

R-process nucleosynthesis and its electromagnetic signatures Gabriel Martínez-Pinedo International School Nuclear Physics, Erice, September 20, 2018

Aug 22, 2017

Signatures of nucleosynthesis

🛯 🖬 🗴 Fáir 🌑

- Old metal-poor stars are enriched in rprocess elements with similar relative abundances to our Sun
- r process operates at early Galactic history

Pb

Os

Pt

Au

Implications from observations

HELMHOLTZ

R process related to rare high yield events not correlated with Iron enrichment

Similar results obtained by ⁶⁰Fe and ²⁴⁴Pu observations in deep sea sediments (Wallner et al, 2015; Hotokezaka et al, 2015)

R process nuclear needs

Astrophysical sites

Core-collapse supernova Woosley+ 94, Takahashi+ 94)

Lattimer & Schramm 74, 76. Eichler+ 89, Freiburhaus+ 99

	Supernova	Mergers
Optimal conditions	$\overline{\mathfrak{S}}$	\odot
Yield / Frequency		\odot
Direct signature	$\overline{\mathbf{S}}$	\odot

G. Martínez-Pinedo / r-process nucleosynthesis and its electromagnetic signatures

HELMHOLTZ

G. Martínez-Pinedo / r-process nucleosynthesis and its electromagnetic signatures

Mergers: variety of ejecta IG S I FAIR wind; t~100 ms torus unbinding; NSNS dyn. ejecta; t~1 ms t~1s **BH** formation Two main sources of ejecta: • Dynamical ejecta (M < 0.01 M_{\odot}) Accretion disk ejecta (M < 0.1 M_☉) sGRB Depend on merger system, relative mass ratio and equation of state **NSBH** S. Rosswog, et al, Class. Quantum Gravity 34, 104001 (2017).

G. Martínez-Pinedo / r-process nucleosynthesis and its electromagnetic signatures

R process in merger ejecta

Heavy elements produced in merger ejecta. Radioactive decay liberates energy

Dependence on nuclear masses

Mendoza-Temis, et al, PRC 92, 055805 (2015) solar r abundance FRDM HFB21 พระ 10⁻³ D73[.] abundances at 1 Gyr 10⁻⁴ 10⁻⁵ 10⁻⁶ 10^{-7} 120 140 160 180 200 220 240 mass number, A

- Robustness astrophysical conditions, sensitive nuclear physics
- Second peak (A ~ 120) sensitive to fission yields (Goriely, 2015)
- Third peak (A ~ 195) sensitive to masses and half-lives
- Elements lighter than A ~ 120 are not produced

Impact beta-decay half-lives

- Beta-decay half-lives determine the speed at which heavy elements are build starting from light ones
- Theoretical advances allow for fully microscopic calculations

- Microscopic calculations reproduce available data
- Predict shorter half-lives for nuclei Z > 80 having a strong impact on the position of the A ~ 195 peak [Eichler et al, ApJ 808, 30 (2015)]

G. Martínez-Pinedo / r-process nucleosynthesis and its electromagnetic signatures

HELMHOLTZ

Nucleosynthesis dependence on Y_{e} Nucleosynthesis mainly sensitive to proton-to-nucleon ratio, $Y_e = n_n/(n_n + n_p)$ $v_e + n \rightleftharpoons p + e^-$ vs $\bar{v}_e + p \rightleftharpoons n + e^+$ 10^{-2} Solar Abundances 10^{-3} $Y_e \gtrsim 0.25 \ Y_e \approx 0.15 - 0.25 \ Y_e \lesssim 0.15$ $^{+01}$ Appindance 10^{-4} 10⁻⁶ Actinides Lanthanides 10⁻⁷ 10⁻⁸ 80 160 180 200 220 240 100 120 140 60 Mass Number

Nucleosynthesis delayed BH case

An HyperMassive Neutron Star produces large neutrino fluxes that drive the nucleosynthesis to light elements

Perego, et al, MNRAS 443, 3134 (2014)

Martin, et al, ApJ 813, 2 (2015)

IG SS II F(AÌR)

HELMHOLTZ

G. Martínez-Pinedo / r-process nucleosynthesis and its electromagnetic signatures

G. Martínez-Pinedo / r-process nucleosynthesis and its electromagnetic signatures

- Accretion disk around BH ejects • relatively neutron rich matter [Fernández & Metzger, MNRAS 435, 502 (2013)]
- Produces all r-process nuclides (Lanthanide rich ejecta) [Wu et al, MNRAS 463, 2323 (2016)]

mass number, A

HELMHOLTZ

G S I FAIR

See also Just et al, MNRAS 448, 541 (2015), Siegel and Metzger PRL 119, 231102 (2017).

