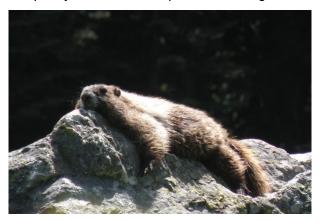
Nonthermal cosmic neutrino background

Michael Ratz

based on Phys.Rev. D92 (2015) no.12, 123006 (arXiv:1509.00481) with: Mu-Chun Chen (UCI) and Andreas Trautner (Bonn)

(some slides stolen from Andreas' talks)


&

Kevork Abazajian, Mu-Chun Chen & M.R. (in preparation)

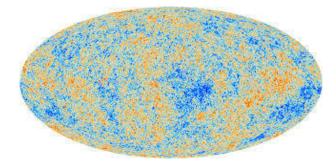
Erice Italy

September 19 2017

there is plenty of evidence for photons coming from the sun

there is plenty of evidence for photons coming from the sun

solar
$$\nu$$
s: flux $\sim \frac{10^{11}}{\text{cm}^2 \text{ sec}}$


there is plenty of evidence for photons coming from the sun

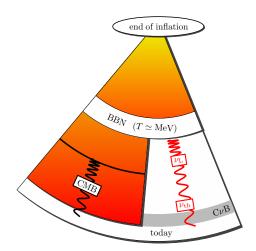
solar
$$vs$$
: flux $\sim \frac{10^{11}}{\text{cm}^2 \text{ sec}} \dots \text{seen in various experiments}$

there is plenty of evidence for photons coming from the sun

solar
$$vs$$
: flux $\sim \frac{10^{11}}{\text{cm}^2 \text{ sec}} \dots \text{seen in various experiments}$

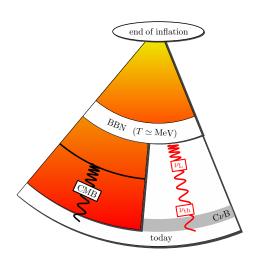
CMB: relic photons

- there is plenty of evidence for photons coming from the sun
- solar vs: flux $\sim \frac{10^{11}}{\text{cm}^2 \text{ sec}} \dots \text{seen in various experiments}$
- CMB: relic photons
- relic vs: flux $\sim \frac{10^{10}}{\text{cm}^2 \text{ sec}}$

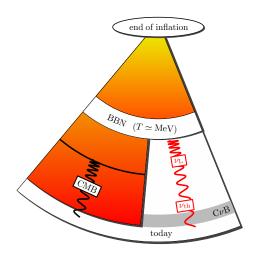

- there is plenty of evidence for photons coming from the sun
- solar vs: flux $\sim \frac{10^{11}}{\text{cm}^2 \text{ sec}}$... seen in various experiments
- CMB: relic photons
- relic vs: flux $\sim \frac{10^{10}}{\text{cm}^2 \text{ sec}} \dots \text{not observed yet}$

- there is plenty of evidence for photons coming from the sun
- solar vs: flux $\sim \frac{10^{11}}{\text{cm}^2 \text{ sec}} \dots \text{seen in various experiments}$
- CMB: relic photons
- relic vs: flux $\sim \frac{10^{10}}{\text{cm}^2 \text{ sec}} \dots \text{not observed yet}$
- common knowledge: there are more photons than neutrinos in our universe ($n_{\gamma} \simeq 412 \text{ cm}^{-3} \text{ & } n_{\nu} \simeq 336 \text{ cm}^{-3}$)

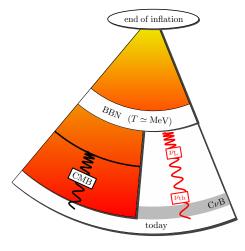
- there is plenty of evidence for photons coming from the sun
- solar vs: flux $\sim \frac{10^{11}}{\text{cm}^2 \text{ sec}} \dots \text{seen in various experiments}$
- CMB: relic photons
- relic vs: flux $\sim \frac{10^{10}}{\text{cm}^2 \text{ sec}} \dots \text{not observed yet}$
- common knowledge: there are more photons than neutrinos in our universe ($n_v \simeq 412 \text{ cm}^{-3} \text{ & } n_v \simeq 336 \text{ cm}^{-3}$)


main message of this talk:

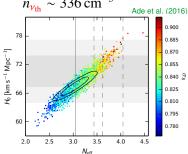
there might be more neutrinos than photons!



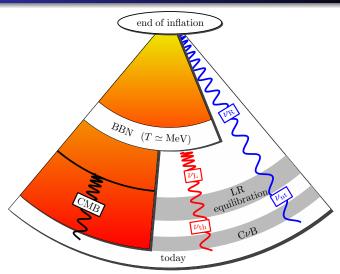
• CMB (measured) $T_{\gamma} \simeq 2.73 \ \mathrm{K} \simeq 2.35 \cdot 10^{-4} \ \mathrm{eV}$ $n_{\gamma} \simeq 412 \ \mathrm{cm}^{-3}$



- CMB (measured) $T_{\gamma} \simeq 2.73 \text{ K} \simeq 2.35 \cdot 10^{-4} \text{ eV}$ $n_{\gamma} \simeq 412 \text{ cm}^{-3}$
- standard C ν B (predicted) $T_{\nu_{\rm th}} \simeq T_{\gamma} \cdot (4/11)^{1/3} \simeq 1.95 \, {\rm K}$ $n_{\nu_{\rm th}} \sim 336 \, {\rm cm}^{-3}$


indirect evidence: $N_{\text{eff}}^{(3\nu,\text{theory})} = 3.046$

- CMB (measured) $T_{\gamma} \simeq 2.73 \text{ K} \simeq 2.35 \cdot 10^{-4} \text{ eV}$ $n_{\gamma} \simeq 412 \text{ cm}^{-3}$
- standard C ν B (predicted) $T_{\nu_{\text{th}}} \simeq T_{\gamma} \cdot (4/11)^{1/3} \simeq 1.95 \, \text{K}$ $n_{\nu_{\text{th}}} \sim 336 \, \text{cm}^{-3}$ Ade et al. (2016)
- $N_{\rm eff} = 3.2 \pm 0.5$



indirect evidence: $N_{\text{eff}}^{(3\nu,\text{theory})} = 3.046$

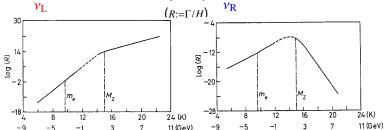
- CMB (measured) $T_{\gamma} \simeq 2.73 \text{ K} \simeq 2.35 \cdot 10^{-4} \text{ eV}$ $n_{\gamma} \simeq 412 \text{ cm}^{-3}$
- standard C ν B (predicted) $T_{\nu_{\text{th}}} \simeq T_{\gamma} \cdot (4/11)^{1/3} \simeq 1.95 \text{ K}$ $n_{\nu_{\text{th}}} \sim 336 \text{ cm}^{-3}$

Standard picture + nonthermal Dirac neutrinos

Dirac neutrinos in the early universe

Dirac neutrinos get their mass from the Yukawa coupling

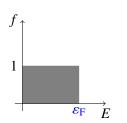
$$\mathcal{L}_{\nu} = Y_{\nu}^{ij} \begin{pmatrix} \overline{e}_{L}^{i} \\ \overline{v}_{L}^{i} \end{pmatrix} \cdot \widetilde{H} v_{R}^{j} + \text{h.c.}$$


 $m_{\nu} \lesssim 0.1 \text{ eV} \curvearrowright \text{singular values of } Y_{\nu} \lesssim 10^{-12}$

