Event detection and reconstruction in Project 8 Phase II

Christine Claessens International school of Nuclear Physics Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics Erice – September 21, 2017

Tritium beta decay

• Spectrum shape near endpoint changes with ν-mass

$$\frac{dN}{dE} \sim F(Z, E) p_e(E+m_e)(E_0-E)\sqrt{(E_0-E)^2 - m_{\nu_e}^2}$$
$$m_\beta = \sqrt{\sum_i |U_{ei}^2| m_i^2}$$

Cyclotron Radiation Emission Spectroscopy

Cyclotron frequency (relativistic)

$$f_{\gamma} = \frac{f_c}{\gamma} = \frac{1}{2\pi} \frac{eB}{m_e + E_{kin}}$$

- High resolution with sufficiently long observation time
- Trap electrons in magnetic field and detect emitted radiation
- Reconstruct event

Cyclotron Radiation Emission Spectroscopy

• Cyclotron frequency (relativistic) $f_y = \frac{1}{2}$

$$y = \frac{f_c}{\gamma} = \frac{1}{2\pi} \frac{eB}{m_e + E_{kin}}$$

- High resolution with sufficiently long observation time
- Trap electrons in magnetic field and detect emitted radiation
- Reconstruct event \rightarrow reconstruct spectrum from start frequencies

Project 8 – Phase II

- Goal: First T₂ spectrum with CRES
- Circular waveguide
- 5 trap coils for more flexible trapping field geometry
- Colder amplifier and microwave circulator reduce RF background
- 2016 2017: Fabrication and commissioning of new detector insert (still ^{83m}Kr)
- 2017: Completion of tritium gas system
- Switch to T_2 soon

Phase II – DAQ

- Amplification of the RF Signal
- Down-mixing with 24.2 GHz
- Real-Time Spectrum Analyzer
 - Triggering digitizer
 - Limited triggers/min
- ROACH2:
 - Reconfigurable Open Architecture Computing Hardware
 - Developed for astronomy
 - Trigger under development

5

- FPGA board with two ADCs .
- Down-conversion, FFT, time and frequency domain data streaming •

Psyllid

- Data acquisition package for the ROACH2 system •
- Receive data, trigger and write to files •

Send data files to cluster

- FPGA board with two ADCs
- Down-conversion, FFT, time and frequency domain data streaming

Psyllid

- Data acquisition package for the ROACH2 system
- Receive data, trigger and write to files

- FPGA board with two ADCs
- Down-conversion, FFT, time and frequency domain data streaming

Psyllid

- Data acquisition package for the ROACH2 system
- Receive data, trigger and write to files

- FPGA board with two ADCs
- Down-conversion, FFT, time and frequency domain data streaming

Psyllid

- Data acquisition package for the ROACH2 system
- Receive data, trigger and write to files

Take time slices from data and compute FFT

PRISMA

- reconstruction algorithm
- → Implement as real-time trigger?

- First tests with Phase II show good performance
- Start time distribution of short run with 10 ms pre-trigger time significantly improved
- Tests ongoing
- Other track reconstruction algorithms under investigation

Tracks reconstructed with new algorithm

Pitch angle

- Angle between energy momentum and B-field •
- Electrons with angles $< 90^{\circ}$ explore higher field regions ٠
- Measured frequency depends on angle and B-field •
- Without pitch angle correction spectral lines are distorted • and broadened

Sidebands

- Axial frequency:
 - L_0 : size of flat region
 - L_1 : curvature of edges
 - θ : pitch angle

 $f_{a} = \frac{\frac{1}{2\pi} \cdot \sqrt{\frac{2E_{kin}}{m_{e}}}c}{\frac{2\pi L_{0}}{\sin\theta} + \frac{2L_{1}}{\cos\theta}}$

Magnetron (ω_m)

• Sidebands due to mixing of axial and cyclotron frequency

Analyst: A. Esfahani

JGU

14

Sidebands

- Axial frequency:
 - L_0 : size of flat region
 - L_1 : curvature of edges
 - θ : pitch angle

 $f_{a} = \frac{\frac{1}{2\pi} \cdot \sqrt{\frac{2E_{kin}}{m_{e}}}c}{\frac{2\pi L_{0}}{\sin \theta} + \frac{2L_{1}}{\cos \theta}}$

- Sidebands due to mixing of axial and cyclotron frequency
- Extra structure in the Kr-spectrum around known peaks

PRISMA

Magnetron (ω_{m})

Reflections of the short

- Received power is superposition of signal and reflection by the short
- Detected power depends on the pitch angle and distance between trap center and short

- Interference can enhance or suppress spectral lines
- Analytic model developed by A. Esfahani
- Confirmed with Phase I data

Reflections of the short

- Background 1T field shows small gradient
- Changing the trap depth, changes the average distance of the electron to the short and the average sampled B-field

Event reconstruction

- First two tracks are sideband
 - Tracks start and end at same point in time
- Collision with rest gas atom:
 - Change of pitch angle
 - Main carrier becomes apparent
 - Sidebands are now fainter
 - Slope and frequency have changed
- Single electron event with start frequency ~106 MHz (+25.285 GHz)

Track classification

- Using a deep bathtub trap requires pitch angle reconstruction
- Goal: Classify a track purely by the track's properties (width, slope, ...)
- Development in progress (L. Saldana, E. Zayas)
- Train classifier with labeled tracks (sidebands or main carriers) from subset of Phase I data

Track classification

- Using a deep bathtub trap requires pitch angle reconstruction
- Goal: Classify a track purely by the track's properties (width, slope, ...)
- Development in progress (L. Saldana, E. Zayas)
- Train classifier with labeled tracks (sidebands or main carriers) from subset of Phase I data
- Test on data unknown to training
- First results from Phase I data look very promising

Conclusion and outlook

- Currently taking ^{83m}Kr data with Phase II apparatus
- Commissioning of the ROACH2 digitizer
- Trigger development in progress
- Testing new track reconstruction algorithms
- Development of phenomenology that explains the data
- Pitch angle reconstruction necessary to determine true event energy
- Sidebands and received power carries information about pitch angles
- Working on high confidence classifier to distinguish sidebands from main carriers

19

Many thanks!

- Yale University Karsten Heeger, James Nikkel, Luis Saldaña, Penny Slocum
- Case Western Reserve University Benjamin Monreal, Yu-Hao Sun, Laura Gladstone
- Pennsylvania State University Luiz de Viveiros, Timothy Wendler
- Johannes Gutenberg Universität, Mainz Sebastian Böser, Christine Claessens, Alec Lindman
- Karlsruhe Institute of Technology Thomas Thümmler, Marcel Walter
- Lawrence Livermore National Laboratory Kareem Kazkaz
- Massachusetts Institute of Technology Nicholas Buzinsky, Joseph Formaggio, Joseph Johnston, Valerian Sibille, Evan Zayas
- Pacific Northwest National Laboratory Erin Finn, Mathieu Guigue, Mark Jones, Benjamin LaRoque, Noah Oblath, Jonathan Tedeschi, Brent VanDevender
- Smithsonian Astrophysical Observatory
 Shep Doeleman, Jonathan Weintroub, Andre Young
- University of Washington Ali Ashtari Esfahani, Raphael Cervantes, Peter Doe, Martin Fertl, Eric Machado, Walter Pettus, Hamish Robertson, Leslie Rosenberg, Gray Rybka

Reflections of the short

- Background 1T field shows small gradient
- Changing the trap depth, changes the average distance of the electron to the short and the average sampled B-field

