

Status of Dibaryons: Hexaquarks versus Molecules

The Strong Interaction: From Quarks and Gluons to Nuclei and Stars Erice, Sept. 16 – 24, 2018

Heinz Clement

Types of conventional particles/resonances

color

anticolor

H. Clement

Dibaryons --- Molecules or hexaquarks?

Two-Baryon Scenario

What do we know:

- ${}^{3}S_{1}$ deuteron groundstate: I ($\mathbf{J}^{\mathbf{P}}$) = 0 (1⁺) the only boundstate!
- ${}^{1}S_{0}$ virtual state (NN FSI): I ($\mathbf{J}^{\mathbf{P}}$) = 1 ($\mathbf{0}^{+}$) in addition AN FSI

What would we like to know:

- Are there six-quark bags: hexaquarks (genuine dibaryons)?
- Are there in general resonant states (molecular, dynamic) at all?

Experimental findings:

- ${}^{1}D_{2}$ resonance structure at the ΔN threshold:
- ${}^{3}D_{3}$ resonance much below the $\Delta\Delta$ threshold:

I (J^P) = 1 (2⁺) I (J^P) = 0 (3⁺)

Are there more states?

H. Clement

Early Predictions of Dibaryons

1964 Dyson & Xoung: 6 non-strange states
1975 Jaffe: H-dibaryon (uuddss: ΛΛ)
Thereafter:

 multitude of predictions of a vast number of dibaryon states (Nijmegen group,)

Dibaryon Rush Era:
 Many experimental claims ...
 but no single one established finally

Possibly the only surviver: ¹D₂ Resonance

Best seen in pp $\leftrightarrow d\pi^+$,

• but also in pp \rightarrow pn π^+ as well as pp and π^+ d scattering (phaseshift analyses)

Argand plot

R.A. Arndt et al., PRD 35 (1987) 128 PRC 48 (1993) 1926 50 (1994) 1796 56 (1997) 635 N. Hoshizaki, PRC 45 (1992) R1424 Prog. Theor. Phys. 89 (1993) 245 251 563 569

I (J^P) = 1 (2⁺) M \approx 2148 MeV = m_{Δ} + m_N - 22 MeV $\Gamma \approx$ 126 MeV $\approx \Gamma_{\Delta}$

Alternative description: cusp, virtual state, reflection D. Bugg et al. However, not consistent!!! Kukulin and Platonova PRD 94 (2016) 054039

Dibaryons --- Molecules or hexaquarks?

Conclusion from the Failures in the Dibaryon Rush Era:

Do Exclusive and kinematically complete measurements

Our approach:

- Two-pion production with best suited equipment
 - 4π detector: WASA
 - pellet target: p and d
 - storage ring: CELSIUS \rightarrow COSY

The learning phase:

pp induced two-pion production

Following a trace:

• the ABC effect in double-pionic fusion

■ The surprise:

a narrow resonance in pn induced two-pion production

Isoscalar : ... this is what we expected!

Isoscalar : ... and this is what we found!

Isoscalar : Results from WASA at COSY

H. Clement

13

"Experimentum Crucis" for d*

If d* a true s-channel resonance

A_y Angular Distribution at Resonance $\sqrt{s} = 2.377 \text{ GeV}$ $\sqrt{s} = 2.377 \text{ GeV}$ New SAID solution

SAID Partial-Wave Analysis

³D₃ – ³G₃ Coupled Partial Waves

Phys. Rev. Letters 112 (2014) 202301

$dd \rightarrow {}^{4}He \pi^{0}\pi^{0}$

PRC 86 (2012) 032201(R)

Energy dependence of total cross section

- shows resonance structure
- exactly at the same excess energy as in pn $\rightarrow d\pi^0 \pi^0$
- is broadened due to Fermi motion and collision damping

d* obviously survives even in nuclear surrounding

Branching Ratios for the Decay of d*(2380)

hadronic decays

EPJA 51 (2015) 87

decay channel	branching	derived from		
d $\pi^0\pi^0$	14 ± 1 %	measurement		
d $\pi^+\pi^-$	23 ± 2 %	measurement		consistent with
$pp\pi^0\pi^-$	6 ± 1 %	measurement		isospin coupling
$nn\pi^+\pi^0$	6 ± 1 %	isospin mirrored		for a $\Delta\Delta$ inter-
$np\pi^0\pi^0$	12 ± 2 %	measurement		mediate system
npπ ⁺ π ⁻	30 ± 4 %	measurement (d da	ata + HADES)
np	12 ± 3 %	measurement		
(NNπ) _{I=0}	< 9 %	measurement		

Isoscalar Single-Pion Production

 $|\mathbf{BR} < 9\%|$

PLB 774 (2017) 599

Comparison to predictions from Quark and Hadron Models

Width of d*(2380)

Branching via Intermediate State

■ $d^* \rightarrow \Delta$ IHEP., PRC	$\Delta \rightarrow NN\pi\pi$ C 94 (2016) 014003	$ d^* \to {}^1\mathbf{D}_2\pi \to NN\pi\pi$ $ NN \leftarrow \to NN\pi$	Gal. PLB 769 (2017) 436
channel	rel. branching	rel. branching	
d $\pi^0\pi^0$	1	1	
d $\pi^+\pi^-$	2	2	Identical
$np\pi^0\pi^0$	1	1	
$np\pi^+\pi^-$	5/2	5/2	
$pp\pi^0\pi^-$	1/2	1/2	
np	pprox 0.9 1	0	
$(NN\pi)_{I=0}$	≈ 0 _ \	≈1.3	

Molecule vs Hexaquark

Size of d*(2380)

Estimate from uncertainty relation:

 $\begin{array}{l} R \approx \hbar c \; / \; \sqrt{2\mu B} \\ B_{\Delta \Delta} \approx 80 \; \mathrm{MeV} \; \implies \; R \approx 0.5 \; \mathrm{fm} \end{array}$

- QCD model IHEP 0.8 fm
 QCD model Nangjing (LAMPF) 0.8 fm
- Faddeev hadr. G&G 1.5 2 fm molecule
- A. Gal: compact hexaquark surrounded by $D_{12}\pi$ cloud PLB 769 (2017) 436

hexaquark

Summary on d*

- d^{*}(2380) established as a **genuine** s-channel resonance
- It is the first unambiguously detected **non-trivial** dibaryon state.
- Narrow width and decay branchings favor a compact hexaquark state.
- LQCD extrapolation by EFT down to pion mass also sees d*(2380) arxiv:1708.08071
- Astrophysical consequences ...

d* (2380) in neutron stars

I. Vidaña, M. Bashkanov, D.P. Watts, A. Pastore, Phys.Lett. B781 (2018) 112

Rèsumè

Zhang, Chen, Shen et al.

Huang, Ping, Wang et al.

Non-Strange Two-Baryon Spectrum Gal & Garcilazo ■ 3 established states: ³S₁ deuteron groundstate Dyson's ${}^{1}S_{0}$ virtual state prediction E ¹D₂ resonance (ΔN) ■ 1 new - presumably exotic - state: $\Delta \Delta$ $d^*(2380)$ resonance ($\Delta\Delta$) 0^{+} 3+ ■ Are there more states? ΔN ■ NN-decoupled states with I = 2, 3? • Search in pp \rightarrow pp π^+ $\pi^$ and in pp $\rightarrow pp\pi^+\pi^+ \pi^-\pi^-$ NN

2 3

I = 0 1

Where can D_{21} be seen?

$I=2 \implies$ only associated production

Total cross section

$T_p = 1.2 \text{ GeV}$

H. Clement

Dibaryons --- Molecules or hexaquarks?

Angular distributions

 $T_p=1.2 \text{ GeV}$

modified Valencia model modified Valencia model + D₂₁

Conclusions on D₂₁

• isospin relations for total cross sections demand the opening of a new isotensor contribution in $pp \rightarrow pp \pi^+\pi^-$.