Dirac neutrinos in the early universe

Dirac neutrinos get their mass from the Yukawa coupling

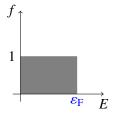
$$\mathcal{L}_{\nu} = Y_{\nu}^{ij} \begin{pmatrix} \overline{e}_{L}^{i} \\ \overline{v}_{L}^{j} \end{pmatrix} \cdot \widetilde{H} v_{R}^{j} + \text{h.c.}$$

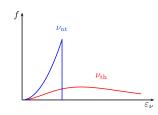

standard $C\nu B$ initially consists *only* of left-chiral neutrinos ν_L while ν_R are too weakly coupled Antonelli, Fargion, and Konoplich (1981)

- $\Gamma_{\nu_{R}} \ll H$ implies:
 - no thermal production of v_R as well as
 - no thermalization of existing abundance of ν_R

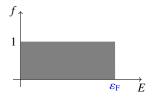
- $\Gamma_{\nu_{\mathbf{R}}} \ll H$ implies:
 - no thermal production of v_R as well as
 - no thermalization of existing abundance of ν_R
- assume that there is a primordial nonthermal abundance of v_R

- $\Gamma_{\nu_{\mathbf{R}}} \ll H$ implies:
 - no thermal production of ν_R as well as
 - no thermalization of existing abundance of ν_R
- $^{\bowtie}$ assume that there is a primordial nonthermal abundance of $u_{
 m R}$
- most extreme possibility: degenerate Fermi gas fill ν_R states from the bottom up

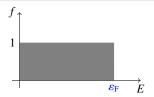

ultrarelativistic approximation


$$n_{\nu_{\rm R}} = \frac{g}{6\pi^2} \, \varepsilon_{\rm F}^3$$

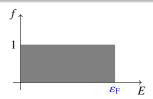
$$\rho_{\nu_{\rm R}} = \frac{g}{8\pi^2} \, \varepsilon_{\rm F}^4$$


$$g = 2 \text{ for spin-1/2 fermion}$$

- $\Gamma_{\nu_{\mathbf{R}}} \ll H$ implies:
 - no thermal production of v_R as well as
 - no thermalization of existing abundance of ν_R
- assume that there is a primordial nonthermal abundance of ν_R
- most extreme possibility: degenerate Fermi gas fill ν_R states from the bottom up

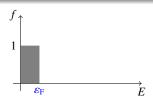


$$n_{\nu_{\rm R}}(T) \; = \; n_{\nu_{\rm R}}(T_{\rm RH}) \cdot \left(\frac{a(T_{\rm RH})}{a(T)}\right)^3$$
 scale factor



$$n_{\nu_{\rm R}}(T) = \frac{g \, \xi^3}{6 \, \pi^2} \, g_{*\rm S}(T) \over (T_{\rm RH})} \, T^3$$

$$\xi := \varepsilon_{\rm F}/T_{\rm RH}$$

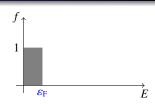


$$n_{\nu_{\rm R}}(T) = \frac{g \, \xi^3}{6 \, \pi^2} \frac{g_{*\rm S}(T)}{g_{*\rm S}(T_{\rm RH})} \, T^3$$



$$n_{\nu_{\rm R}}(T) = \frac{g \, \xi^3}{6 \, \pi^2} \frac{g_{*\rm S}(T)}{g_{*\rm S}(T_{\rm RH})} \, T^3$$

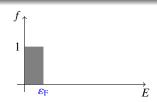
$$n_{\nu_{\rm R}}(T) = \frac{g \, \xi^3}{6 \, \pi^2} \frac{g_{*\rm S}(T)}{g_{*\rm S}(T_{\rm RH})} \, T^3$$


$$n_{\nu_{\rm R}}(T) = \frac{g \, \xi^3}{6 \, \pi^2} \frac{g_{*S}(T)}{g_{*S}(T_{\rm RH})} \, T^3$$

$$\frac{n_{\nu_{\rm R}}(T_{\gamma})}{n_{\nu}} = \frac{g \, \xi^3}{12 \, \zeta(3)} \, \frac{g_{*\rm S}(T_{\gamma})}{g_{*\rm S}(T_{\rm RH})}$$

