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* Beam supplied to A2 hall from MAMI Ll Eﬂ_ﬁjﬁ
(MAinz Microtron) —_— F

* MAMI is a continuous wave accelerator. y T e

* The amount of accumulated — HDSM \ - ©ﬂ" @

experimental data is distributed E ;

?

equally. -

* On entering the A2 hall, the electron RTM2 ==
beam undergoes Bremstrahlung Hﬁﬁ e x1
B
radiation to produce photons. a i
: : [
* A2 hall is comprised of:

-Goniometer

-Glasgow Tagger
-Crystal Ball (CB)
-PID & MWPC
-Pizza

-TAPS
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Focal plane ladder detector Beam dump

Crystal Ball

Tagger Collimator
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Glasgow Tagger

A

* Electrons bent into focal plane

!
Primary Beam

detector (FPD) of 352 channels P il
using 2T magnet 45%__1--, e e

* Photons passed through variable # _ A e i
size collimator Focal Plane Detector

* Tagging efficiency- ratio between
electrons in FPD and photons

I 1 1 MAMI-C Beam ’ rf
passing collimation Fy= 1508 MeV | l | P

* From the energy Of the eleCtronS |n R;ulmn;;-'\'-."'_"..-_ —

the FPD, photon energy can be
deduced

* A 1/e relationship between the
photon and electron energies arises
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Tagging Efficiency
* Tagging efficiency- ratio between photons passing collimation and total electrons in FPD

Tagging_Efficiency_Amorphous_11
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Tagging_Efficiency_Parallel_11
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Goniometer

1970.03.06 07:24:18 a2radiator2

Contains the radiator(s) the electron beam
impinges upon.
* (Can be set to an amorphous, diamond or
blank radiator.
* Diamond radiator used in linear polarisation
-Diamond is aligned along lattice
planes providing preferential planes
for momentum transfer
* High Debye-Waller Factor- low thermal
fluctuation
-This will be in one of two orientations of
+45°
- A coherent polarised photon beam is

produced
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Coherent Bremsstrahlung

* Analagous to Bragg Scattering

* Scattering from lattice produces coherent peaks;

polarisation in primary peak can be high
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Coherent Bremsstrahlung

* Analagous to Bragg Scattering

* Scattering from lattice produces coherent peaks;

polarisation in primary peak can be high 1970.03.06 07:24:18 a2radiator2

* Orientation of the plane (para/perp) is about phi

* The polarisation of the peaks is adjusted by changing

the angle of the crystal between the lattice and the beamline
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Calculating the Degree of Linear Polarisation
* An incoherent contribution is still present from during the coherent process.

* (Collective excitations arising from the periodic structure of the crystal- phonons- cause
this, giving the crystal cross-section as:

O—crystal =O—coh.+o-incoh.

* Toremove the incoherent contribution we use an enhancement, dividing by an
incoherent spectrum produced using a separate radiator given as:

O.crystal

R =

O-in
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o

crystal
. . . . o
Calculating the Degree of Linear Polarisation R = ,
ain
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crystal

Calculating the Degree of Linear Polarisation R =

Sets/Run_TaggEff_Polarisation_Enhancement_Perpendicular_1_19674.dat

|LIIIIIIIII|IIII|I||||||||

1 ]

N N NN [N NN R N S N S I S S
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
Energy (MeV)



éta| University I College of Science

& Engineering Coherent
Bremsstrahlung

+7 of Glasgow

« Sharp drops of photon energies associated with discontinuity points, x, are seen at the
coherent edge.

Sets/Run_TaggEff_Polarisation_Enhancement_Perpendicular_1_19674.dat
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crystal

« Sharp drops of photon energies associated with discontinuity points, x, are seen at the
coherent edge.

* The peaks that can be seen in the enhancement spectra arise from the reciprocal lattice
vectors giving allowed momentum transfers.

* Coherent component of o°¥s® s given as:

O—cohzo-perp + gPara

Sets/Run_TaggEff_Polarisation_Enhancement_Perpendicular_1_19674.dat
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Linear Polarisation

* The parallel and perpendicular enhancement files are separated by polarisation- para/
perp
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Linear Polarisation
* The parallel and perpendicular enhancement files are separated by polarisation- para/
perp

* Afitting function is applied to the enhancement information
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Linear Polarisation

* The parallel and perpendicular enhancement files are separated by polarisation- para/
perp