10⁻⁴

10⁻⁵

10⁻⁶

10⁻⁷

0

50

100

150

mass number, A

200

Supernova light curve: signature of nucleosynthesis

C Harayo Nomoto

Woosley & Weaver, Scientific American 261, 1989

Supernova light curve: signature of nucleosynthesis

Diehl & Timmes, PASP 110, 637 (1998)

Energy production from r process ejecta

At early times (days), the decay of r process products produces energy following a power law $\dot{\epsilon} \sim t^{-1.3}$ (Way & Wigner 1948, Metzger et al 2010). Many nuclei decaying at the same time heating up the ejecta

Time (days) We expect an electromagnetic transient (Li & Paczyński 1998) with properties depending:

- Energy production rate
- Efficiency energy is absorbed by the gas (thermalization efficiency)
- Opacity of the gas (depends on composition, presence of Lanthanides/Actinides)

Energy production and thermalization

HELMHOLTZ

See Barnes, Kasen, Wu, GMP, ApJ 829, 110 (2016); Kasen & Barnes, arXiv:1807.03319

19

Impact of opacity

The transition from an opaque to transparent regime depends on the interaction probability of the photons (opacity). Depends on the structure of the atoms.

Low opacity: early emission from hot material at short wavelengths (blue)

High opacity: late emission from colder material at longer wavelengths (red)

Impact Lanthanides

Large number of states of Lanthanides/Actinides leads to a high opacity

Barnes & D. Kasen, Astrophys. J. 775, 18 (2013); Tanaka & Hotokezaka, Astrophys. J. 775, 113 (2013).

G. Martínez-Pinedo / r-process nucleosynthesis and its electromagnetic signatures

Kilonova: Electromagnetic signature

Luminosity equivalent to 1000 novas (kilonova) in timescales of days. Depends on amount of ejected material, velocity and composition.

Simple Kilonova model

Light curve is expected to peak when photon diffusion time is comparable to elapsed time (Metzger et al 2010, Kasen et al 2017)

$$t_{\text{diff}} = \frac{\rho \kappa R^2}{c}, \qquad \rho = \frac{M}{4\pi R^3/3}, \qquad R = vt$$

$$t_{\text{peak}} \approx \left(\frac{3\kappa M}{4\pi c\nu}\right)^{\frac{1}{2}} \approx 2.7 \text{ days } \left(\frac{M}{0.01 M_{\odot}}\right)^{\frac{1}{2}} \left(\frac{\nu}{0.01c}\right)^{-\frac{1}{2}} \left(\frac{\kappa}{1 \text{ cm}^2 \text{ g}^{-1}}\right)^{\frac{1}{2}}$$

The Luminosity is $L(t) \approx M \dot{\varepsilon}(t), \dot{\varepsilon}(t) \approx 10^{10} \left(\frac{t}{1 \text{ day}}\right)^{-\alpha} \text{ erg s}^{-1} \text{ g}^{-1}$

$$L_{\text{peak}} \approx 5 \times 10^{40} \text{erg s}^{-1} \left(\frac{M}{0.01 M_{\odot}}\right)^{1-\frac{\alpha}{2}} \left(\frac{v}{0.01c}\right)^{\frac{\alpha}{2}} \left(\frac{\kappa}{1 \text{ cm}^2 \text{ g}^{-1}}\right)^{-\frac{\alpha}{2}}$$

Very sensitive to atomic opacity

 $\kappa \approx 1 \text{ cm}^2 \text{ g}^{-1}$, light r process material (blue emission) $\kappa \approx 10 \text{ cm}^2 \text{ g}^{-1}$, heavy (lanthanide/actinide rich) r process (red emis.)

