Analysis of the light attenuation measurement in liquid argon in the GERDA cryostat

Birgit Schneider on behalf of the GERDA Collaboration

Technische Universität Dresden Institut für Kern- und Teilchenphysik

International School of Nuclear Physics 19th September 2017

iktp

- 1. The GERDA experiment
- 2. Setup for the attenuation measurement
- 3. LAr scintillation mechanism
- 4. Simulation of the setup and analysis of the data
- 5. Results and conclusion

GERDA – Germanium Detector Array

- Search for $0\nu\beta\beta$ in ^{76}Ge
- Source = Detector
- LAr for cooling & shielding, scintillation veto
- Water used as muon veto & neutron shield
- Phase I: 21.6 kg · yr, BI 10⁻² cts keV·kg·yr
- Goal Phase II: 100 kg · yr, BI 10⁻³ cts keV·kg·yr

LAr veto in Phase II

LAr veto

- ββ-events do not trigger scintillation light
- Background events in the ROI typically have excess energy
 - \rightarrow deposited in the LAr
- Anti-coincidence veto on Ge-detectors suppresses background
- Light attenuation is one of the most important parameters for the veto efficiency

Light attenuation measurement

- Dedicated setup was developed
- Measurement performed in the LAr cryostat in GERDA during preparations for Phase II

Concept of the setup

- Steel cylinder
- 3" PMT coated with WLS
 - \rightarrow Model R11065 from Hamamatsu
- Encapsulated ⁹⁰Sr-source, pure β-emitter, to trigger scintillation light (128 nm)

$${}^{90}\text{Sr} \xrightarrow{100\%\beta^{-}}{546\,\text{keV}} {}^{90}\text{Y} \xrightarrow{100\%\beta^{-}}{2280\,\text{keV}} {}^{90}\text{Zr} \text{ (g.s. to g.s.)}$$

- Moveable source holder, made of steel
- Solid angle correction depends on distance between PMT and source
- Collimators to remove light reflection
 - $\rightarrow\,$ Reflectivity of steel is a huge uncertainty for the solid angle correction

Setup and source holder design

Stepping motor

- Motor VSS 57.200.2,5 from Phytron
- Designed for operation in cryogenic liquids

Argon scintillation mechanism

- Ionizing radiation leads to excited or ionized argon atoms
 → Forming molecules with ground state argon atoms
- Ar₂⁺ recombine with free electrons into excited states
- Excited states are created in:
 - singlets (allowed, $au \sim$ 4 7 ns)
 - triplets (forbidden, $\tau \sim 1.0 1.7 \, \mu s$)
 - singlet to triplet production ratio is 0.3 for electrons
 - ightarrow decay by emission of photons, $\lambda =$ 128 nm
- Contaminations lead to reduction of triplet lifetime and extinction of scintillation light

Consequences of impurities in LAr

- O_2 : Free electrons are bound by Oxygen molecules $e^- + O_2 \rightarrow O_2^-$ Non-radiative collision $Ar_2^* + O_2 \rightarrow 2Ar + O_2$ Absorption of scintillation photons, emission of Oxygen resonance line at 557 nm
- $\mathbf{N_2}: \mbox{ Non-radiative collision } Ar_2^* + N_2 \rightarrow 2Ar + N_2$
- Xe : Emission of the Xenon resonance line around 149 nm, emission of Xenon excimer at 175 nm

$lpha_{att}$	Impurity	concentration	Reference
50 cm	O ₂ , H ₂ O, CH ₄	100 ppb	arXiv:1611.02481
	Xe, Kr	1 ppb	
	Hg	10 ppb	
	N ₂	1 ppm	
110 cm	Xe	0.1 ppm	arXiv:1511.07725
$66\pm3~\text{cm}$			interpreted as scattering
$118\pm10~\text{cm}$	Xe	3%	NIMPRS A: V. 384, 380-386
1790 ± 160 (m?)	N ₂	37 ppb	arXiv:1306.4605
30 ± 3 m	N ₂	2 ppb	

Trace of a scintillation event

Scintillation event composed of fast singlet and slow triplet component

Obtain spectra by integrating the trace of each event

Pulse integral spectra

 Spectra for various distances, normalized on life time and ratio of accepted vs. found events

