Founded in Eric

leva Mosco



ETTORE MAJORANA» FOUNDATION AND CENTRE FOR SCIENTIFIC CULTURE TO PAY A PERMANENT TRIBUTE TO GALILEO GALILEI, FOUNDER OF MODERN SCIENCE AND TO ENRICO FERMI, THE "ITALIAN NAVIGATOR", FATHER OF THE WEAK FORCES

#### INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS

#### 39th Course: NEUTRINOS IN COSMOLOGY, IN ASTRO-, PARTICLE- AND NUCLEAR PHYSICS

#### **ERICE-SICILY: 16 – 24 SEPTEMBER 2017**

Sponsored by the: • European Physical Society • Extreme Matter Institute EMMI • GSI Helmholtzzentrum für Schwerionenforschung • KCETA Karlsruhe Institute of Technology • Italian Ministry of University and Research • Sicilian Regional Government

#### Present status of long baseline experiments in Japan (mainly the T2K experiment)

T. Nakaya (Kyoto University)

#### Neutrino oscillation experiments in Japan Intense Neutrino Beam for $(\overline{\nu})_{\mu} \rightarrow (\overline{\nu})_{e}$ study

Super-K



### New T2K results (in August 4, 2017)

Seminar at KEK: <a href="https://www.t2k.org/docs/talk/282">https://www.t2k.org/docs/talk/282</a>

Based on 89  $\nu_e$  and 7  $\overline{\nu}_e$  events



CP conserving values  $(0,\pi)$  fall outside of the  $2\sigma$  CL intervals

# What's new?

· Double neutrino beam data in one year!

· 7.48 x10<sup>20</sup> POT → 14.7x10<sup>20</sup> POT

· Increase the far detector fiducial volume!

- · ~20% more events
- $\cdot$  Adding a new event sample (CC-1  $\pi$  ) on  $\,\nu_{\,\rm e}$

 $\cdot \sim 10\%$  more events



 $E_{v}$  (GeV)

#### Formula of Oscillation Probability with CP violation

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \sin^{2}\Delta_{31} \text{ Leading} \qquad CP \text{ violating (flips sign for V)} \\ +8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta + \sin\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ +4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta) \cdot \sin^{2}\Delta_{21} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \\ +8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2}) \sin^{2}\Delta_{31} \\ \text{Leading} \qquad \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) \\ 0.06 \\ 0.04 \\ 0.02 \\ 0.07 \\ 0.07 \\ 0.07 \\ \frac{\sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E}\sin\delta} \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.02 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04$$

# Status of Neutrino Oscillations



- In the framework of 3 neutrinos, the unknowns are
  - mass ordering
  - · CP violation parameter:  $\delta_{CP}$



Normal mass hierarchy



# Mass Hierarchy

 A hint of mass hierarchy may be seen. Within 5~10 years, we expect more information on mass hierarchy from SK atmospheric neutrinos, NOvA (+T2K), IceCube, ORCA and JUNO.









Side-Muon-Range Detector

### T2K-Far Detector: Super-Kamiokande



39.3m



- Water Cherenkov detector with 50 kton mass (22.5 kton Fiducial volume) located at 1km underground
- Good performance (momentum and position resolution, PID, 0 charged particle counting) for sub-GeV neutrinos.
  - [Typical] 61% efficiency for T2K signal  $v_e$  with 95% NC-1 $\pi^0$  rejection
    - Inner tank (32 kton) :11,129 20inch PMT 0
    - Outer tank:1,885 8inch PMT 0
- **Dead-time-less DAQ** 
  - GPS timing information is recorded January 120 Numpu 100 real-time at every accelerator spill T2K recorded events: All interactions® within a ±500µsec window centered on the the neutrino arrival time.



Particle ID parameter

#### **Neutrino Detection at SK Far Detector**



#### A door to Neutrino CP violation is opened

- $\nu_{\mu} \rightarrow \nu_{e}$  oscillation w/  $\Delta m_{atm}^{2}$  discovered by the T2K experiment
  - Indication in 2011 [PRL 107, 041801 (2011)]
  - Observation in 2013 [PRL 112, 061802 (2014)]



New Results in summer 2017

# T2K Data



Accelerator has achieved stable operation with 470 kW beam power

14.7x10<sup>20</sup> protons-on-target (POT) in neutrino mode and
7.6x10<sup>20</sup> POT in antineutrino mode

# T2K Beam monitoring



### Oscillation Analysis: Step 1



## Fitting ND280 Data



Example fitted FGD2 (water) CC-0 $\pi$  muon momentum The fit reproduces the data well with a p-value of 0.47

