Electron Capture in ¹⁶³Ho experiment - ECHo NI MI Loredana Gastaldo MII Kirchhoff Institute for Physics, Heidelberg University E NII

Massive Neutrinos

Massive Neutrinos

 $m(\overline{v}_e) < 2.2 \ eV$

(1)

(1) Ch. Kraus et al., Eur. Phys. J. C 40 (2005) 447 Ch. Weinheimer, Prog. Part. Nucl. Phys. 57 (2006) 22 N. Aseev et al., Phys. Rev D 84 (2011) 112003

Massive Neutrinos

 $m(\overline{v}_e) < 2.2 \ eV$ (1)

 $m(v_e) < 225 \ eV$ (2)

(1) Ch. Kraus *et al.*, Eur. Phys. J. C **40** (2005) 447
Ch. Weinheimer, Prog. Part. Nucl. Phys. **57** (2006) 22
N. Aseev *et al.*, Phys. Rev D **84** (2011) 112003

(2) P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987) 679

Outline

- Electron capture in ¹⁶³Ho and neutrino mass
- Requirements to achieve sub-eV sensitivity on the electron neutrino mass
- The Electron Capture in ¹⁶³Ho experiment ECHo
- Conclusions and outlook

- $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)
- • $Q_{\rm FC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV *
- Low Q_{EC}-value allows capture only for: 3s, 3p1/2, 4s, p1/2, 5s, 5p1/2, 6s electrons

```
* S. Eliseev et al., Phys. Rev. Lett., 115, 062501 (2015)
```


Independent measurement by Penning Trap Mass Spectrometry

* S. Eliseev et al., Phys. Rev. Lett., 115, 062501 (2015)

A non- zero neutrino mass affects the de-excitation energy spectrum

- $\tau_{1/2} \cong$ 4570 years (2*10¹¹ atoms for 1 Bq)
- • $Q_{\rm FC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV *
- Low Q_{EC}-value allows capture only for: 3s, 3p1/2, 4s, p1/2, 5s, 5p1/2, 6s electrons

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

- $\tau_{1/2} \cong$ 4570 years (2*10¹¹ atoms for 1 Bq)
- • $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV *
- Low Q_{EC}-value allows capture only for: 3s, 3p1/2, 4s, p1/2, 5s, 5p1/2, 6s electrons

* S. Eliseev et al., Phys. Rev. Lett., 115, 062501 (2015)

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987) 679

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

Calorimetric measurement

All the energy released in the electron capture process minus the one of the electron neutrino is measured by the detector

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

All the energy released in the electron capture process minus the one of the electron neutrino is measured by the detector

A. De Rujula and M. Lusignoli, Phys. Lett. 118 B (1982) 118

13

¹⁶³Ho-based experiments

- Department of Nuclear Physics, Comenius University, Bratislava, Slovakia
- Goethe Universität Frankfurt am Main
- Institute for Nuclear Chemistry, Johannes Gutenberg University Mainz
- Institute of Nuclear and Particle Physics, TU Dresden, Germany
- Institute for Physics, Humboldt-Universität zu Berlin, Germany
- Institute for Physics, Johannes Gutenberg-Universität
- Institute for Theoretical Physics, University of Tübingen, Germany
- Institut Laue-Langevin, Grenoble, France
- ISOLDE-CERN
- Kirchhoff-Institute for Physics, Heidelberg University, Germany
- Max-Planck Institute for Nuclear Physics Heidelberg, Germany
- Petersburg Nuclear Physics Institute, Russia
- Physics Institute, University of Tübingen, Germany

- Milano-Bicocca University, Italy
- INFN Sez. Milano-Bicocca, Italy
- INFN Sez. Genova, LNGS, Italy
- INFN Sez. Roma, Italy
- Institut Laue-Langevin, Grenoble, France
- Lisboa University, Portugal
- Miami University, USA
- NIST, Boulder, USA
- JPL, Pasadena, USA
- PSI, Villingen, Switzerland

