

Neutrino Experiment for Oscillation at Short Baseline

21 Sep 2017 / The 39th ISNP @ Erice, Sicily Yoomin Oh

Center for **b** Underground Physics

- Rare event search at low background environment
 - WIMP annual modulation (COSINE)
 - neutrinoless double beta decay (AMoRE)
 - HPGe measurement
- \cdot new / v physics
- crystal growing, material purification

Underground lab

ERICE 2017

CUP Y2L Lab Promotion video

» We had small ceremony for KT1 lab Open hous...

The Korean Physical Society(KPS) Academic E...

Yoomin Oh / NEOS

4

I. Kim et al.

Application of metallic magnetic calorimeter in rare event search Superconductor Science and

ERICE 2017

Reactor electron-antineutrino

- $\cdot \bar{v}_e$ from fissile elements in reactor core: U-235, U-238, Pu-239, Pu-241
- •~ $2 \times 10^{20} \bar{v}_e$ /s from 1 GW thermal power reactor
 - commercial: 100 ~ a few GW / research: up to ~100 MW

Detecting neutrinos

Yoomin Oh / NEOS

Reactor \bar{v}_e & inverse beta decay

• Tremendous background rejection by selecting *prompt+delayed* pair events.

Reactor neutrino experiments

- Observation of mixing angle θ_{13} at several hundred meters ~ 2 km
- Multi-identical-detector experiments: almost free from large flux uncertainties
- · Spectral anomaly at around 5 MeV prompt energy, "bump"
- > Questions on existing flux models and reactor anomaly.

Reactor antineutrino anomaly (RAA)

- Neutron lifetime, IBD cross section
- New flux prediction (Huber-Mueller)
- \cdot Measured / Prediction ~ 0.927±0.023

Yoomin Oh / NEOS

Other anomalies / conflicts

- ·LSND: $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$ appearance event excess with Δm^{2} >0.2 eV² (>3 σ)
- MiniBooNE: v mode disfavors / \bar{v} mode consistent with LSND result $\Delta m^2 \sim 1~eV^2$
- \cdot GALLEX / SAGE: 2.9 σ deficit from expected
- KARMEN, MINOS, IceCube, ... : negative results

Combined

Gariazzo et al., JPG 43 (2016) 033001

All point toward ~1 eV mass state?!

Sterile v

- Not constrained by the number of active neutrinos (3) from Z boson decay-width measurements: "sterile"
- Active neutrino's right handed partner
- Gravitational interaction: dark matter
- Possibly sub- eV to 10¹⁵ GeV
 - experimental evidences pointing ~1 eV
- \cdot Possibly one or many
 - Planck satellite measurement:
 - $N_v^{eff} = 3.7$ (95%C.L.), excluding the existence of 1 eV sterile neutrino fully thermalized in early universe
 - Large lepton asymmetry, neutrino selfinteraction

3+1 v and SBL oscillation

Reactor SBL experiments

- High flux at close distance
- Not enough (almost no) overburden > severe background signals originated from cosmic rays / reactor
- Limited space for detector > small detector > energy not fully contained

Yoomin Oh / NEOS

(Reactor) SBL experiments

geoneutrinos.org

NEOS Collaboration

Hongjoo Kim, Jooyoung Lee, Kyungkwang Joo, Ba Ro Kim, Changhwan Jang, Siyeon Kim, Youngju Ko, Kyungmin Seo, Jinyu Kim, Hyunsoo Kim, Gwang-Min Sun, Boyoung Han, Hyunseo Park, Yeongduk Kim, Eun-ju Jeon, Jaison Lee, Moo-hyun Lee, Yoomin Oh, Hyangkyu Park, Kang-soon Park

- 20 collaborators from 7 institutes in S.Korea
- Project launched in 2012
- Data taking from Summer 2015 to Spring 2016

Experimental site

- Reactor Unit 5 in Hanbit Nuclear Power Plant, Yeonggwang, South Korea
- Same reactor complex used for RENO experiment

Experimental site

cutaway view of OPR-1000

Yoomin Oh / NEOS

ERICE 2017

Active reactor core

- OPR-1000 reactor, 2815 MWt
- ·177 fuel rods, low enriched (4.65%) uranium-235 (LEU) fuel
- Refueling by changing 1/3 of fuel rods for each burn-up cycle (~1.5 year)
- Active core size: 3.1 m (ϕ), 3.8 m (h)

Detector location / baseline

Detector specification

- Homogeneous LS target
 1008 L volume
 - (R 51.5, L 121) cm
 - LAB+UG-F (9:1)
 - 0.5% Gd loaded for high neutron capture efficiency
 - 38 8" PMT in mineral oil buffer
- Shieldings
 - 10 cm B-PE (n), 10 cm Pb (γ)
 - active muon counter
- Data AcQuisition
 - 500 MS/s FADC (waveform)
 - 62.5 MS/s SADC (μ veto)
- Source calibration through chimney

ERICE 2017

Yoomin Oh / NEC

LINCE LUIT

Detector response / calibraiton

$$P(\bar{v}_{e} \rightarrow \bar{v}_{e}) \sim 1 - \sin^{2}2\theta_{14} \sin^{2}\left(1.27 \frac{\Delta m^{2}L}{E_{v}} \left[\frac{\mathrm{eV}^{2} \cdot \mathrm{m}}{\mathrm{MeV}}\right]\right)$$

