)
- no dependence on v mass
- > low-q phenomenon ($q_{tr} \sim 0.01 \text{ fm}^{-1}$)

$A(Z,N) \rightarrow A(Z+2,N-2)+2e^{-}$

- > forbidden in Standard Model ($\Delta L=2$)
- not observed yet
- > NME only calculated
- v has Majorana mass
- > high-q phenomenon ($q_{tr} \sim 0.5 \text{ fm}^{-1}$)

$\beta^{-}\beta^{-}$ decay

		_
1.	⁴⁸ Ca	7. ¹³⁰ Te
2.	¹⁵⁰ Nd	8. ¹³⁶ Xe
3.	⁹⁶ Zr	9. ¹²⁴ Sn
4.	¹⁰⁰ Mo	10. ⁷⁶ Ge
5۰	⁸² Se	11. ¹¹⁰ Pd
6.	¹¹⁶ Cd	

the β - β - decay candidates with Q-value > 2 MeV

$\beta^{-}\beta^{-}$ decay

1.	⁴⁸ Ca	7. ¹³⁰ Te
2.	¹⁵⁰ Nd	8. ¹³⁶ Xe
3.	⁹⁶ Zr	9. ¹²⁴ Sn
4.	¹⁰⁰ Mo	10. ⁷⁶ Ge
5.	⁸² Se	11. ¹¹⁰ Pd
6.	¹¹⁶ Cd	

the β - β - decay candidates with Q-value > 2 MeV

$\beta^{-}\beta^{-}$ decay rate

$0\nu\beta^{-}\beta^{-}N_{ucl.}M_{atrix}E_{lement}$

P.Vogel, J. Phys. G, NPP39, 2012

The calculated $0\nu\beta\beta$ decay NME via different models differ by more than a factor of 2-3 (i.e. half-life 4-9)

Idea for ⁹⁶Zr

- (i) measure Q-value for ⁹⁶Zr → ⁹⁶Nb single β-decay by precision mass measurement and
 - (ii) measure the single β -decay rate (iii) \rightarrow ft-value
- determine the ⁹⁶Zr 4-fold forbidden
 β-decay NME and confront with theory
- confront with same theories aimed at calculating 0vββ-decay NME for the same nucleus!!

Competition between β & ββ decay of ⁹⁶Zr

two conflicting half-lives:

NEMO-3: $T_{1/2}^{2\nu\beta\beta}$ geo-chem: $T_{1/2}$

1

$$T_{1/2}^{(1)} = (2.3 \pm 0.2) \times 10^{-9} \text{ y}$$

 $T_{1/2}^{(1)} = (0.94 \pm 0.32) \times 10^{19} \text{ y}$ (1)

 $(22+02)\times 10^{19}$

can this difference be reconciled ? yes, if single β competes with $\beta\beta$ decay

$$\left(T_{1/2}^{}\right)^{-1} = \left(T_{1/2}^{2\nu\beta\beta}^{}\right)^{-1} + \left(T_{1/2}^{\beta}^{}\right)^{-1}$$

 $\begin{array}{ll} \mbox{expected} & T_{1/2}^{\beta} = \ \left(1.6 \pm 0.9 \right) \times 10^{19} \, y \\ \mbox{experiment} & T_{1/2}^{\beta} > 2.6 \times 10^{19} \, y \\ \mbox{pred. (QRPA)} & T_{1/2}^{\beta} = 24 \times 10^{19} \, y \\ \mbox{BUT} \end{array}$

$$(T_{1/2}^{\beta})^{-1} \propto o(Q^{13}) g_A^2 \langle M_{\beta}^{4u} \rangle^2$$

Wieser, PRC64,2001, 2 Barabash, JPG-NPP22, 1996 3 Heiskanen, JPG3,2007

Ion motion in a Penning trap

Homogeneous magnetic field + static electric field provides 3D confinement results in three eigenmotions:

- 1. Magnetron motion ω_{-}
- 2. Reduced cyclotron motion ω_+
- 3. Axial motion ω_z

IGISOL / JYFLTRAP setup

Figures from Eronen EPJA 48-2012

Beam production at IGISOL

Principle of isobar separation in purification trap

Excite ion eigenmotion by a dipolar or a quadrupolar electric field with a corresponding frequency ($\nu_{\rm L}$ or $\nu_{\rm c}$)

Mass measurements in a Penning trap

Performing precision mass determination via cyclotron frequency v_c measurement

$$v_c = \frac{1}{2\pi} \frac{q}{m} \cdot \mathbf{B}$$

 \succ Frequency ratio r =

$$ω_c = 2π ν_c$$

c daughter

Cyclotron frequency V_c determination done by TOF-ICR technique

Example resonances

Cyclotron frequency results

The measured cyclotron frequency of ⁹⁶Zr and ⁹⁶Nb by

Ramsey excitation pattern 25-750-25 ms (on-off-on)

Q-value results

The measured single β^{-} and $\beta^{-}\beta^{-}$ decay Q-values of the A=96 triplet

M. Alanssari et al., PRL 116 (2016) 072501

Next: need $T_{1/2}$ of single β decay

$$T_{1/2}(\text{QRPA}) = \frac{24}{g_A^2} \times 10^{19} \text{ yr}$$
$$T_{1/2}(\text{SM}) = \frac{11}{g_A^2} \times 10^{19} \text{ yr}$$
$$T_{1/2}(\text{exp}) > 2.3 \times 10^{19} \text{ yr}$$

Important side effect:

single β decay depends on \mathbf{g}_{A}^{2} $2\nu/0\nu\beta\beta$ decay depends on \mathbf{g}_{A}^{4}

A measurements of single β decay gives experimental handle on the quenching of g_A

The muon capture and g_A in weak decays

$\underline{\text{Title}}$

Exclusive μ -capture on ²⁴Mg, ³²S and ⁵⁶Fe populating low-lying 1⁺ states to probe the weak axial current at high momentum transfer

M. Alanssari,¹ I. H. Hashim,² L. Jokiniemi,³ H. Ejiri,⁴ E. Ideguchi,⁴ A. Sato,⁴ J. Suhonen,³ and D. Frekers¹

¹Institut für Kernphysik, Westfälische Wilhelms-Universität, D-48149 Münster, Germany

²Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia

³University of Jyvaskyla, Department of Physics, FI-40014, Finland ⁴Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

The amazing muon

There has not been any other elementary particle so "successful" in advancing our knowledge in so many different areas of physics.

Production:
$$p + A \rightarrow X + \pi^{-}$$

(26ns) $\mapsto \mu^{-} + \overline{v}_{\mu}$
(2.2 μ s) $\mapsto e^{-} + \overline{v}_{e} + v_{\mu}$ $E_{\text{proton}} \sim 500 \text{ MeV}$

Surface muons: produced from stopped (usually negative) pions at end of target

$$\frac{p}{v} = \frac{\pi}{v} = \frac{\mu}{r_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} (1 - \varepsilon) = (2,196981(2) \ \mu \sec)^{-1} \ (\varepsilon \approx 10^{-3})$$

$$G_F = 1,16637(2) \cdot 10^{-5} \ GeV^{-2} \qquad m_{\mu} = 105.6583745(24) \ MeV$$

Muonium: $\mu^+ + e^-$ an exotic hydrogen I ~ 13.6 eV

Motivations

- μ-cap features momentum transfers similar
 to 0vββ decay (q_{tr} ~0.5fm⁻¹ ~100MeV/c)
- μ-cap processes to 1⁺ states in A(μ⁻,ν)B may be compared with charge-ex reactions of (n,p) type.
- $\mu\text{-}\text{cap}$ may give access to g_{A} quenching issue

However

- only the On-channel (~5%) is most relevant for 0vββ decay
- level scheme of final odd-odd nucleus is extremely!! poorly known

Schematics of set-up

 $\mu_{stop} = C0 \wedge C1 \wedge C2 \wedge C3$

 $\# \text{ of } \mu - \text{stop} = 8 - 25 \times 10^3 \text{ with } 20 - 30 \text{ MeV/c}$

target can be used for solids and gas

Schematics of set-up muon beam line facility "MuSIC" + "CAGRA" at RCNP Osaka

But: things are a bit more complicated

there is a pseudo-scalar coupling effective in $\mu\text{-capture}$ with a constant g_P (also badly known !!)

What is this ????

Inside the nucleus the muon can decay back into a virtual pion (lots of energy available!!), and the pion generates a final state imprinting it with the parity of the pion. ($P(\pi) = -1$)

The effect depends on how many protons there are. $^{24}Mg \rightarrow 12$ protons

- ³²S \rightarrow 16 protons
- ⁵⁶Fe \rightarrow 26 protons

- Precision mass measurement:
- ⁹⁶Zr \rightarrow golden case for testing NME's of $0\nu\beta\beta$ decay gives handle on g_A for a unique forbidden decay
- μ-capture

maybe the only viable tool to study weak response at high momentum transfer ($0\nu\beta\beta$ decay) and to fix the g_A problem by comparing with (d,²He)

WESTFÄ WILHELI MÜNSTE

WESTFÄLISCHE WILHELMS-UNIVERSTÄT MÜNSTER