Spectra low energy region

- Peak-to-valley: \sim 3:1
- Cut in valley between pedestal and single p.e. peak

Spectra low energy region

Integrate spectra at the right side of the cut in the valley

• Subtract exponential part of the pedestal, add gaussian part of the single p.e. peak

Sketch of the analysis

• Intensity of the scintillation light after distance d:

$$I(d) = I(d_0) \cdot e^{-d/\alpha_{\text{att}}} \quad \text{with} \quad \frac{1}{\alpha_{\text{att}}} = \frac{1}{\alpha_{\text{abs}}} + \frac{1}{\alpha_{\text{scatt}}}$$

- $\alpha_{\rm att} =$ attenuation length, distance where the intensity has dropped to 1/e \approx 37%
- α_{scatt} at 128 nm about 70 cm [Rayleigh Scattering in Rare Gas Liquids: Seidel, Lanou, Yao; arXiv:hep-ex/0111054]
- Choose closest measuring point as reference:

$$\frac{I_i}{I_1} = \mathrm{e}^{-\Delta d/\alpha_{\mathsf{att}}}$$

- Determine **solid angle correction** and **Cherenkov background** with simulation (MaGe, Geant4)
- Apply solid angle correction factor s_i to relative integrals: $\frac{I_i}{I_1} \longrightarrow \frac{s_i \cdot I_i}{s_1 \cdot I_1}$
- Plot the corrected relative integrals over relative distance Δd
- Fit function = signal + background

Solid angle correction with MC simulation

Effective distance

- Set α_{abs} very long (1 km)
- Determine average path a scintillation photon has traveled (before hitting WLS)
- Include reflected, Rayleigh scattered and scintillation photons as follow-up by bremsstrahlung
- Don't include Cherenkov light

Solid angle correction

- Consider all hits that are not produced by Cherenkov effect
- For $\alpha_{abs} = \infty$ the solid angle correction should yield the same signal strength for each distance

Reflectivity of steel for simulation

Reflectivity of steel measured between 200 nm and 800 nm

Reflectivity below 200 nm must be assumed for simulation

Resulting solid angle correction factors

Solid angle correction is independent of LAr scintillation light yield:

Resulting solid angle correction factors

Solid angle correction is dependent on reflectvity of steel at 128 nm:

Cherenkov background

Find analytic description of the Cherenkov background for each reflectivity assumption:

Cherenkov background fit

Geometric effects within the setup lead to a non-constant background

• Consider this fit function as the background \rightarrow add it to the fit of α_{abs}

Fit with solid angle correction and background

- $p0 \rightarrow$ ratio of signal vs. background, indication for light yield
- $p1 \rightarrow \text{absorption length [cm]}$
- Find combination of simulation parameters which matches the data

Fit parameter investigation

²arameter p0 0.50 Parameter p1 [cm] 0.50 0.45 0.45 0.9 20 0.4 0.4 simulation 0.35 0.30 0.8 0.25 0.25 0.2 0.2 0.15 0.7 Reflectivity of 0.10 0.6 0.05 10 0.01 9 10-3 10-3 0.5 10.4 10-4 8 0 0 0.4 0.01 0 0.3 0.05 0.10 0.15 0.2 0.25 0.30 0.4 0.45 0.50 10-4 10-3 0.01 10-4 0.35 0 0.05 0.10 0.15 0.2 0.25 0.30 0.35 4.0 0.45 0.50 Reflectivity used for solid angle correction Reflectivity used for solid angle correction

Parameter p0, signal / background ratio

Parameter p1, absorption length [cm]

- Analyze each simulation with solid angle correction determined for another reflectivity
- Simulation parameters: $\alpha_{abs} = 15 \text{ cm}$, $\alpha_{scatt} = 70 \text{ cm}$, $ly = 1600 \text{ }\gamma/\text{MeV}$ (reflectivity 0)
- Data should behave like one of the analyzed simulations

Comparison with data

Parameter p0, signal / background ratio

Parameter p1, absorption length [cm]