NuMECS ⁽³⁾

- LANL, Los Alamos, USA
- NIST, Boulder, USA
- Univ. of Wisconsin, Madison, USA

(1) The ECHo Collaboration EPJ-ST 226 8 (2017) 1623

(2) B. Alpert et al, Eur. Phys. J. C 75 (2015) 112

(3) M. Croce et al., JLTP 184 3 (2016) 938 ¹⁵

¹⁶³Ho-based experiments

- Department of Nuclear Physics, Comenius University, Bratislava, Slovakia
- Goethe Universität Frankfurt am Main
- Institute for Nuclear Chemistry, Johannes **Gutenberg University Mainz**
- Institute of Nuclear and Particle Physics, TU **Dresden, Germany**
- Institute for Physics, Humboldt-Universität zu Berlin, Germany
- Institute for Physics, Johannes Gutenberg-Universität
- Institute for Theoretical Physics, University of Tübingen, Germany
- Institut Laue-Langevin, Grenoble, France
- ISOLDE-CERN
- Kirchhoff-Institute for Physics, Heidelberg **University, Germany**
- Max-Planck Institute for Nuclear Physics Heidelberg, Germany
- Petersburg Nuclear Physics Institute, Russia
- Physics Institute, University of Tübingen, Germany

- Milano-Bicocca University, Italy •
- **INFN Sez. Milano-Bicocca, Italy** ٠
- **INFN Sez. Genova, LNGS, Italy** ٠
- **INFN Sez. Roma, Italy** ٠
- Institut Laue-Langevin, Grenoble, France ٠ More in Gatti's talk on Thursday
- **Lisboa University, Portugal** ٠
- Miami University, USA ٠
- NIST, Boulder, USA ٠
- JPL, Pasadena, USA ٠
- **PSI, Villingen, Switzerland** •

NuMECS (3)

- LANL, Los Alamos, USA
- **NIST, Boulder, USA**
- Univ. of Wisconsin, Madison, USA

(1) The ECHo Collaboration EPJ-ST 226 8 (2017) 1623

(2) B. Alpert et al, Eur. Phys. J. C 75 (2015) 112

16 (3) M. Croce et al., JLTP 184 3 (2016) 938

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

 $\tau_{\rm r} = 0.1 \ \mu {\rm s}$

Amplitude [a.u.]

Time [µs]

2

0

-5

0

5

Time [µs]

10

15

Amplitude [a.u.] 1

Statistics in the end point region

 $N_{ev} > 10^{14} \rightarrow A \approx 1 MBq$

Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)

*f*_{pu} < 10⁻⁵

3

2

1

0

-1

-5

0

5

Time [µs]

10

15

Amplitude [a.u.]

- τ_r < 1 µs \rightarrow a ~ 10 Bq
- 10^5 pixels \rightarrow multiplexing

 $\Delta t = 0.5 \ \mu s$

Statistics in the end point region

- $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$
- Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)
- $f_{\rm pu} < 10^{-5}$
- $\tau_r < 1 \,\mu s \rightarrow a \sim 10 \,\text{Bq}$
- 10⁵ pixels \rightarrow multiplexing
- Precision characterization of the endpoint region
- $\Delta E_{\text{FWHM}} < 3 \text{ eV}$

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)

- *f*_{pu} < 10⁻⁵
- $\tau_r < 1 \,\mu s \rightarrow a \sim 10 \,\text{Bq}$
- 10⁵ pixels → multiplexing

Precision characterization of the endpoint region

• ∆*E*_{FWHM} < 3 eV

Background level

• < 10⁻⁵ events/eV/det/day

Low temperature micro-calorimeters

- Very small volume
- Working temperature below 100 mK small specific heat small thermal noise
- Very sensitive temperature sensor

Temperature sensors

Resistance at superconducting transition, TES

Magnetization of paramagnetic material, MMC

Cryogenic Particle Detection, (ed. C. Enss), Topics Appl. Phys. 99 (Springer Berlin Heidelberg 2005)

Temperature sensors

Resistance at superconducting transition, TES

Magnetization of paramagnetic material, MMC

Cryogenic Particle Detection, (ed. C. Enss), Topics Appl. Phys. 99 (Springer Berlin Heidelberg 2005)

Metallic magnetic calorimeters (MMCs)

A. Fleischmann et al., AIP Conf. Proc. 1185, 571, (2009)

MMC geometry and read-out

- Planar temperature sensor
- B-field generated by persistent current
- transformer coupled to SQUID

• Two-stage SQUID read-out

MMCs: 1d-array for soft x-rays (T=20 mK)