## **Oscillation Analysis: Step 2**



## **Observation at Super-K**



23

### **Expansion of the Fiducial Volume**



| Sample                      | Towall Cut | Wall Cut |
|-----------------------------|------------|----------|
| CCQE 1-Ring e-like FHC      | 170 cm     | 80 cm    |
| CCQE 1-Ring $\mu$ -like FHC | 250 cm     | 50 cm    |
| $CC1\pi$ 1-Ring e-like FHC  | 270 cm     | 50 cm    |
| CCQE 1-Ring e-like RHC      | 170 cm     | 80 cm    |
| CCQE 1-Ring $\mu$ -like RHC | 250 cm     | 50 cm    |

## **Predictions and Observation**

|                   | Predicted Rates              |                 |                     |                         | Observed |
|-------------------|------------------------------|-----------------|---------------------|-------------------------|----------|
| Sample            | $\delta_{\rm cp}$ =- $\pi/2$ | $\delta_{cp}=0$ | $\delta_{cp}=\pi/2$ | $\delta_{	ext{cp}}=\pi$ | Rates    |
| e-like FHC        | 73.5                         | 61.5            | 49.9                | 62.0                    | 74       |
| e-like+ $\pi$ FHC | 6.92                         | 6.01            | 4.87                | 5.78                    | 15       |
| e-like RHC        | 7.93                         | 9.04            | 10.04               | 8.93                    | 7        |
| $\mu$ -like FHC   | 267.8                        | 267.4           | 267.7               | 268.2                   | 240      |
| $\mu$ -like RHC   | 63.1                         | 62.9            | 63.1                | 63.1                    | 68       |

 The number of observed events are largely in line with the predictions after oscillations

· The e-like samples have rates most consistent with the  $\delta_{cp}=-\pi/2$  hypothesis

· The observed  $\mu$ -like rate in neutrino mode is lower than prediction

consistent within statistical and systematic errors

# Systematic Errors

|                                                                        | % Errors on Predicted Event Rates (Osc. Para. A) |      |           |      |               |         |
|------------------------------------------------------------------------|--------------------------------------------------|------|-----------|------|---------------|---------|
|                                                                        | 1R $\mu$ -like                                   |      | 1R e-like |      |               |         |
| Error Source                                                           | FHC                                              | RHC  | FHC       | RHC  | FHC CC1 $\pi$ | FHC/RHC |
| SK Detector                                                            | 1.86                                             | 1.51 | 3.03      | 4.22 | 16.69         | 1.60    |
| SK FSI+SI+PN                                                           | 2.20                                             | 1.98 | 3.01      | 2.31 | 11.43         | 1.57    |
| ND280 const. flux & xsec                                               | 3.22                                             | 2.72 | 3.22      | 2.88 | 4.05          | 2.50    |
| $\sigma(\nu_{e})/\sigma(\nu_{\mu}), \sigma(\nu_{e})/\sigma(\nu_{\mu})$ | 0.00                                             | 0.00 | 2.63      | 1.46 | 2.62          | 3.03    |
| NC1 r                                                                  | 0.00                                             | 0.00 | 1.08      | 2.59 | 0.33          | 1.49    |
| NC Other                                                               | 0.25                                             | 0.25 | 0.14      | 0.33 | 0.98          | 0.18    |
| Total Systematic Error                                                 | 4.40                                             | 3.76 | 6.10      | 6.51 | 20.94         | 4.77    |

 Total error is in the 4-7% range. 4.8% error on the relative rate for neutrino mode and antineutrino mode samples

### **Oscillation Parameter Sensitivities**

Without the reactor experiment constraint on  $sin^2 2\theta_{13}$ 



# $\sin^2\theta_{23}$ status

- Fit the normal and inverted hierarchies separately
- Results with the reactor constraint on  $\sin^2 2\theta_{13}$
- Constraint on  $\sin^2 \theta_{23}$  is slightly stronger than the sensitivity



### $\theta_{13}$ and $\delta_{CP}$





- T2K data with (black) and without (red) the reactor constraint on  $\sin^2 \theta_{13}$  show consistent preference for value near -2 radians
- The confidence intervals for the results with the reactor constraint are produced using the critical  $\Delta \chi^2$  values calculated in the Feldman Cousins construction (next slide)

#### Measurement of $\delta_{cp}$ with reactor $\theta_{13}$



The  $1\sigma$  CL confidence interval:

Normal hierarchy: [-2.49, -1.23] radians

The  $2\sigma$  CL confidence interval:

Normal hierarchy: [-2.98, -0.60] radians Inverted hierarchy: [-1.54, -1.19] radians

CP conserving values (0,  $\pi$ ) fall outside of the 2  $\sigma$  CL intervals

## $\theta_{23}$ octant and mass hierarchy

Bayesian analysis: natural way to infer data preference for  $\theta_{23}$  octant or mass hierarchy

