

Coulomb dissociation of ³⁴Na and its relevance in nuclear astrophysics

Gagandeep Singh

Department of Physics, Indian Institute of Technology Roorkee, Roorkee, UK – 247667, INDIA.

Introduction

- The origin & abundances of different nuclei?
- Why unstable gaps between isotones and isotopes?
- Where does **fission** set in?
- Appearance or disappearance of magic numbers?

The Segré chart!

Introduction...

The nucleosynthesis processes and their regions in the nuclear chart!

Figure credits: Arcones et al., Prog. Part. Nucl. Phys. **94**, 1 (2017).

The <u>r-process</u>: Enigmatic. Excellent reason to study drip nuclei!

- Stellar fusion: Mainly stable nuclei via *pp*-chains, CNO cycle, etc.
- s-process: slow neutron capture.
- <u>r-process</u>: rapid neutron capture.
- p-process: proton capture.
- rp-process: rapid proton capture.
- BBFH, Rev. Mod. Phys. **29**, 547 (1957).
- Cameron, Pub. A. S. P. **69**, 201 (1957).
- Rolfs, and Rodney, *Cauldrons in the Cosmos* (University of Chicago Press), 1988.
- Wallerstein et al., Rev. Mod. Phys. 69, 995 (1997).

The r-process and neutron drip line!

Near drip line nuclei important for *r*-process pathway!!

To confirm a nucleus' role as a progenitor of seed nuclei in stellar plasma.

At eqb. Temperature, $T_9 = 0.62$, competition between α -capture and ncapture!

α-capture > n-capture ⇒ Isotopic chain formation breaks!!

> n-capture > α-capture ⇒ Nucleogenesis towards neutron drip line!!

We compare rates of ${}^{33}Na(n,\gamma){}^{34}Na$ & ${}^{33}Na(\alpha,n){}^{36}Al$ reactions!

Terasawa M, et al., ApJ 562, 470 (2001).

³³Na(n,γ) important to ³⁴Na, ³⁵Na abundance!

³³Na(n,γ)³⁴Na via CD!
³³Na(α,n)³⁶Al via Hauser-Feshbach theory (NON-SMOKER code).
Rauscher, At. Data Nucl Data Tables **79**, 47 (2001): http://nucastro.ord/nonsmoker.html.

The curious case of ³⁴Na!

Coulomb dissociation and the finite range distorted wave Born approximation (FRDWBA) theory:

Why and how??

Coulomb dissociation: an elegant method to study nuclear halos!!

The triple differential cross-section:

$$\frac{d^{3}\sigma}{dE_{b}d\Omega_{b}d\Omega_{c}} = \frac{2\pi}{\hbar v_{at}} \rho \sum_{lm} |\beta_{lm}|^{2}$$
Reduced transition matrix

The reduced transition matrix under the FRDWBA theory:

$$\hat{l}\beta_{lm}^{FRDWBA} = \iint d\boldsymbol{r}_1 d\boldsymbol{r}_1 \chi_b^{(-)*}(\boldsymbol{q}_b, \boldsymbol{r}_b) \chi_c^{(-)*}(\boldsymbol{q}_c, \boldsymbol{r}_c) V_{bc}(\boldsymbol{r}_1) \phi_a^{lm}(\boldsymbol{r}_1) \chi_a^{(+)}(\boldsymbol{q}_a, \boldsymbol{r}_i)$$

Chatterjee R, Banerjee P, and Shyam R, Nucl. Phys. A 675, 477 (2000).

For a single multipole dominated reaction,

 $= \frac{E_{\gamma}}{n_{\pi\lambda}} \frac{d\sigma}{dE_{bc}}$ Bertulani C A, and Baur G, Phys. Rep. 163, 299 (1988).

Achieved by invoking the principle of detailed balance relating the photodisintegration crosssection with its "radiative capture" counterpart via:

$$\sigma_{n,\gamma} = \frac{2\hat{j}_a^2}{\hat{j}_b^2\hat{j}_c^2}\frac{k_\gamma^2}{k_{bc}^2}\sigma_{\gamma,n}^{\pi\lambda}$$

$$\langle \sigma(v_{bc})v_{bc}\rangle = \sqrt{\frac{8}{\pi\mu_{bc}(k_BT)^3}}\int_0^\infty dE_{bc}\sigma_{(n,\gamma)}(E_{bc})E_{bc}\exp\left(-\frac{E_{bc}}{k_BT}\right)$$

Then, reaction rate,

 $R = N_A \langle \sigma(v_{bc}) v_{bc} \rangle$

Rolfs, and Rodney, *Cauldrons in the Cosmos* (University of Chicago Press), 1988.

Singh G., Shubhchintak, and Chatterjee R, Phys. Rev. C 94, 024606 (2016).

Can be compared with EXPERIMENTAL DATA!!!

60

Singh G., Shubhchintak, and Chatterjee R, Phys. Rev. C 94, 024606 (2016).

Parallel momentum distribution $\beta_2 = 0.0$ $\beta_2 = 0.1$ $\beta_2 = 0.2$

Elegant application of uncertainty principle!

β ₂	FWHM (MeV/c)	1c 34 N Io
0.0	36.82	
0.1	35.88	nucleus?
0.2	34.76	
0.3	33.83	

FWHM for normal nuclei $\sim 120 \text{ MeV/c}$ while FWHM for ¹¹Be and ¹⁹C \sim 44 MeV/c

Chatterjee R, Banerjee P, and Shyam R, Nucl. Phys. A 675, 477 (2000).

Banerjee P, Thompson I J, and Tostevin J A, Phys. Rev. C 58, 1042 (1998).

Singh G., Shubhchintak, and Chatterjee R, Phys. Rev. C 94, 024606 (2016).

Nakamura T and Kondo Y, Clusters in Nuclei, Springer Vol. 2 ed. Beck C, (2012) 67.

IIT ROORKEE

Singh G., Shubhchintak, and Chatterjee R, Phys. Rev. C 95, 065806 (2017).

Singh G., Shubhchintak, and Chatterjee R, Phys. Rev. C 95, 065806 (2017).

Conclusions

- Various reaction observables were calculated for elastic breakup of ³⁴Na on ²⁰⁸Pb at 100 MeV/u using FRDWBA theory.
- The results from the relative energy spectra showed that peak height varied with the introduction of deformation.
- Going by the trends in this mass region (N = 20-30) and our results, one speculates that the dominant contribution to ground state of <u>halo</u> nucleus <u> ^{34}Na </u> is by $2p_{3/2}$ state.
- Scaling can be used in conjunction with our results to limit the uncertainties in the structural parameters of nuclei.
- Capture cross-sections and reaction rates for formation of ³⁴Na were calculated and it was confirmed that in stellar environment at the equilibrium temperature, <u>neutron-capture dominated the alpha-capture process</u> favoring ³⁴Na.
- This should push the isotopic abundance of Na isotopes towards the neutron drip line.
 - Further, we strongly encourage experiments to put our predictions on firmer footing.

Future outlook...

- 1. Calculations with a fully deformed wave function are desirable.
- FRDWBA has been applied to medium mass neutron rich nuclei. Its extension to 3-charged particles in the final channel case is desired to explore the proton rich side.
- 3. Scaling can be used in conjunction with our results to limit the uncertainties in the structural parameters of nuclei.
- 4. There is a need to describe a relativistic reaction theory for future experiments at higher beam energies. An eikonal-DWBA can be a good candidate for the above. It should effectively address the issue of 3-charge particles too.
- 5. Radiative capture reactions also have applications to nuclear reactors.

³⁷Mg results

Neelam, Shubhchintak and R. Chatterjee, Phys. Rev. C 92, 044615 (2015).

Singh G., Shubhchintak, and Chatterjee R, Phys. Rev. C 94, 024606 (2016).

Introduction...

- ✓ H: most abundant!
- ✓ H + He ~ 95 99 %
- ✓ Cosmological Li problem (in BBN)!
- ✓ C to Ca successive stages in stellar evolution!
- ✓ NSE @ Fe peak! Explosive nucleosynthesis!
- Nucleosynthesis mainly by n-capture!

Primordial abundances: age of the galaxy and origin of the Universe!

- BBFH, Rev. Mod. Phys. **29**, 547 (1957).
- Cameron, Pub. A. S. P. **69**, 201 (1957).
- Rolfs, and Rodney, *Cauldrons in the Cosmos* (University of Chicago Press), 1988.
- Wallerstein *et al.*, Rev. Mod. Phys. **69**, 995 (1997).
- Hou et al., ApJ, 834, 165 (2017).

The universal abundance curve!

Figure credits: Cameron A. G. W., *Essays in Nuclear Astrophysics*, ed. C. A. Barnes, D. D. Clayton, and D. N. Schramm (Cambridge University Press, Cambridge), 1982.

I I T ROORKEE

Significant variation with deformation!!

I I T ROORKEE

In refereed journals:

- 1. Singh G., Shubhchintak, and Chatterjee R, "*Structural effects of* ³⁴*Na in the* ³³*Na*(n,γ)³⁴*Na radiative capture reaction*", Phys. Rev. C **95**, 065806 (2017); *arXiv:* <u>1706.09687v1 [nucl-th]</u>.
- 2. Singh G., Shubhchintak, and Chatterjee R, "*Elastic Coulomb breakup of* ³⁴Na", Phys. Rev. C **94**, 024606 (2016); *arXiv:* <u>1607.08055v1 [nucl-th]</u>.

In conference proceedings:

- 1. Singh G., Shubhchintak, and Chatterjee R, "*Structural effects in ³⁴Na*", Proc. DAE-BRNS Symp. On Nucl. Phys. **61**, 356 (2016).
- 2. Singh G., Shubhchintak, and Chatterjee R, "*Exotic nucleus in the medium mass region: the curious case of ³⁴Na*", Proc. DAE-BRNS Symp. On Nucl. Phys. **60**, 424 (2015).
- 3. Singh G., and Shubhchintak, "*E1-E2 contribution in* ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction", Proc. DAE Symp. On Nucl. Phys. **59**, 622 (2014).
- 4. Singh G., Shubhchintak, and Chatterjee R, "*Progress towards a relativistic breakup reaction theory*", Proc. DAE Symp. On Nucl. Phys. **58**, 558 (2013).

Theory	Merits	Demerits
DWBA	Derived from exact <i>T</i> -matrix. Applicable to breakup/ transfer reactions. Very well studied.	Inelastic excitations are difficult to include in the post-form <i>T</i> - matrix.
TDSE	Accurate numerical solutions.	Time consuming. Non-trivial.
Eikonal + extensions (CCE, DEA)	Good results for nuclear dominated reactions. DEA also explains Coulomb part.	Valid at high energies. Simple eikonal blows for Coulomb dominated breakup.
CDCC	Excellent method at low energies, can be done at higher energies as well.	Very long computation time at higher energies; difficult to assess its convergence. Discretization is a problem.

Baye D., *Lecture notes for the MTNR school at Roorkee*, September 2013. Chatterjee R., Pramana, **75**, 127 (2010).

Landscapes...

Figure courtesy: R. Chatterjee, IIT Roorkee.

Figure courtesy: IIT Ropar.

WHY ³⁴Na??!

• Calculating the radiative capture cross-section for the formation of ³⁴Na can help predict its role as a seed nucleus/progenitor of seed nuclei in stellar plasma.

• Achieved by invoking the principle of detailed balance relating the photodisintegration cross-section with its radiative capture counterpart via:

Terasawa M, et al., ApJ 562, 470 (2001).

Then, reaction rate,

 $R = N_A \langle \sigma(v_{bc}) v_{bc} \rangle$

³³Na(n, γ) important to ³⁴Na, ³⁵Na abundance!

Singh G., Shubhchintak, and Chatterjee R, Phys. Rev. C 94, 024606 (2016).