* Afitting function is applied to the enhancement information

* |tis a secondary function which then calculates the degree of polarisation, used to
generate the polarisation tables detailing the degree of polarisation for given coherent
edge positions, beam energies and photon energies.
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Enhancement fitting function

e (o' —a)? G, JT”XIf__-r{I.q'.Hf:IX}_ {.r_f;.ﬁ'f]
g {5 14 Bl tereatitean]) o

JTu:nlo{I:l

e, G o) =

(g —g)2
az4

e e Lay
Function for degree of polarisation

— [ {..r T X byt G 0) X Lop(. G, 9’}} A4

P (r,G. 0. 0) =

(8 —g)2

[ {Lm(r. G.0) x } a9’

e f/ - Angle between the beam and crystal planes defined by the 022 direction
e o - Gaussian smearing of # to accounting for beam divergence, multiple scattering etc

e f.- Relative angle of collimation as defined in Timm|1| eqn 24 in units of characteristic

angle

0.~ Smearing factor for collimation around #, via cummulative dist functions Cy(x, g, )

I8, 1Y, ... 1Y - Amplitudes of the discrete coherent peaks

K.Livingston, Polarisation from Coherent Bremsstrahlung Enhancement, 2011.
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E - Electron beam energy (MeV): This is normally known accurately from the experimental
conditions

Es5 - Energy of the discontinuity for the 022 vector (MeV): This can be determined approximately
by examining the enhancements spectrum, or by litting the edge with a polynomial.

Claia - Diameter of the collimator (mm): This is known from the experimental conditions, or
can be measured.

Clyist - Distance from the radiator to the collimator (m): This is known from the experimental
condiftions, or can be measured.

ng - number of vectors to be used from the sequence 022,044,066,088...

...where the above parameters are used to make first guesses at the values of the fit parameters.

K.Livingston, Polarisation from Coherent Bremsstrahlung Enhancement, 2011.
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Edge in range 1330-1360 MeV, PARA

Input Parameters
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Polarisation Enhancement and Degree of Polarisation

Sets/Run_TaggEff_Polarisation_Enhancement_Perpendicular_1_19674.dat Polarization
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Results

Linear Polarisation From Production Data

TAZ2LinearPolEpics Polarization
1= - 1
= & 0.95—
09— S 09—
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Crystal Ball

Target, PID & -
MWPC ——

TAPS
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NS Qf Glasgow & Engineering Crystal Ball, PID &

Crystal Balli

* 672 Thalium doped Sodium lodide
(Nal) crystals

* 96% 4n solid angle coverage

PID and MWPC
* MWPC- Multiwire proportional chambers
- charged particle tracking detector
- Two wire chambers
* PID- Particle Identification Detector
-24 plastic scintillators
-ldentifies charged particles via energy

losses and variation of the azimuthal angle
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detector

Pizza

Holds carbon polarimeter in center

24 scintillators/ pizza slices

Enables high resolution dE/E for TAPS

High efficiency for proton and pions
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detector

TAPS
 Two Arm Photon Spectrometer
» Covers forward angles for 0° < © < 20°
 Plastic Scintillator Veto Wall

366 hexagonal BaF, crystals on vito

eto Wall

e 72 Pwo4 Crystals BaF

. 0.037/Ey0°% (GeV) ~
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If we can already measure the degree
of linear polarisation,

why are you looking at alternative methods?
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Results

Linear Polarisation- Systematics

Polarization
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Linear Polarisation
Results

Linear Polarisation- Systematics -Systematic shift due to the
choice of baseline when at
Polarization 450 MeV.
_z 1
s el -By looking at the
S 0.85— peak polarisation between
0 08— the blue and green points,
oI where green was the
0.65— experimentally used baseline,
0.6 — we can see a change in
el degree of polarisation of
0.45 — about 3 MeV.
04—
0o -This gives a
0.25 — percentage change in
0.2 — polarisation between the
035; N green and
003— 4 | | | | | blue of 68/65 = 1.046 (1.05),

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 Repres_entln_gaS%
Energy (MeV) uncertainty in the linear

polarisation due to the choice
of baseline.
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Experiment
e Use a calibration reaction-

* Coherent pion production:

v+ 12C — 12C + 10 w

Well defined beam asymmetry of 1

* Photon asymmetry for coherent pion production on a spin zero nucleus
IS 1
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Experiment
* Flux in each polarised plane:

Nj(¢) = a(@)Ny (1 + By (X cos(2¢ + ¢o)

N1 (¢) = a(¢)NL (1 — PL(Zcos(2¢ + ¢p)

Relationship between asymmetries and known variables used to find
degree of polarisation

* Detector acceptance affects cancelled by taking asymmetry

* Photon asymmetry measured as . o Disrbution .
é 18000E i
16000; J—\_\I .
AT . AT . 14000;— LL F =
Nj(¢) — Ni(¢) i g ﬂjﬁﬁ
Ni(¢) + N1(9) .. H
ZOO‘ZZ;T “1‘50‘ B L1‘00‘ i ‘—5‘0‘ - ‘(‘>‘ - ‘5‘0‘ - '1(‘)0‘ - ‘15‘0‘ 200
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Experiment

* Experiments performed in January, May and June ‘17 on He and LH2 targets.
. Smm 2C Polarlmeter held mcentre of pizza detector.

. v . 3 L il
3 T, ]
. Fa
r v,
'
v P
P




éta| University ‘ College of Science

+7 of Glasgow

& Engineering

 Experiment — Primary Concerns

» Background from events in the CB (vertex placement) and 2

background channels:
-Incoherent reactions off the carbon
- Pi0 photoproduction off the proton

e Statistics

* Incoherent and coherent separation
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‘Pizza Carbonara’
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Experiment

* Due to the placement of the carbon target, background will be present
from the primary target

* Veto is in place to remove charged particle noise, reduce signal and
erroneus photons

* Ejects the entire detector set prior to TAPS
* Nicknamed ‘Detector ejection Veto’ - De Vito

 \eto reduces number of events from = 4x10° — 4x10°
* In final pion peak of interest, events are cut to = 40,000
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Analysis

Expe rl m e nt o Invariant Mass of Two Photons Carbon and Helium - No Shift
Vertex o [l HH e
* Vertex position needs to be moved e H
from the CB to the carbon target g
* Will get pions from vertex in either A T e SR
ta rget Invariant Mass of Two Photons (With Vertex Shift)
(%;20000}
* We should see pions produced from -
15000 —
both vertex positions -
10000:—
e We see = 5% of pions after the vertex Nt
shift are from the carbon, after shifting -
0

e Rt e b e ] e e e e e e
80 100 120 140 160 180 200

the vertex- about 5000 counts at the peak VeV
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Invariant Mass of Two Photons - Carbon and Helium, No Shift

X

-

o
w

100

Carbon and Helium - No Shift
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Analysis

Invariant Mass of Two Photons - Carbon and LH2 No Shift Invariant Mass of Two Photons - Carbon and LH2 - Shifted

¢ 35000 — £ E
s = 28000 — LH2 No Carbon
S - —— LH2 No Carbon 5] =
S 30000 — - —— Carbon No LH2
o - 7000 —
- —— Carbon No LH2 -
25000 6000 —
20000 5000 —
- 4000 —
15000 — -
- 3000 —
10000 -
= 2000 —
5000 — -
= 1000 —
05 ST g 200 S0 Ol L
60 80 100 120 140 160 180

MeV MeV



University ‘ College of Science

(y( GlangW & Engineering

Analysis

Invariant Mass of Two Photons - LH2 and Carbon, No Shift

12000

LH2 and Carbon - No Shift

Counts
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Experiment

* Reconstruction of 2 photon invarient mass in TAPS alone using
simulations (Geant 4)

1. Where the vertex is assumed to be in the target. The pi0 from the
4He target are clear, with a low background from the 12C events.
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Simulation

Experiment

* Reconstruction of 2 photon invarient mass in TAPS alone using
simulations (Geant 4)

1. Where the vertex is assumed to be in the target. The pi0 from the
4He target are clear, with a low background from the 12C events.

2.\Where the vertex is assumed to be in the 12C target. This shows the
pi0 from the 12C target are clear, with a low background from the 4He

events.
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Simulation

— CarbonCoh
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1.

o —— HeliumCoh
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Simulation

Experiment
 MC carbon peak has been fitted to vertex shifted and vetoed carbon pion peak

Invariant Mass of Two Photons - Carbon Data vs Simulation

Carbon Data

5000

Counts

Carbon Monte Carlo

4000

3000

2000

1000

CFIIIIIII‘

80 100 120 140 160 180
MeV
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sPlots
* The sPlot technique is used to separate signal from background events.

* This provides event-by-event weights known as ‘sWeights’ which can be used
to disentangle different event species such as actual and random tagged
photons.

* For this analysis sequential fits were performed to separate tagger random
events from prompt signal events before being used again to separate nuclear
background events.