Equation not hold in the detector due to:
resolution,
escaping γ,
non-linearity between energy and light signal

Calibration campaign

• Once a week with point sources:

- Internal/External background (volume sources, continuous):
 - 40 K (γ, 1.46 MeV), 208 Tl (γ, 2.6 MeV), 230 Th > 226 Ra > 222 Rn > ... chain (α, β, γ)
 - used for time / position dependence corrections

Yoomin Oh / NEOS

Charge (pC)

Energy resolution

 $\cdot \sigma(E) = 5\%\sqrt{E}$ /MeV at 1 MeV for a full peak

Yoomin Oh / NEOS

25

Non-uniform response / escaping y

Yoomin Oh / NEOS

26

Nonlinear charge response to energy

Signal quenched at low energy

· Cerenkov light important at higher energy

β-decay events and simulation

- Geant4 based MC simulation
 - LS, PMT optical properties,
 - full simulation of physics processes including trigger simulation
- Excellent agreement with data in the energy r.o.i:
 - Energy resolution
 - Non-linearity
 - Escaping γ

Detector response to $E_{\bar{v}}$

ERICE 2017

IBD reconstruction

Fast *n* background / pulse shape discrimination

31

IBD candidates event rate

Signal/background ~23:
 ~2000 (Reactor ON) vs ~80 (OFF) IBD candidates

Yoomin Oh / NEOS

32

ERICE 2017

Prompt energy spectrum

33

NEOS vs Huber-Mueller × Vogel

34

- •5 MeV excess is seen (with 2-4 MeV normalization).
- not so practical to do the oscillation analysis

NEOS vs Daya Bay

• Bump got much smaller, but still there is a structure:

> Note average fission fraction differences between two experiments:

(U-235, U-238, Pu-239, Pu-241)

NEOS: (0.655, 0.072, 0.235, 0.038), Daya Bay: (0.561, 0.076, 0.307, 0.056)

- Negligible spectral difference expected in the H&M model.
- > One of the isotopes responsible for the bump?

Search for Oscillation

$$\chi^{2} = (N_{i}^{\text{on}} - (t_{\text{on}}/t_{\text{off}})N_{i}^{\text{off}} - T_{i}) V_{ij}^{-1} (N_{j}^{\text{on}} - (t_{\text{on}}/t_{\text{off}})N_{j}^{\text{off}} - T_{j})$$

• $\chi^2 = \chi^2(\Delta m^2, \sin^2 2\theta)$: chi-square for each oscillation parameter set

- N^{on} : measured number of event in *i* th prompt energy bin during reactor on (signal+background)
- *N*^{off} : measrued event number during reactor off (background)
- \cdot *t*_{on} / *t*_{off} : time period of reactor on/off
- $T_i = T_i(\Delta m^2, \sin^2 2\theta)$: expected spectrum for each oscillation parameter set, generated from model spectrum and convolved with the simulated detector response (Daya Bay spectrum is used so far.)
- V_{ij} : covariance matrix including statistical/systematic uncertainties and their correlation between energy bins

Search for oscillation / limits

- χ^2 minima are found at $(\sin^2 2\theta, \Delta m^2) = (0.04, 1.3 \text{ eV}^2),$ (0.05, 1.73 eV²) with $\Delta \chi^2 = \chi^2_{3v} - \chi^2_{4v} = 6.5.$
- p-value ~ 22%
- No strong sign of 3+1 active-to-sterile v oscillation.
- Small mixing, similar mass squared difference.

Summary & Conclusion

- •No strong active-to-sterile mixing seen in the NEOS data for $\Delta m^2 \sim 1 \text{ eV}^2$
 - Best fits to smaller mixing. $(0.04, 1.3 \text{ eV}^2) / (0.05, 1.73 \text{ eV}^2)$, but not so significant.
 - Analysis highly depends on model spectrum.
- Reactor antineutrino anomaly
 - 5 MeV excess is observed at this short baseline, too.
 - Sizes are different between different reactors
 - Flux prediction should be re-examined, hopefully with experimental effort.

"I came here to tell you how it's going to begin."

FAQ1. Status and plan

- Data taking over (paused) in May 2016
 due to regular maintenance of tendon gallery
- Investigating the possible improvement in reactor flux measurement with an additional measurement longer than 1 burnup cycle.
 - Preparing an proposal, including
 - -other neutrino measurement (vN)

"We're gonna make them an offer they can't refuse."

FAQ2. Model spectrum

- 1. Why don't we use the RENO spectrum as a reference?
 - working on it.
 - a direct comparison between the two prompt (e+) energy spectra is not working, because the detector responses are different.
 - Burnup (or fission fractions) is not the same for the two experiments.
- 2. How did we deal with the difference between the DYB and the NEOS (i.e. reactors, fission fractions)?
 - current model (H-M) does not provide satisfactory answer.
 - different fuel / long term
 - measurements with a good *E* resolution.

"Nihil sequitur geminis ex particularibus unquam."

FAQ3. Rate analysis

- 1. Why don't we do rate analysis?
 - Uncertainty in the number of proton in the target LS:
 - + Temperature-volume fluctuation
 - Associated γ levels from n-Gd capture in GEANT4 do not describe the delayed spectrum very well for our small volume detector.
 - > difficult to estimate the efficiency in the delayed event selection.
 > No particular improvement by rate analysis is expected.

ERICE 2017