Optical transient identified

Kilonova identified 10.9 hours after the LIGO/Virgo gravitational signal GW170817 on August 17, 2017, in the Galaxy NGC 4993 near the constellation of Hydra (Southern hemisphere). Denoted AT 2017 gfo

G. Martínez-Pinedo / r-process nucleosynthesis and its electromagnetic signatures

ESO/E. Pian/S. Smartt & ePESSTO/N. Tanvir/VIN-ROUGE, Pian et al, Nature 551, 67, 2017

Light curve and spectra evolution

https://youtu.be/kZiCKULA2cE

HELMHOLTZ

Kilonova: Electromagnetic transient powered by decay of r-process nuclei

- Time evolution determined by the radioactive decay of r-process nuclei
- Two components:
 - blue dominated by light elements (Z < 50).
 - Red due to presence of lanthanides (Z = 57-71) and/or Actinides (Z = 89-103)
- Likely source of heavy elements including Gold, Platinum and Uranium

Two components model

Kasen et al, Nature 551, 80 (2017)

- Blue component from polar ejecta subject to strong neutrino fluxes (light r process) $M = 0.025 M_{\odot}, v = 0.3c, X_{\text{lan}} = 10^{-4}$
- Red component disk ejecta after NS collapse to a black hole (includes both light and heavy r process)

 $M = 0.04 M_{\odot}, v = 0.15c, X_{\text{lan}} = 10^{-1.5}$

G. Martínez-Pinedo / r-process nucleosynthesis and its electromagnetic signatures

Nuclear fingerprints light curve

Can we identify particular nuclear signatures in the light curve?

Observations between 10 and 100 days are sensitive to composition. Light curve becomes dominated by individual decays

Dominating decay chains

TABLE I. The decay property of r-process nuclei with half-lives $t_{1/2} = 10 - 100$ days plus selected decays discussed in the main paper (from [1]). Nuclei that are blocked by long-lived ($t_{1/2} \gg 100$ days) preceding isotopes are excluded. Q is the total energy released per decay (chain). E_{α} , E_e , E_{γ} are the total kinetic energy per decay (chain) carried by the α , e^{\pm} and photons, respectively. For the spontaneous fission of ²⁵⁴Cf, the kinetic energy E_{Kinetic} carried by the fission fragments is taken from Ref. [2]. No data is available for the neutron and photon effective energies but they are expected to be much smaller.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E_{γ}	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(MeV)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.721	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.607	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.098	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.152	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.767	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.474	
	1.715	
²²⁵ Ac $\alpha\beta^{-}$ to ²⁰⁹ Bi 10.0(1) 30.196 27.469 0.632	0.012	
	0.046	
²⁴⁶ Pu β^- to ²⁴⁶ Cm 10.84(2) 2.778 - 0.504	1.123	
¹⁴⁷ Nd β^- 10.98(1) 0.895 - 0.232	0.144	
²²³ Ra $\alpha\beta^-$ to ²⁰⁷ Pb 11.43(5) 29.986 26.354 0.937	0.304	
¹⁴⁰ Ba β^- to ¹⁴⁰ Ce 12.7527(23) 4.807 - 0.809	2.490	
¹⁴³ Pr β^- 13.57(2) 0.934 - 0.215	-	
¹⁵⁶ Eu β^- 15.19(8) 2.452 - 0.430	1.235	
¹⁹¹ Os β^- 15.4(1) 0.314 - 0.125	0.074	
253 Cf β^- 17.81(8) 0.291 - 0.074	-	
253 Es $lpha$ 20.47(3) 6.739 6.587 -	-	
²³⁴ Th β^- to ²³⁴ U 24.10(3) 2.468 - 0.860	0.016	
233 Pa β^- 26.975(13) 0.570 - 0.065	0.218	
¹⁴¹ Ce β^- 32.511(13) 0.583 - 0.145	0.077	
103 Ru β^- 39.247(3) 0.765 - 0.0638	0.497	
²⁵⁵ Es $\alpha\beta^{-}$ to ²⁵¹ Cf 39.8(12) 7.529 6.968 0.175	0.021	
¹⁸¹ Hf β^- 42.39(6) 1.035 - 0.198	0.532	
203 Hg β^- 46.594(12) 0.492 - 0.095	0.238	
⁸⁹ Sr β^- 50.563(25) 1.499 - 0.587	0.0	
⁹¹ Y β^- 58.51(6) 1.544 - 0.603	0.0	
95 Zr β^{-} 64.032(6) 1.126 - 0.117	0.733	
95 Nb β^- 34.991(6) 0.926 - 0.043	0.764	
¹⁸⁸ W β^- to ¹⁸⁸ Os 69.78(5) 2.469 - 0.878	0.061	
185 W β^- 75.1(3) 2.469 - 0.127	-	
Isotope Decay channel $t_{1/2}$ Q E_{Kinetic} E_n	E_{γ}	
(d) (MeV) (MeV) (MeV)	(MeV)	
²⁵⁴ Cf Fission 60.5(2) - 185(2) -		