* The initial separation was done using the sWeights obtained from a
fit to the Tagger-CB coincidence time spectra.
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sPlots

Fit components for timeTagg

- SIMm = -3.52839 +/- 0.0092 .
8000 _giMw = 1.2683 +/- 0.0090

" YId_BG = 187027 +/- 472
-YId_Signal = 40558 +/- 277
600030 = 0.0038 +/- 0.0042
“a1= 0.0107 +/- 0.0039

7000

No. of Events

5000

4000

3000

2000 jea

1000

OLJllJlLIJlLJllIJlL'JLLJJl\Jl[\J-"I‘.\|\III'+'-lJlLJll\J
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Time (ns)




éta| University ‘ College of Science

7 of Glasgow | & Engineering

sPlots

* Events are categorised into two different variable types: discriminating
variables, and control variables.
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sPlots

* Events are categorised into two different variable types: discriminating
variables, and control variables.

* Discriminating variables are variables for which a distribution is known for all
sources
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sPlots

* Events are categorised into two different variable types: discriminating
variables, and control variables.

* Discriminating variables are variables for which a distribution is known for all
sources

* Control variables are ones for which some sources are unknown. Using the
sPlots technique it is possible to recreate the distributions of the control
variables without any prior knowledge of their distributions using an extended
maximum likelihood fit
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sPlots

* Events are categorised into two different variable types: discriminating
variables, and control variables.

* Discriminating variables are variables for which a distribution is known for all
sources

* Control variables are ones for which some sources are unknown. Using the
sPlots technique it is possible to recreate the distributions of the control
variables without any prior knowledge of their distributions using an extended
maximum likelihood fit

* |tis important to note that the control and discriminatory variables should be
uncorrelated when performing the extended maximum likelihood fit using a
log-likelihood
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sPlots

Ns

N Ny
=Y m{ ) Nifi(y, ;l} YN
e=1 i=1

i=1

N = total number of events

* Ns = number of different types of events in the data (species)

* Ni = number of events in the ith species

* Y = the set of discriminating variables

* fil(ye) = PDF value of the ith species for variable y and event e

* By maximizing the equation it is possible to determine the value
of the yields of the different species of events in the data while using a full list
of discriminating PDFs

* The only free parameters in the fit are the species yields N
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sPlots

inv_M SWeighted BG1
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sPlots

gamma_phi SWeighted BG1
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Incoherent vs Coherent Channels

* Using a carbon target, the energy discrepancy between coherent and
incoherent events is only 4.44MeV (1% excited state of carbon)

* Coherent - greater forward-bias than Incoherent

* Using only TAPS, limited angular range but improved resolution (~ +/-
75°, 0.7°) compared to CB (, -~93% of 411, covering the full 21T
azimuthal range and polar angles 20 < 6 < 160)

e Similar energy resolution- CB: 0.02GeV TAPS: 0.018GeV



i University | College of Science Incoherent vs

(y(GlangW & Engineering Coherent

Channels

Delta_ TOTMissEnergy:cosTheta

H 600 Entries 889054
Meanx  —0.5043 P

500 Mean y 120.6
RMS x 0.743 D

RMS y 138.1
400 1300

300 250

200
200

150

100
100

50

— -0.8 0.6 -0.4 -0.2 0 0.2 0.4




Incoherent vs

éta| University I College of Science

& Engineering Coherent
Channels

+7 of Glasgow

Delta_ TOTMissEnergy:cosTheta

w 200p=— =
ﬂ -
- - " =
100 - - -
01—
-100[—
—200— Entries 9440
- Mean x 0.9186
— Mean y ~71.59
300 — RMS x 0.1076
- RMS y 122.9
_40() B ] | ] | | | | ] | ] | | | | ] | ] | | | | | | ] | |
a 0.8 0.6 0.4 0.2 0 0.2 0.4

coso

Coherent



iR

&

100

-100

—200

-300

—-400

University

oGl

asgow

Incoherent vs

College of Science
I J Coherent

& Engineering
Channels

Delta_ TOTMissEnergy:cosTheta

a

L —{30
u o5
E Entries 11448 —20
B Mean x 0.9157
— Mean y -69.03
B RMS x 0.1302
- RMS y 124.4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
coso

Incoherent



Incoherent vs
i’_}fﬁ University I College of Science Coherent

(y( Glasgow & Engineering Channels — Pion

Missing Energy

Pion
Missing Energy AE, = E™(E.,)- E™(mT)
,"I 2m2
Er = ‘lr"l (1= X2)(1 = cosy)
s +m2 — M?
oy — LM /
B 2.5
ve v _ BE-E
T E+E;

E. = the mncident photon energy.

s = the invariant mass of the photon-nucleus pair.
m, = the pion mass.

M = the mass of the relevant nucleus.

y) = opening angle between the two 7 photons
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Overview

* Alternative method of calculating the degree of linear polarisation of the
beam is presented

* Viable statistics for secondary target method

* Results show high background from expected sources

* Differentiation of Coherent and Incoherent channels challenging- major
limiting factor
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