$$\frac{n_{v_{\rm R}}(T_{\gamma})}{n_{\rm rx}} = \frac{g\,\xi^3}{12\,\zeta(3)}\,\frac{g_{*\rm S}(T_{\rm PH})}{g_{*\rm S}(T_{\rm PH})} \quad \& \quad \Delta N_{\rm eff}^{(v_{\rm R})} = \frac{8}{7}\,\frac{30}{8\,\pi^4}\,\frac{g\,\xi^4}{2}\,\left(\frac{g_{*\rm S}(T_{\rm BBN})}{g_{*\rm S}(T_{\rm PH})}\right)^{4/3}$$

$$n_{\nu_{\rm R}}(T) = \frac{g \, \xi^3}{6 \, \pi^2} \frac{g_{*\rm S}(T)}{g_{*\rm S}(T_{\rm RH})} \, T^3$$


$$\frac{n_{\nu_{\rm R}}(T_{\gamma})}{n_{\gamma}} = \frac{g \, \xi^3}{12 \, \zeta(3)} \, \frac{g_{*\rm S}(T_{\gamma})}{g_{*\rm S}(T_{\rm RH})}$$

$$\frac{n_{\nu_{\rm R}}(T_{\gamma})}{n_{\gamma}} = \frac{g\,\xi^3}{12\,\zeta(3)}\,\frac{g_{*\rm S}(T_{\gamma})}{g_{*\rm S}(T_{\rm RH})} \quad \& \quad \Delta N_{\rm eff}^{(\nu_{\rm R})} = \frac{8}{7}\,\frac{30}{8\,\pi^4}\,\frac{g\,\xi^4}{2}\left(\frac{g_{*\rm S}(T_{\rm BBN})}{g_{*\rm S}(T_{\rm RH})}\right)^{4/3}$$

maximal number of nonthermal neutrinos:

$$n_{\nu_{\rm R}}(T_{\gamma}) = 0.53 \, n_{\gamma} \left(\frac{\Delta N_{\rm eff}^{(\nu_{\rm R})}}{0.7} \right)^{3/4} \lesssim 217 \, {\rm cm}^{-3}$$

$$n_{\nu_{\rm R}}(T) = \frac{g \, \xi^3}{6 \, \pi^2} \frac{g_{*\rm S}(T)}{g_{*\rm S}(T_{\rm RH})} \, T^3$$

$$\frac{n_{\nu_{\rm R}}(T_{\gamma})}{n_{\nu}} = \frac{g \, \xi^3}{12 \, \zeta(3)} \, \frac{g_{*\rm S}(T_{\gamma})}{g_{*\rm S}(T_{\rm RH})}$$

$$\frac{n_{\nu_{\rm R}}(T_{\gamma})}{n_{\nu}} = \frac{g\,\xi^3}{12\,\zeta(3)}\,\frac{g_{*\rm S}(T_{\gamma})}{g_{*\rm S}(T_{\rm RH})} \quad \& \quad \Delta N_{\rm eff}^{(\nu_{\rm R})} = \frac{8}{7}\,\frac{30}{8\,\pi^4}\,\frac{g\,\xi^4}{2}\left(\frac{g_{*\rm S}(T_{\rm BBN})}{g_{*\rm S}(T_{\rm RH})}\right)^{4/3}$$

maximal number of nonthermal neutrinos:

$$n_{\nu_{\rm R}}(T_{\gamma}) = 0.53 \, n_{\gamma} \left(\frac{\Delta N_{\rm eff}^{(\nu_{\rm R})}}{0.7} \right)^{3/4} \lesssim 217 \, {\rm cm}^{-3}$$

Planck: $\Delta N_{\rm eff} = 0.2 \pm 0.5$

How to look for relic neutrinos

How to look for relic neutrinos

Direct detection of CvB on earth

proposal: capture ν 's with tritium 3H

Weinberg (1962)