First prototype of ¹⁶³Ho loaded MMC

- Absorber for metallic magnetic calorimeters \rightarrow ion implantation @ ISOLDE-CERN in 2009 on-line process
- About 0.01 Bq per pixel

Field and heater ondpads

Heatsink

SQUIDbondpads

Operated over more than 4 years

L. Gastaldo et al., Nucl. Inst. Meth. A, 711 (2013) 150

Calorimetric spectrum

- Rise Time ~ 130 ns •
- $\Delta E_{\rm FWHM}$ = 7.6 eV @ 6 keV (2013) ٠
- Non-Linearity < 1% @ 6keV ٠

	E _H bind.	Е _н ехр.	$arGamma_{H}$ lit.	$\Gamma_{ m H}$ exp
MI	2.047	2.040	13.2	13.7
MII	1.845	1.836	6.0	7.2
NI	0.420	0.411	5.4	5.3
NII	0.340	0.333	5.3	8.0
ΟΙ	0.050	0.048	5.0	4.3

P. C.-O. Ranitzsch et al., accepted for publication in PRL (2017)

$Q_{\rm EC}$ determination

P. C.-O. Ranitzsch et al ., accepted for publication in PRL (2017)

$Q_{\rm EC}$ determination

P. C.-O. Ranitzsch et al., accepted for publication in PRL (2017)

Scaling up

¹⁶³Ho high purity source

Required activity in the detectors: Final experiment $\rightarrow >10^{6} \text{ Bq} \rightarrow >10^{17} \text{ atoms}$

Neutron irradiation
 (n,γ)-reaction on ¹⁶²Er

High cross-section

Radioactive contaminants

Er161	Er162	Er163	Er164	Er165	Er166
3/2-	0+	5/2	0+	5/2-	0+
EC	0.14	EC	1.61	EC	33.6
Ho160	Ho161	Ho162	Ho163	Ho164	Ho165
25.0 m 5+	2.48 h 7/2-	15.0 m 1+	2- 12-	29 m 1+	<u>^</u> -
EC	EC	EC	EC	EC,β-	1 10
	and a second second	and the second			
Dy159	Dy160	Dy161	Dy162	Dy16.	Dy 164
Dy159 144.4 d 3/2-	Dy160 0+	Dy161 5/2+	Dy162 0+	Dy16. 5/2-	Dy 164 6+
Dy159 144.4 d 3/2- EC	Dy160 0+ 2.34	Dy161 5/2+ 18.9	Dy162 0+ 25.5	Dy16: 5/2- 24.9	Dy 164 0+ 28.2
Dy159 144.4 d 3/2- EC Tb158 180 y	Dy160 0+ 2.34 Tb159	Dy161 5/2+ 18.9 Tb160 72.3 d	Dy162 0+ 25.5 Tb161 6.88 d	Dy16 .) 5/2- 24.9 Tb162 7.60 m	Dy 164 (++ 28.2 Tb163 19.5 m
Dy159 144.4 d 3/2- EC Tb158 180 y 3-	Dy160 0+ 2.34 Tb159 3/2+	Dy161 5/2+ 18.9 Tb160 72.3 d 3-	Dy162 0+ 25.5 Tb161 6.88 d 3/2+	Dy16 .) 5/2- 24.9 Tb162 7.60 m 1-	Dy 164 (+ 28.2 Tb163 19.5 m 3/2+

Charged particle activation

^{nat}Dy(p,xn) ¹⁶³Ho

^{nat}Dy(α, xn) ¹⁶³Er (ε) ¹⁶³Ho ¹⁵⁹Tb(⁷Li, 3n) ¹⁶³Er (ε) ¹⁶³Ho

Small cross-section

Few radioactive contaminants

H. Dorrer et al, submitted to Radiochim. Acta (2017)

¹⁶³Ho high purity source

Required activity in the detectors: Final experiment $\rightarrow > 10^6 \text{ Bq} \rightarrow > 10^{17} \text{ atoms}$

0 0

Neutron irradiation
 (n,γ)-reaction on ¹⁶²Er

High cross-section

Radioactive contaminants

H. Dorrer et al, submitted to Radiochim. Acta (2017)

Charged particle activation

^{nat}Dy(p,xn) ¹⁶³Ho

^{nat}Dy(α, xn) ¹⁶³Er (ε) ¹⁶³Ho ¹⁵⁹Tb(⁷Li, 3n) ¹⁶³Er (ε) ¹⁶³Ho

Small cross-section

Few radioactive contaminants

NuMECS

34

¹⁶³Ho high purity source

Required activity in the detectors: Final experiment $\rightarrow >10^{6} \text{ Bq} \rightarrow >10^{17} \text{ atoms}$