• differential $M_{p\pi-}$ and $\theta_{\pi+}$ distributions show a clear deviation from the modified Valencia model calculations.

• total and differential cross sections agree well with assumption that in the $pp \rightarrow pp \pi^+\pi^-$ channel there is an additional production mechanism – the associated production of the isotensor ΔN state $D_{21.}$

• m = 2140(10) MeV, Γ = 110(10) MeV \Rightarrow same as D_{12} !

(Molecular) States near ΔN Threshold

	I = 1	I = 2
S-wave:	2^+ (1D_2) D_{12}	1 ⁺ (³ P ₁) D_{21}
P-wave:	0 ⁻ (³ P ₀) COSY-ANKE 2 ⁻ (³ P ₂) -"-, SAID 3 ⁻ (³ F ₃) SAID (?)	

Where can D_{30} be seen?

$I=3 \Rightarrow$ only associated production

$pp \rightarrow D_{30} \pi^- \pi^- \rightarrow pp \pi^+ \pi^+ \pi^- \pi^-$

$T_{p} = 2.541 \text{ GeV}$

Phys.Lett. B762 (2016) 445

D₃₀ dibaryon upper limit

Phys.Lett. B762 (2016) 445

only upper limit so far

both background model and data to be improved

check associated production with d*(2380)

Outlook and Open Problems

Size of $d^*(2380)$

• \Rightarrow elm excitation of d^* $\gamma d \rightarrow d^* \rightarrow pn$

• $ed \rightarrow ed^* \rightarrow ed\pi^0\pi^0$

Observation at other installations

- HADES @ GSI: under way, but no 4π
- IHEP ?? $e^+e^- \rightarrow \overline{d} d^* \text{ at } 4.3 4.6 \text{ GeV } ??$
- KEK, JPARC, LHCb, others ???

Are there more (exotic) dibaryons?

- D₃₀ mirror state of d^{*}
- strange, charmed dibaryons??

Further hints: $\gamma d \rightarrow \vec{p}n$

R. Gilman and F. Gross AIP Conf. Proc. 603 (2001) 55 K. Wijesooriya et al., Phys. Rev. Lett. 86 (2001) 2975

T. Kamae, T. Fujita Phys. Rev. Lett. 38 (1977) 471

H. Ikeda et al., Phys. Rev. Lett. 42 (1979) 1321

$\gamma d \rightarrow d\pi^0 \pi^0$

FOREST@ELPH, Ishikawa et al., PLB 772 (2017) 398

Crystal Ball @ MAMI Master Thesis M. Guenther, Basel 2015 PoS (Hadron2017) 051

H. Clement

Outlook and Open Problems

Size of $d^*(2380)$

• \Rightarrow elm excitation of d^* $\gamma d \rightarrow d^* \rightarrow pn$

• $ed \rightarrow ed^* \rightarrow ed\pi^0\pi^0$

Observation at other installations

- HADES @ GSI: under way, but no 4π
- IHEP ?? $e^+e^- \rightarrow \overline{d} d^* \text{ at } 4.3 4.6 \text{ GeV } ??$
- KEK, JPARC, LHCb, others ???

Are there more (exotic) dibaryons?

- D₃₀ mirror state of d^{*}
- strange, charmed dibaryons??

H. Clement

Nuclear matter at high density

Neutron stars EoS

I. Vidaña, M. Bashkanov, D.P. Watts, A. Pastore Phys.Lett. B781 (2018) 112

The d*(2380) in neutron stars a new degree of freedom?

The Romer resonance = Normolecul

I. Vidaña, M. Bashkanov, D.P. Watts, A. Pastore, PLB 781 (2018) 112

49

From Nucleons to Quarks

... inevitable dibaryon

 $I(J^P) = 0(3^+)$ state: totally symmetric in space, spin & color antisymmetric in isospin accessed via $\Delta\Delta$ as doorway?

2005 - 2006

CELSIUS/WASA

WASA 4π Detector

$pn \rightarrow dibaryon \rightarrow d\pi^0 \pi^0$