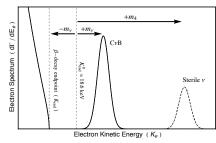
$$\beta$$
 decay: ${}^{3}\text{H} \rightarrow {}^{3}\text{He}^{+} + {}^{-} + \overline{\nu}_{e}$

Direct detection of CvB on earth

proposal: capture ν 's with tritium 3H

Weinberg (1962)

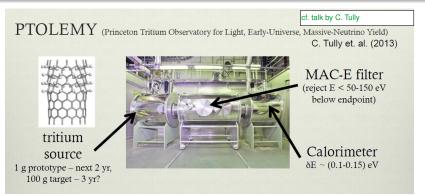
$$v_e^3H \rightarrow {}^3He^+ + e^- + \overline{v}_e$$
 $V_e^4 + {}^3H \rightarrow {}^3He^+ + e^- \leftarrow \text{measure spectrum}$

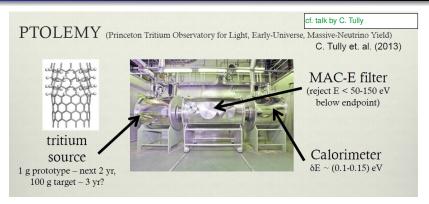

Direct detection of $C_{\nu}B$ on earth

proposal: capture ν 's with tritium 3H

Weinberg (1962)

$$v_e^3H \rightarrow {}^3He^+ + e^- + \overline{v}_e$$
 $V_e^2 + {}^3H \rightarrow {}^3He^+ + e^- \leftarrow \text{measure spectrum}$


- $\langle E_{\rm kin}^{\nu_{\rm th}} \rangle_{\rm today} \approx 1.7 \cdot 10^{-4} \, \rm eV$
- $\Delta m_{12}^2 \approx 7.5 \cdot 10^{-5} \text{ eV}^2$ $\Delta m_{13}^2 \approx 2.5 \cdot 10^{-3} \text{ eV}^2$
- at least two species are nonrelativistic!


Long, Lunardini, and Sabancilar (2014)

Direct detection of CvB on earth

Experimental proposal

Experimental proposal

expected rate: 8–23 events per 100 g tritium and year for Majorana neutrinos

de Salas, Gariazzo, Lesgourgues, and Pastor (2017)

depends on DM halo & absolute ν mass

Discriminating Dirac from Majorana neutrinos

Dirac vs. Majorana

detectable neutrinos are nonrelativistic

Dirac vs. Majorana

- detectable neutrinos are nonrelativistic
- Dirac neutrinos: 50% are "lost" for detection

Long, Lunardini, and Sabancilar (2014) de Salas, Gariazzo, Lesgourgues, and Pastor (2017)

$$\Gamma^{Majorana}_{C\nu B} \ = \ {\bm 2} \cdot \Gamma^{Dirac}_{C\nu B} \ \approx \ \frac{8-23}{yr^{-1} \cdot 100 \, g} \label{eq:constraint}$$

Dirac vs. Majorana

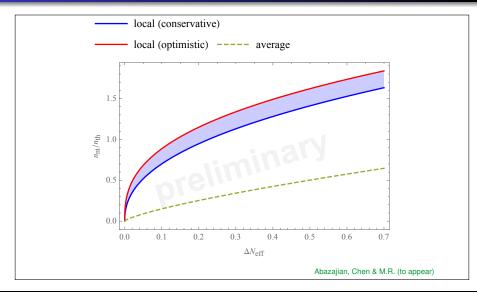
- detectable neutrinos are nonrelativistic
- Dirac neutrinos: 50% are "lost" for detection

Long, Lunardini, and Sabancilar (2014) de Salas, Gariazzo, Lesgourgues, and Pastor (2017)

$$\Gamma^{Majorana}_{C\nu B} \ = \ {\bf 2} \cdot \Gamma^{Dirac}_{C\nu B} \ \approx \ \frac{8-23}{yr^{-1} \cdot 100 \, g}$$

 \square local ν density higher than average

Ringwald and Wong (2004); de Salas, Gariazzo, Lesgourgues, and Pastor (2017)


e.g.
$$\Gamma_{\text{CvB}}^{\text{Majorana}} \approx 23 \,\text{yr}^{-1}/100 \,\text{g}$$
 for $m_{\nu} = 150 \,\text{meV}$

relic *ν*'s are (mainly) **nonrelativistic**

- relic ν 's are (mainly) **nonrelativistic**
- chiralities mix via the mass term: $\nu_R \rightarrow "\nu_{nt}" \& \nu_L \rightarrow \nu_{th}$

- relic ν 's are (mainly) **nonrelativistic**
- chiralities mix via the mass term: $\nu_R \to "\nu_{nt}" \& \nu_L \to \nu_{th}$
- \rightarrow half of the initial ν_R are "gained" for detection via β^{-1}

- relic ν 's are (mainly) **nonrelativistic**
- chiralities mix via the mass term: $\nu_R \to "\nu_{nt}" \& \nu_L \to \nu_{th}$
- \rightarrow half of the initial ν_R are "gained" for detection via β^{-1}
- clustering stronger for nonthermal neutrinos

- relic ν's are (mainly) **nonrelativistic**
- chiralities mix via the mass term: $\nu_R \to "\nu_{nt}" \& \nu_L \to \nu_{th}$
- \rightarrow half of the initial ν_R are "gained" for detection via β^{-1}
- clustering stronger for nonthermal neutrinos
- Dirac suppression can be completely undone

Abazajian, Chen & M.R. (to appear)

- relic ν's are (mainly) **nonrelativistic**
- chiralities mix via the mass term: $\nu_R \to "\nu_{nt}" \& \nu_L \to \nu_{th}$
- \rightarrow half of the initial ν_R are "gained" for detection via β^{-1}
- clustering stronger for nonthermal neutrinos
- Dirac suppression can be completely undone

Abazajian, Chen & M.R. (to appear)

bottom-line:

discrimination between Dirac and Majorana through measurement of relic neutrinos may be impossible

Is there an appropriate v_R production mechanism?

e.g. fermionic preheating

Greene and Kofman (1999) Baacke, Heitmann, and Patzold (1998)

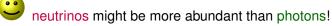
Is there an appropriate v_R production mechanism?

e.g. fermionic preheating

Greene and Kofman (1999) Baacke, Heitmann, and Patzold (1998)

large amounts of v_R get produced during inflation and get 'cooled down' afterwards

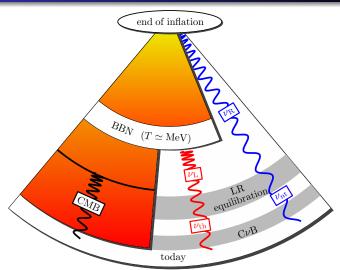
Summary & outlook



neutrinos might be more abundant than photons!

	$t_{\rm creation}$	$N_{ m eff}$	relic density
$ u_{ m th}$	$t_{\rm BBN} \sim 1 \rm s$	3.046	' tii
$\nu_{ m nt}$	$t_{\rm infl.}$	$\lesssim 0.7$	$n_{\nu_{\rm nt}} \lesssim 217 {\rm cm}^{-3}$
γ	$t \simeq 3.8 \cdot 10^5 \mathrm{a}$	16/7	$n_{\gamma} \approx 412 \mathrm{cm}^{-3}$
$(n_{\nu_{\rm nt}} \lesssim 84 {\rm cm}^{-3} \text{ for } \Delta N_{\rm eff} = 0.2)$			

Summary & outlook


nonthermal neutrinos may spoil the distinction between Dirac and Majorana

Summary & outlook

- neutrinos might be more abundant than photons!
- nonthermal neutrinos may spoil the distinction between Dirac and Majorana
- nonthermal neutrinos directly probe the universe at the stage of inflation

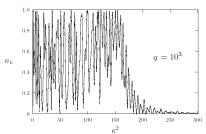
Standard picture + nonthermal Dirac neutrinos

Backup slides

Fermionic preheating

ingredients

Greene and Kofman (1999) Baacke, Heitmann, and Patzold (1998)


- \checkmark massive scalar field ϕ such as inflaton w/ $\mathscr{V}(\phi)\sim \frac{m_\phi^2}{2}\phi^2$
- \checkmark coupling to fermions $\lambda \phi \overline{\Psi} \Psi$

Fermionic preheating

ingredients

Greene and Kofman (1999) Baacke, Heitmann, and Patzold (1998)

- \checkmark massive scalar field ϕ such as inflaton w/ $\mathscr{V}(\phi) \sim \frac{m_{\phi}^2}{2}\phi^2$
- \checkmark coupling to fermions $\lambda \phi \overline{\Psi} \Psi$
- (nonperturbative) "parametric resonance" effect:

occupation number of fermions in $m_{\phi}^2 \phi^2$ -inflation after 50 inflaton oscillations Greene and Kofman (1999)

$$q := \lambda^2 \phi_0^2 / m_\phi^2$$

$$\varepsilon_F \sim q^{1/4} m_\phi$$

$$\frac{q^{1/4}}{2} \sim \frac{\varepsilon_F}{T_{\rm RH}} = \xi \lesssim 3$$

▶ back

Nonthermal v_R production mechanism

• to produce nonthermal v_R one needs a coupling

$$\mathcal{L} \supset \lambda \phi \overline{\nu_{R}^{C}} \nu_{R} + \text{h.c.}$$

• Majorana mass term forbidden by e.g. \mathbb{Z}_4^L

Witten (2001)

• reheating of the SM via perturbative decay of ϕ , or ϕ^2H^2 coupling and the "scalar" parametric resonance

Kofman, Linde, and Starobinsky (1994); Traschen and Brandenberger (1990)

▶ back

obvious difference: spectrum?

- obvious difference: spectrum?
- **▶** would require e^- energy resolution of $O(10^{-4}) eV$

- obvious difference: spectrum?
- would require e^- energy resolution of $O(10^{-4}) eV$
- annual modulation? due to different mean velocity

Lisanti, Safdi, and Tully (2014)

$$\langle \nu_{\text{C}\nu\text{B, nt}} \rangle = 572 \, (1+z) \bigg(\frac{0.1 \, \text{eV}}{m_{\nu}} \bigg) \bigg(\frac{\Delta N_{\text{eff}}^{(\nu_{\text{R}})}}{0.7} \bigg)^{1/4} \, \text{km s}^{-1}$$

$$\langle \nu_{\text{C}\nu\text{B, th}} \rangle = 1580 \, (1+z) \bigg(\frac{0.1 \, \text{eV}}{m_{\nu}} \bigg) \text{km s}^{-1}$$

$$\text{redshift}$$

- obvious difference: spectrum?
- would require e^- energy resolution of $O(10^{-4}) eV$
- annual modulation?
 due to different mean velocity

Lisanti, Safdi, and Tully (2014)

$$\langle \nu_{\text{C}\nu\text{B, nt}} \rangle = 572 \, (1+z) \left(\frac{0.1 \,\text{eV}}{m_{\nu}} \right) \left(\frac{\Delta N_{\text{eff}}^{(\nu_{\text{R}})}}{0.7} \right)^{1/4} \,\text{km s}^{-1}$$

$$\langle \nu_{\text{C}\nu\text{B, th}} \rangle = 1580 \, (1+z) \left(\frac{0.1 \,\text{eV}}{m_{\nu}} \right) \,\text{km s}^{-1}$$

it would in principle also be possible

Huang and Zhou (2016)

- obvious difference: spectrum?
- would require e^- energy resolution of $O(10^{-4}) eV$
- annual modulation? due to different mean velocity

Lisanti, Safdi, and Tully (2014)

$$\langle v_{\text{C}\nu\text{B, nt}} \rangle = 572 \, (1+z) \left(\frac{0.1 \, \text{eV}}{m_{\nu}} \right) \left(\frac{\Delta N_{\text{eff}}^{(\nu_{\text{R}})}}{0.7} \right)^{1/4} \, \text{km s}^{-1}$$

$$\langle v_{\text{C}\nu\text{B, th}} \rangle = 1580 \, (1+z) \left(\frac{0.1 \, \text{eV}}{m_{\nu}} \right) \text{km s}^{-1}$$

it would in principle also be possible

Huang and Zhou (2016)

however, this would require $O(10^6)$ recorded events

▶ back

References I

- P. A. R. Ade et al. Planck 2015 results. XIII. Cosmological parameters. *Astron. Astrophys.*, 594:A13, 2016. doi: 10.1051/0004-6361/201525830.
- Francesco Antonelli, Daniele Fargion, and Rostislav Konoplich. Right-handed Neutrino Interactions in the Early Universe. *Lett. Nuovo Cim.*, 32:289, 1981. doi: 10.1007/BF02745122.
- Jurgen Baacke, Katrin Heitmann, and Carsten Patzold. Nonequilibrium dynamics of fermions in a spatially homogeneous scalar background field. *Phys. Rev.*, D58: 125013, 1998. doi: 10.1103/PhysRevD.58.125013.
- P. F. de Salas, S. Gariazzo, J. Lesgourgues, and S. Pastor. Calculation of the local density of relic neutrinos. 2017.

References II

- Patrick B. Greene and Lev Kofman. Preheating of fermions. *Phys. Lett.*, B448:6–12, 1999. doi: 10.1016/S0370-2693(99)00020-9.
- Guo-yuan Huang and Shun Zhou. Discriminating between Thermal and Nonthermal Cosmic Relic Neutrinos through Annual Modulation at PTOLEMY. 2016.
- Lev Kofman, Andrei D. Linde, and Alexei A. Starobinsky. Reheating after inflation. *Phys. Rev. Lett.*, 73:3195–3198, 1994. doi: 10.1103/PhysRevLett.73.3195.
- Mariangela Lisanti, Benjamin R. Safdi, and Christopher G. Tully. Measuring Anisotropies in the Cosmic Neutrino Background. *Phys.Rev.*, D90(7):073006, 2014. doi: 10.1103/PhysRevD.90.073006.

References III

- Andrew J. Long, Cecilia Lunardini, and Eray Sabancilar. Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential. *JCAP*, 1408:038, 2014. doi: 10.1088/1475-7516/2014/08/038.
- Gianpiero Mangano, Gennaro Miele, Sergio Pastor, Teguayco Pinto, Ofelia Pisanti, and Pasquale D. Serpico. Relic neutrino decoupling including flavor oscillations. *Nucl. Phys.*, B729: 221–234, 2005. doi: 10.1016/j.nuclphysb.2005.09.041.
- Andreas Ringwald and Yvonne Y. Y. Wong. Gravitational clustering of relic neutrinos and implications for their detection. *JCAP*, 0412:005, 2004. doi: 10.1088/1475-7516/2004/12/005.
- Jennie H. Traschen and Robert H. Brandenberger. Particle Production During Out-of-equilibrium Phase Transitions. *Phys. Rev.*, D42:2491–2504, 1990. doi: 10.1103/PhysRevD.42.2491.

References IV

Steven Weinberg. Universal Neutrino Degeneracy. *Phys. Rev.*, 128:1457–1473, 1962. doi: 10.1103/PhysRev.128.1457.

Edward Witten. Lepton number and neutrino masses. *Nucl. Phys.Proc.Suppl.*, 91:3–8, 2001. doi: 10.1016/S0920-5632(00)00916-6.