· Assume equal prior probability for both octant and hierarchy hypotheses

Fraction of steps from Markov Chain in each octant/hierarchy is posterior probability for the octant/hierarchy hypothesis

• T2K data prefers the normal hierarchy and upper octant

•

•

#### Posterior probabilities (with reactor constraint)

|                                | $\sin^2 \theta_{23} < 0.5$ | sin <sup>2</sup> 0 <sub>23</sub> > 0.5 | Sum   |
|--------------------------------|----------------------------|----------------------------------------|-------|
| NH ( $\Delta m^{2}_{32} > 0$ ) | 0.193                      | 0.674                                  | 0.868 |
| IH ( $\Delta m_{32}^2 < 0$ )   | 0.026                      | 0.106                                  | 0.132 |
| Sum                            | 0.219                      | 0.781                                  |       |

# Future prospect T2K-II

## T2K-II with J-PARC Upgrade

T2K-II w/ improved stat. (10E21 POT for nu and 10E21 POT for anti-nu)





Near Detector upgrade to understand the neutrino-nucleus interactions to improve the systematic.

## **T2K-II Physics Sensitivity**

- For which true  $\delta_{CP}$  values can we find CP violation assuming true  $\sin^2 \theta_{23}=0.43$ , 0.50, 0.60?
  - The fractional region for which  $\sin \delta_{CP}=0$  can be excluded at the 99% (3 $\sigma$ ) C.L. is 49% (36%) of possible true values of  $\delta_{CP}$  assuming the MH is known.



(Note) Although T2K alone can't measure MH, we can help with the MH measurement by, ie, combining T2K + NOVA



 More physics for Neutrino Interactions and nonstandard models



CP violation in lepton sector is within the reach. In addition, there are rich physics programs in front of us.

 Let's utilize the current facilities to explore new physics in neutrinos.

•

 Let's work together to build a new facility for a discovery in particle physics.





#### **IMPACT ON ATMOSPHERIC PARAMETERS**



- ➤ In this study, Δm<sup>2</sup><sub>32</sub> is biased to lower values
- sin<sup>2</sup>θ<sub>23</sub> is biased towards maximal disappearance
  - Leads to narrower contour than fit to nominal prediction
- Shift towards maximal also seen in 1-D contour for oscillation parameter set B (bottom)





We are investigating if this type of variation represents a physical effect that should be included as a systematic uncertainty

- ► We present  $\Delta m_{32}^2$  vs.  $\sin^2\theta_{23}$  contours with caveat that the systematic error model may be updated in the future
- ➤ In the future 1p-1h vs. 2p-2h systematic effects will be addressed by:
  - > The use of  $4\pi$  samples in the fit to ND280 data
  - Study of the hadronic recoil system with proton reconstruction
  - Near detector upgrades designed to target interaction modeling issues

### A window to Ultra High Energy





by restill for from knowledge we have on UT in quark sector



# Neutrino Physics in Japan

v astro



#### $E_6 \longrightarrow SO(10) \longrightarrow SU(5)$ Example *a* GUT by N. Maekawa

- 1. Unification
  - 1. Force (w/ SUSY)



2. Quark and Leptons



- $\cdot$  10(Q<sub>i</sub>) has more hierarchy than 5(L)
- 2. Hierarchy
  - 1. mixing: lepton (large) >> quark (small)
  - 2. mass: u-type quark >> d-type quark, charged lepton >> neutrino

Forces Merge at High Energies

weak

10<sup>4</sup>

electromagnetic

 $10^{8}$ 

Strength of Force

0.00

10<sup>0</sup>

Proton Decay

 $10^{12}$ 

Energy in GeV

 $10^{16}$ 

10<sup>2</sup>

### Leptogenesis and Neutrino CPV

· Saharov conditions for Baryon Asymmetry

- · [B] Baryon Number Violation
- $\cdot$  [CP] C and CP violation
- · [T] Interactions out of thermal equilibrium
- · Leptogenesis and Low Energy CP violation in Neutrinos
  - · [B] Sphaleron process for  $\Delta(B+L)\neq 0$
  - · [CP] Heavy Majorana Neutrino decay and/or Neutrino oscillations
    - |sin θ<sub>13</sub>sin δ|>0.09 is a necessary condition for a successful "flavoured" leptogenesis with hierarchical heavy Majorana neutrinos when the CP violation required for the generation of the matterantimatter asymmetry of the Universe is provided entirely by the Dirac CP violating phase in the neutrino mixing matrix [Phys. Rev. D75, 083511 (2007)].
      - $\cdot \sin\theta_{13} \sim 0.15 \Rightarrow |\sin\delta| > 0.6$