ECHo-1k array

3" wafer with 64 ECHo-1k chip

Suitable for parallel and multiplexed readout

64 pixels which can be loaded with ¹⁶³Ho + 4 detectors for diagnostics

Design performance:

 $\Delta E_{FWHM} \simeq 5 \text{ eV}$ $\tau_r \simeq 90 \text{ ns}$ (single channel readout) $\tau_r \simeq 300 \text{ ns}$ (multiplexed read-out)

F. Mantegazzini, to be submitted

Fabrication 4π absorber

Stems between absorber and sensor prevent athermal phonon loss to the substrate

Definition of the implantation area by microstructuring a photoresist layer

C. Hassel et al ., JLTP 184 (2016) 910

Mass separation and ¹⁶³Ho ion-implantation

Mass separation and ¹⁶³Ho ion-implantation

Mass separation and ¹⁶³Ho ion-implantation

Solution: in situ deposition of gold

L. Gamer et al., NIM A 854 (2017) 139

Multiplexing readout

Microwave SQUID multiplexing

Single HEMT amplifier and 2 coaxes to read out **100 - 1000** detectors

- Reliable fabrication of 64-pixel array
- Successful characterization of first prototypes
 → optimization of design parameters

S.Kempf et al., J. Low. Temp. Phys. 175 (2014) 850-860

ECHo cryogenic platform

- Large space at MXC enough for several ECHo phases
- cooling power: 15µW @ 20 mK
- Possibility to load 200kg for passive shielding

ECHo cryogenic platform

- Large space at MXC enough for several ECHo phases
- cooling power: $15\mu W @ 20 mK$
- Possibility to load 200kg for passive shielding
- Presently equipped with:

2 RF lines for microwave multiplexing readour of 2 MMC arrays

12 ribbons each with 30 Cu98Ni2 0.2 mm,
1.56 Ohm/m, cables from RT to mK
→ allows for parallel readout of 36 two-stage SQUID set-up

Low background spectrum

NEW (4 pixel, about 4 days in Modane)

- A. Faessler and F. Simkovic
 Phys. Rev. C 91, 045505 (2015)
- A. De Rujula and M. Lusignoli
 JHEP 05 (2016) 015, arXiv:1601.04990v1

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler et al.
 Phys. Rev. C **91**, 064302 (2015)
- A. Faessler et al.
 Phys. Rev. C 95, (2017) 045502

ECHo-1k (2015 - 2018)

¹⁶³Ho activity: $A_t = 1 \text{ kBq}$

Detectors: Metallic Magnetic Calorimeters

- → Energy resolution $\Delta E_{\text{FWHM}} \leq 5 \text{ eV}$
- \rightarrow Time resolution $\tau \leq 1 \, \mu s$

Unresolved pile-up fraction	$f_{ m pu}$ \leq 10 ⁻⁵
\rightarrow activity per pixel:	A = 10 Bq
\rightarrow number of detectors	<i>N</i> = 100

Read-out : Microwave SQUID Multiplexing

 \rightarrow 2 arrays with ~50 single pixels

Background **b** < 10⁻⁵ /eV/det/day

Measuring time *t* **= 1 year**

 $m(v_{\rm e}) < 10 \ {\rm eV} \ 90\% \ {\rm C.L.}$

Supported by DFG through Research Unit FOR 2202/145

ECHo-1M (next future)

¹⁶³Ho activity: $A_t = 1 \text{ MBq}$

Detectors: Metallic Magnetic Calorimeters

→ Energy resolution $\Delta E_{FWHM} \leq 3 \text{ eV}$ → Time resolution $\tau \leq 0.1 \, \mu s$

Unresolved pile-up fraction	$f_{ m pu}$ \leq 10 ⁻⁶
\rightarrow activity per pixel:	A = 10 Bq
\rightarrow number of detectors	<i>N</i> = 10 ⁵

Read-out : Microwave SQUID Multiplexing

 \rightarrow 100 arrays with ~1000 single pixels

Background **b** < 10⁻⁶ /eV/det/day

Measuring time t = 1 - 3 year

 $m(v_{\rm e}) < 1 \ {\rm eV} \ 90\% \ {\rm C.L.}$

Sterile neutrinos

eV-scale sterile neutrinos

keV-scale serile neutrinos

High Energ. Phys. 06 (2016) 61.

Conclusions and outlook

Three large collaboration aim to reach sub-eV sensitivity on the electron neutrino mass analysing high statistics and high resolution ¹⁶³Ho spectra

- High purity ¹⁶³Ho sources have been produced
- ¹⁶³Ho ions can be successfully enclosed in microcalorimeter absorbers
- Large arrays have been tested and microwave SQUID multiplexing has been successfully proved

> A new limit on the electron neutrino mass is approaching

E_c [keV]

Department of Nuclear Physics, Comenius University, Bratislava, Slovakia Fedor Simkovic Department of Physics, Indian Institute of Technology Roorkee, India Moumita Maiti Goethe Universität Frankfurt am Main Udo Kebschull, Panagiotis Neroutsos Institute for Nuclear Chemistry, Johannes Gutenberg University Mainz Christoph E. Düllmann, Klaus Eberhardt, Holger Dorrer, Fabian Schneider Institute of Nuclear Research of the Hungarian Academy of Sciences Zoltán Szúcs Institute of Nuclear and Particle Physics, TU Dresden, Germany Kai Zuber Institute for Physics, Humboldt-Universität zu Berlin Alejandro Saenz Institute for Physics, Johannes Gutenberg-Universität Klaus Wendt, Sven Junck, Tom Kieck Institute for Theoretical Physics, University of Tübingen, Germany Amand Fäßler Institut Laue-Langevin, Grenoble, France Ulli Köster **ISOLDE-CERN** Marsh Bruce, Day Goodacre Tom, Johnston Karl, Rothe Sebastian, Stora Thierry, Veinhard Matthieu **Kirchhoff-Institute for Physics, Heidelberg University, Germany** Christian Enss, Loredana Gastaldo, Andreas Fleischmann, Clemens Hassel, Sebastian Kempf, Mathias Wegner Max-Planck Institute for Nuclear Physics Heidelberg, Germany Klaus Blaum, Andreas Dörr, Sergey Eliseev, Mikhail Goncharov, Yuri N. Novikov, Alexander Rischka, Rima Schüssler **Petersburg Nuclear Physics Institute, Russia** Yuri Novikov, Pavel Filianin Physics Institute, University of Tübingen, Germany Josef Jochum, Stephan Scholl Saha Institute of Nuclear Physics, Kolkata, India

Susanta Lahiri

Background

Background sources:

- Radioactivity in the detector
- Environmental radioactivity ٠
- Cosmic rays Induced secondary radiation

Felsenkeller

Kinematic approach

- A finite neutrino mass modify the spectrum in a small region close to the end-point
- Low Q-values enhance the fraction of events in the region of interest

Kinematic approach

(1) Ch. Kraus *et al.*, Eur. Phys. J. C **40** (2005) 447
Ch. Weinheimer, Prog. Part. Nucl. Phys. **57** (2006) 22
N. Aseev *et al.*, Phys. Rev D **84** (2011) 112003

Estimate the effect of

• Higher order excitation in ¹⁶³Ho

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler et al. Phys. Rev. C **91**, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)
- A. De Rujula et al. arXiv:1601.04990v1 [hep-ph] 19 Jan 2016

Two-holes excited states: sh

shake-up

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C 91, 035504 (2015)
- A. Faessler et al.
 Phys. Rev. C **91**, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)
- A. De Rujula et al. arXiv:1601.04990v1 [hep-ph] 19 Jan 2016

Two-holes excited states:

shake-up

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C 91, 035504 (2015)
- A. Faessler et al. Phys. Rev. C 91, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)
- A. De Rujula et al. arXiv:1601.04990v1 [hep-ph] 19 Jan 2016

Two-holes excited states:

shake-up shake-off

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler et al. Phys. Rev. C **91**, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C **91**, 064302 (2015)
- A. De Rujula et al. arXiv:1601.04990v1 [hep-ph] 19 Jan 2016

¹⁶³Ho-based experiments

- Description of the ¹⁶³Ho EC spectrum
- Background reduction