Wu, Barnes, GMP, Metzger, arXiv:1808.10459

Main heating sources late times

Relevant α -decays

Co	lor cod	e Hal	f-life	Deca	y Mode	2	Q _β -	QEC	Qβ+	Sn	Sp	Qa	5	S _{2n}		S _{2p}	Q2β-
	Q _{β-n}	В	E/A	(BE-LI	DM Fit)	/A E	1st ex. s	t, E2+	E3-	E4+ E	4+/E2+	β ₂	B(E2)4	2/B(E2)	20 0	r(n,y)	σ(n,F)
z	212Ac	213Ac	214Ac	215Ac	216Ac	217Ac	218Ac	219Ac	220 Ac	221 Ac 7	$\alpha = \frac{222Ac}{\alpha}$	10.0	days	225Ac	226Ac	227Ac	228Ac
	211Ra	21 2Ra	21 3Ra	214Ra	21 5Ra	216 Ra	217Ra	218 Ra	219Ra T	α^{220Ra}	^{221Ra} 11.4 (days	2235	224Ra	τ_{α}	= 3.6	6 days
87	210Fr	211Fr	21 2Fr	21 3Fr	214Fr	21 5Fr	216Fr	217Fr	218 F r	219Fr	220 Fr	221	222Fr	223Fr	224Fr	225 F r	226Fr
	209Ra	210Rn	211Rn	212Rn	21 3Rn	214Rn	215 Rn	216Rn	217Rn	218Rn	21984	220R	221 R n	222Rn	τ_{α}^{223Rn}	224Rn = 3.8	days
85	208At	209At	210At	211At	212At	213At	214At	215At	216At	217	218A1	219At	220.8	221 A1	222At	223At	224At
	207Po	208Po	209Po	210Po	211Po	212Po	21,3Po	214Po	21580	216P	217Po	218	219Po	220Po	221Po	222Po	223Po
83	206Bi	207Bi	208Bi	209Bi	21051	21/Bi	2128	213	214Bi	21 5Bi	21671	217Bi	218Bi	219Bi	220Bi	221Bi	222Bi
	205Pb	206Pb	207Pb	208	205.0	2107	211Pb	129	21 3Pb	214	215Pb	216Pb	217Pb	218Pb	219Pb	220Pb	
81	204TI	205Tİ	206Tİ	207TI	OSTI	209Tl	210TI	211Tİ	21 2TI	21 3TI	214TI	21 5TI	216TI	217TI			
	123		125		127		129		131		133		135		137		N

Plus fission of ²⁵⁴Cf

G. Martínez-Pinedo / r-process nucleosynthesis and its electromagnetic signatures

Decline observed light curve at 10 days suggest an upper limit of 0.01 M_{\odot} of U and Th Wu, Barnes, GMP, Metzger, arXiv:1808.10459

Sensitivity to solar abundances

HELMHOLTZ

Consistency with solar r abundances

- Is the light curve consistent with the production of a Solar r-process abundance pattern?
- Large mass fraction of Lanthanides, $10^{-3} 10^{-2}$, requires production of all r-process nuclei up to a minimum $A \sim 70$

Light curve favors production all R-process nuclei down to A ~ 69

Sensitive to Solar abundance set S1 (Sneden & Cowan), S2 (Goriely)

Very different abundances of A=72 nuclei. ⁷²Zn half-life 1.92 days.

Wu, Barnes, GMP, Metzger, arXiv:1808.10459

Summary

HELMHOLTZ

- Kilonova from GW170817 originates from the radioactive decay of heavy elements
- Astrophysical site of the r process is identified
- Further observations necessary to confirm variability with respect to merging system and viewing angle
- Observations in time scale 10-100 days can provide signatures of individual nuclear decays

Collaborators: J. Barnes (Columbia, USA), R. Fernandez (U Alberta, Canada), D. Kasen (UC Berkeley, USA), T. Marketin (U Zagreb, Croatia), B. Metzger (Columbia, USA), L. Robledo (UAM, Madrid), T. R. Rodriguez (UAM, Madrid), S. Giuliani (MSU, USA), M.-R. Wu (A Sinica, Taiwan)

37

Lanthanide mass fraction

Are superheavy elements produced?

- All models predict low fission barriers beyond N= 184
- The heaviest nuclei substantially produced have A ~ 280 and Z ~ 96
- Non long-lived nuclei remain