- Analyze data with solid angle correction determined for various reflectivities
- All bins that lie within 1σ uncertainty of the data fit are highlighted (black marker)
- Best match for reflectivity of the steel is 0 1% at 128 nm

Fit comparison of data and simulation

• Fit of data results in α_{abs} = 14.95 \pm 0.93 cm

- Attenuation measurement has been performed in the GERDA cryostat
- Reflectivity of steel has been measured between 200 nm and 800 nm
- Determined solid angle correction and Cherenkov background with simulations
- Fit of data results in α_{abs} = 14.95 \pm 0.93 cm with assumption of α_{scatt} = 70 cm and reflectivity 0 at 128 nm
- Simulation with $\alpha_{abs} = 15$ cm, $\alpha_{scatt} = 70$ cm, ly = 1600 γ /MeV, reflectivity 0 at 128 nm matches data very well
- Best match with data with reflectivity of steel between 0 and 1% at 128 nm

Backup

Neutrino physics

- Neutrino mass is zero in SM
- Neutrino oscillations $\rightarrow m_{\nu} \neq 0$ \rightarrow only sensitive to mass differences
- Which mass ordering is realized?
- Is the neutrino its own antiparticle?
 - \rightarrow investigation with $0\nu\beta\beta$ experiments

$$\rightarrow \left(T_{1/2}^{0\nu}\right)^{-1} \sim G^{0\nu} \cdot \left|\mathcal{M}^{0\nu}\right|^2 \cdot |m_{ee}|^2$$

Double beta decay

- 2vββ allowed in SM, only observable when β decay strongly suppressed
- If $v = \overline{v} \rightarrow 0v\beta\beta$ possible, violates lepton number ($\Delta L = 2$)
 - \rightarrow can be explained by light Majorana neutrinos (or other lepton number violating processes)
 - ightarrow constraints on effective Majorana neutrino mass

Argon scintillation mechanism

- Electron configuration of argon: $[Ne](3s)^2(3p)^6 \longrightarrow [Ne](3s)^2(3p)^5(4s)$
- Radiation from ${}^{1}P_{1}$ and ${}^{3}P_{1}$ to ${}^{1}S_{0}$ ground state reabsorbed in argon
- Atom in ${}^{3}P_{1}$ and ${}^{3}P_{2}$ state can form molecule with ${}^{1}S_{0}$ argon atom
- γ 's from Ar_2^* have not enough energy to be absorbed by 1S_0 argon atoms
- Peaks from singlet and triplet excimer decay are not resolved

⁹⁰Sr in the nuclide chart

Zr 90 51.45		Zr 91 11.22		Zr 92 17.15	
σ~0.014		σ 1.2		σ0.2	
Y 89		Y 90		Y 91	
16.0 s	100	3.19 h	64.1 h	49.7 m	58.5 d
lγ 909	σ 0.001 + 1.25	lγ 203; 480; β γ (2319)	β 2.3 γ (2186) σ <6.5	lγ 556	β 1.5 γ (1205) σ 1.4
Sr 88 82.58 0 0.0058		$\frac{Sr \ 89}{50.5 \ d}_{\gamma (909)}^{\beta^{-} 1.5}_{g \sigma 0.42}$		Sr 90 28.64 a β ^{- 0.5} no γ g σ 0.010	

Decay chain of ⁹⁰Sr

[Values from http://ie.lbl.gov/toi/]

Background estimation from setup

material	activity	amount	activity in setup
steel	550 mBq/kg	13 kg	7 Bq
argon	1.5 Bq/l	71	10.5 Bq

Activity from stainless steel:

isotope	activity [mBq/kg]
²³⁴ Th	< 200
²¹⁴ Pb	< 25
²¹⁴ Bi	< 25
²²⁸ Ac	70 ± 10
²¹² Pb	70 ± 10
²⁰⁸ TI	70 ± 10
¹³⁷ Cs	< 6
⁴⁰ K	< 60
⁶⁰ Co	17 ± 5

From http://radiopurity.in2p3.fr/

Reflectivity measurements IPF Dresden

Comparison of various measurements of the steel reflectivity:

Reflectivity measurements IPF Dresden

Comparison of various measuring points for the diffuse reflectivity:

