Supported by ERC through Starting Grant no. 759253

European Research Council Established by the European Commission

Neutron star mergers and the high-density equation of state

International School of Nuclear Physics

The Strong Interaction: From Quarks and Gluons to Nuclei and Stars

Erice, 23/09/2018

Andreas Bauswein

(GSI Darmstadt)

Outline

Focus of this talk on EoS impact / constraints

- Overview / introduction
- Simulations and ejecta masses
- Tidal deformability
- Collapse behavior
- NS radius constraints from GW170817
- dominant postmerger GW emission
 - \rightarrow NS radius measurements
 - \rightarrow maximum mass and other EoS constraints
- Signatures of the QCD phase transition

A break-through in astrophysics

- ► GW170817 first unambiguously detected NS merger
- Mutli-messenger observations: gravitational waves, gamma, X-rays, UV, optical, IR, radio

Detection August 17, 2017 by LIGO-Virgo network

 \rightarrow GW data analysis

 → follow-up observations probably largest coordinated observing campaign in astronomy (observations/time)

Announcement October 2017

Scientific aspects of NS mergers

- NS mergers likely progenitors of short gamma-ray bursts (observed since the 70ies)
- NS mergers as sources of heavy elements forged by the rapid neutron-capture process
- Electromagnetic transient powered by nuclear decays during/after r-process ("kilonova", "macronova", ...)

 \rightarrow UV, optical, IR \rightarrow targets for triggered or blind searches (time-domain astronomy)

- Various other types of em counterparts
- Strong emitters of GWs

...

- \rightarrow population properties: rates, masses, ... \rightarrow stellar astrophysics
- \rightarrow EoS of nuclear matter / stellar properties of NSs

(NS mergers probe cold and hot matter – pre- and post-merger)

Dynamics

t= 2.40eg

GW170817

Abbott et al 2017

Some insights from GW170817

- Binary masses measured from "inspiral" (= pre-merger phase with shrinking orbit)
- Detection at 40 Mpc \rightarrow rate is presumably high !
- Note: chirp mass accurately measured
- Mass ratio only at higher PN order

$$\mathcal{M}_{chirp} = \frac{(M_1 M_2)^{3/5}}{(M_1 + M_2)^{1/5}}$$

$$q = M_1/M_2$$

Abbott et al. 2017

	Low-spin priors $(\chi \le 0.05)$	High-spin priors $(\chi \le 0.89)$
Primary mass m_1	$1.36-1.60 \ M_{\odot}$	$1.36-2.26 M_{\odot}$
Secondary mass m_2	$1.17 - 1.36 M_{\odot}$	$0.86-1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002} M_{\odot}$	$1.188^{+0.004}_{-0.002} M_{\odot}$
Mass ratio m_2/m_1	0.7–1.0	0.4–1.0
Total mass $m_{\rm tot}$	$2.74^{+0.04}_{-0.01} {M}_{\odot}$	$2.82^{+0.47}_{-0.09} M_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot}c^{2}$	$> 0.025 M_{\odot} c^2$
Luminosity distance $D_{\rm L}$	40^{+8}_{-14} Mpc	40^{+8}_{-14} Mpc
Viewing angle Θ	$\leq 55^{\circ}$	$\leq 56^{\circ}$
Using NGC 4993 location	$\leq 28^{\circ}$	$\leq 28^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800	≤ 700
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800	≤ 1400

Observations

- ▶ 1.7 sec after gamma-rays (\rightarrow short GRB ???)
- Follow up observation (UV, optical, IR) starting
 ~12 h after merger
 - \rightarrow ejecta masses, velocities, opacities
- Several days later X-rays, radio (ongoing)

Abbott et al. 2017

Figure 1. NGC4993 *grz* color composites ($1'.5 \times 1'.5$). Left: composite of detection images, including the discovery *z* image taken on 2017 August 18 00:05:23 UT and the g and r images taken 1 day later; the optical counterpart of GW170817 is at R.A., decl. =197.450374, -23.381495. Right: the same area two weeks later.

Soares-Santos et al 2017

Observations

- Many IR/opt/UV observations by many groups
- Different interpretations / modeling
- Red and blue component
- Spectral features?

.

 Derived total ejecta masses all in the range 0.03 ... 0.05 Msun

Chronock et al. 2017, Levan & Tanvir 2017, Kasliwal et al. 2017, Coulter et al. 2017, Allam et al. 2017, Yang et al. 2017, Arcavi et al. 2017, Kilpatrick et al. 2017, McCully et al. 2017, Pian et al. 2017, Arcavi et al. 2017, Evans et al. 2017, Drout et al. 2017 Lipunov et al. 2017, Cowperthwaite et al. 2017, Smarrt et al. 2017, Shappee et al. 2017, Nicholl et al. 2017, Kasen et al. 2017, Tanaka et al. 2017,

Reference	$m_{ m dyn}[M_\odot]$	$m_{ m w}\left[M_{\odot} ight]$
Abbott et al. (2017a)	0.001 - 0.01	_
Arcavi et al. (2017)	_	0.02 - 0.025
Cowperthwaite et al. (2017)	0.04	0.01
Chornock et al. (2017)	0.035	0.02
Evans et al. (2017)	0.002 - 0.03	0.03 - 0.1
Kasen et al. (2017)	0.04	0.025
Kasliwal et al. $(2017b)$	> 0.02	> 0.03
Nicholl et al. (2017)	0.03	_
Perego et al. (2017)	0.005 - 0.01	$10^{-5} - 0.024$
Rosswog et al. (2017)	0.01	0.03
Smartt et al. (2017)	0.03 - 0.05	0.018
Tanaka et al. $(2017a)$	0.01	0.03
Tanvir et al. (2017)	0.002 - 0.01	0.015
Troja et al. (2017)	0.001 - 0.01	0.015 - 0.03

Compilation by Cote et al 2018

Metzger 2017

Interpretation - implications

- heating and derived opacities are compatible with r-processing ejecta !!!
 (not surprising for a theorist, see earlier work on r-process and em counterparts)
- Ejecta velocities and masses in ballpark of simulation results (\rightarrow later)
- Derived ejecta masses are compatible with mergers being the main source of heavy rprocess elements in the Universe

 \rightarrow overall strong evidence that NS mergers play a prominent role for heavy element formation

see talk by Martinez-Pinedo

Bauswein et al. 2014

More insights

- Em counterpart allows association with host galaxy NGC 4993
- GW signal \rightarrow luminosity distance
 - + redshift of galaxy
 - \rightarrow independent estimate of Hubble constant
- ► Compatible with other estimates, e.g. Planck, SNe

EoS / NS constraints

Importance of EoS

- Understand properties of high-density matter (hardly accessible by laboratory experiments – theoretically challenging)
 - \rightarrow e.g. nuclear parameter/models (also important for nucleosynthesis models)
 - \rightarrow phase transition to hyperonic matter? Quark matter?
- Stellar properties of NS (observationally challenging)

 \rightarrow EoS affects dynamics/phenomenology of mergers (e.g em counterparts, nucleosynthesis, GRBs), supernovae, NS cooling,

Finite-size effects during late inspiral

See Lattimer's talk

Description of tidal effects during inspiral

- Tidal field E_{ij} of on star induces change of quadrupole moment Q_{ij} of other component
- Changed quadrupole moment affects GW signal, especially phase evolution

 → inspiral faster compared to point-particle inspiral
- Strength of induced quadrupole moment depends on NS structure / EoS:

$$Q_{ij} = -\lambda(M) E_{ij} \qquad \qquad \lambda(M) = \frac{2}{3}k_2(M)R^5$$

 Tidal deformability depends on radius (clear – smaller stars are harder to deform) and "Love number" k₂ (~"TOV" properties)

Inspiral

- Orbital phase evolution affected by tidal deformability only during last orbits before merging
- Inspiral accelerated compared to point-particle inspiral for larger Lambda
- Difference in phase between NS merger and point-particle inspiral:

Challenge: construct faithful templates for data analysis

Measurement

► Lambda < ~800

 \rightarrow Means that very stiff EoSs are excluded

- Recall uncertainties in mass measurements (only Mchirp accurate)
- systematic errors in waveform model

 \rightarrow ongoing research

 Better constraints expected in future as sensitivity increases

$$\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5}$$

See Lattimer's talk

Abbott et al. 2017 See also later publications by Ligo/Virgo collaboration, De et al. 2018 Combined tidal deformability vs. radius (for constant chirp mass)

\rightarrow GW170817 constrains NS radii from above

Simulation results – ejecta

(EoS and binary mass dependence)

DD2 1.35-1.35 M_{sun}, representative ejecta particles (white unbound)

Simulations

Dots trace ejecta (DD2 EoS 1.35-1.35 M_{sun})

Bauswein et al. 2013

Asymmetric mergers

 \rightarrow larger tidal component, larger total ejecta masses

Bauswein et al. 2013

Ejecta mass dependence

Different EoSs characterized by radii of 1.35 M_{sun} NSs (note importannce of thermal effects)

Coarse picture: EoS dependence of ejecta mass

- Ejecta mass 0.03-0.05 Msun in GW170817
- Excludes tentatively very stiff EoSs
- Excludes tentatively very soft EoSs
 prompt collapse !!!

Reference	$m_{ m dyn} \left[M_{\odot} ight]$	$m_{ m w}\left[M_{\odot} ight]$
Abbott et al. (2017a)	0.001 - 0.01	-
Arcavi et al. (2017)	_	0.02 - 0.025
Cowperthwaite et al. (2017)	0.04	0.01
Chornock et al. (2017)	0.035	0.02
Evans et al. (2017)	0.002 - 0.03	0.03 - 0.1
Kasen et al. (2017)	0.04	0.025
Kasliwal et al. $(2017b)$	> 0.02	> 0.03
Nicholl et al. (2017)	0.03	—
Perego et al. (2017)	0.005 - 0.01	$10^{-5} - 0.024$
Rosswog et al. (2017)	0.01	0.03
Smartt et al. (2017)	0.03 - 0.05	0.018
Tanaka et al. (2017a)	0.01	0.03
Tanvir et al. (2017)	0.002 - 0.01	0.015
Troja et al. (2017)	0.001 - 0.01	0.015 - 0.03

Bauswein et al 2013, see also Hotokezaka et al 2013

+ secular ejecta (viscous, neutrino)

Compilation in Cote et al 2018

Ejecta mass dependencies: binary para.

understandable by different dynamics / impact velocity / postmerger oscillations

Central lapse α traces remnant compactness / oscillations / dynamics (dashed lines)

Secular and dynamical ejecta

Just et al. 2015

Secular ejecta

Wu et al. 2016

Typically several per cent of disk mass ejected (e.g. Fernandez et al. 2014, Perego et al. 2014, Just et al 2015) \rightarrow production of light and heavy r-process elements, contributing to em counterpart

- Colored bands: rates for different EoSs
- Symbols: population synthesis predictions (Abadie et al. 2010)
- Vertical lines: pulsar observations (Kalogera et al. 2004)
- Dashed curve: short GRBs (Berger 2013)
- Arrow: volumetric rate (Abbott et al. 20017) converted to Galactic rate

Collapse behavior: Prompt vs. delayed (/no) BH formation

Relevant for:

EoS constraints through M_{max} measurement

Conditions for short GRBs

Mass ejection

Electromagnetic counterparts powered by thermal emission

And NS radius constraints !!!

Collapse behavior

EoS dependent - somehow M_{max} should play a role

Simulations reveal M_{thres}

TOV properties of nonrotating					
30					V
EoS	$M_{\rm max}$ (M_{\odot})	R _{max} (km)	C _{max}	<i>R</i> _{1.6} (km)	$M_{\rm thres}$ (M_{\odot})
NL3 [37,38]	2.79	13.43	0.307	14.81	3.85
GS1 [39]	2.75	13.27	0.306	14.79	3.85
LS375 [40]	2.71	12.34	0.325	13.71	3.65
DD2 [38,41]	2.42	11.90	0.300	13.26	3.35
Shen [42]	2.22	13.12	0.250	14.46	3.45
TM1 [43,44]	2.21	12.57	0.260	14.36	3.45
SFHX [45]	2.13	10.76	0.292	11.98	3.05
GS2 [46]	2.09	11.78	0.262	13.31	3.25
SFHO [45]	2.06	10.32	0.294	11.76	2.95
LS220 [40]	2.04	10.62	0.284	12.43	3.05
TMA [44,47]	2.02	12.09	0.247	13.73	3.25
IUF [38,48]	1.95	11.31	0.255	12.57	3.05

Merger property from simulations

Bauswein et al. 2013

Smooth particle hydrodynamics + conformal flatness

Threshold binary mass

- Empirical relation from simulations with different M_{tot} and EoS
- ► Fits (to good accuracy):

$$M_{\rm thres} = M_{\rm thres}(M_{\rm max}, R_{\rm max}) = \left(-3.38\frac{GM_{\rm max}}{c^2 R_{\rm max}} + 2.43\right)M_{\rm max}$$

$$M_{\rm thres} = M_{\rm thres}(M_{\rm max}, R_{1.6}) = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

► Both better than 0.06 M_{sun}

EoS constraints from GW170817*

 \rightarrow lower bound on NS radii

* See also Margalit & Metzger 2017, Shibata et al. 2017, Rezzolla et al. 2018, Radice et al. 2018, Ruiz & Shapiro 2018, ... for other EoS constraints in the context of GW170817

Collapse behavior

M_{thres} EoS dependent - somehow M_{max} should play a role

A simple but robust NS radius constraint from GW170817

- High ejecta mass inferred from electromagnetic transient
 - \rightarrow provides strong support for a delayed/no collapse in GW170817
 - \rightarrow even asymmetric mergers that directly collapse do not produce such massive ejecta

Reference	$m_{ m dyn} \left[M_{\odot} ight]$	$m_{ m w}\left[M_{\odot} ight]$
Abbott et al. (2017a)	0.001 - 0.01	_
Arcavi et al. (2017)	_	0.02 - 0.025
Cowperthwaite et al. (2017)	0.04	0.01
Chornock et al. (2017)	0.035	0.02
Evans et al. (2017)	0.002 - 0.03	0.03 - 0.1
Kasen et al. (2017)	0.04	0.025
Kasliwal et al. $(2017b)$	> 0.02	> 0.03
Nicholl et al. (2017)	0.03	_
Perego et al. (2017)	0.005 - 0.01	$10^{-5} - 0.024$
Rosswog et al. (2017)	0.01	0.03
Smartt et al. (2017)	0.03 - 0.05	0.018
Tanaka et al. (2017a)	0.01	0.03
Tanvir et al. (2017)	0.002 - 0.01	0.015
Troja et al. (2017)	0.001 - 0.01	0.015 - 0.03

Figure 1. NGC4993 grz color composites (1.5×1.5). Left: composite of detection images, including the discovery z image taken on 2017 August 18 00:05:23 UT and the g and r images taken 1 day later; the optical counterpart of GW170817 is at R.A., decl. =197.450374, -23.381495. Right: the same area two weeks later.

Soares-Santos et al 2017

Compilation in Cote et al 2018

- Ejecta masses depend on EoS and binary masses
- Note: high mass points already to soft EoS (tentatively/qualitatively)
- Prompt collapse leads to reduced ejecta mass
- ▶ Light curve depends on ejecta mass:
 → 0.02 0.05 M_{sun} point to delayed collapse
- Note: here only dynamical ejecta

Only dynamical ejecta

Collapse behavior

(1) If GW170817 was a delayed (/no) collapse:

$$M_{\rm thres} > M_{\rm tot}^{GW170817}$$

(2) Recall: empirical relation for threshold binary mass for prompt collapse:

$$M_{\rm thres} = \left(-3.38 \frac{G M_{\rm max}}{c^2 R_{\rm max}} + 2.43\right) M_{\rm max} > 2.74 \ M_{\odot} \qquad \text{(with } M_{\rm max}, R_{\rm max}, R_{\rm max} = 1.02 \ R_{\rm$$

(3) Causality: speed of sound $v_{S} \leq c \implies M_{\max} \leq \frac{1}{2.82} \frac{c^{2} R_{\max}}{G}$

Putting things together:

$$M_{\text{tot}}^{GW170817} \le \left(-3.38 \frac{G M_{\text{max}}}{c^2 R_{\text{max}}} + 2.43\right) M_{\text{max}} \le \left(-\frac{3.38}{2.82} + 2.43\right) \frac{1}{2.82} \frac{c^2 R_{\text{max}}}{G}$$

 \rightarrow Lower limit on NS radius

Bauswein et al. 2017

unknown)

 $M_{\rm thres} \ge 1.2 M_{\rm max}$

Bauswein et al. 2017

$$M_{\rm thres} = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

$$v_S = \sqrt{\frac{dP}{de}} \le c \rightarrow M_{\max} \le \kappa R_{1.6} \Rightarrow M_{\text{thres}} \ge 1.2M_{\max}$$

Causal li<u>mit</u>

• Extend a large sample of EoS with v_s =c beyond central density of 1.6 Msun NS

$$\rightarrow$$
 $v_S = \sqrt{\frac{dP}{de}} \le c \rightarrow M_{\text{max}} \le \kappa R_{1.6}$

Causality limit

$$M_{\rm thres} = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

$$v_S = \sqrt{\frac{dP}{de}} \le c \rightarrow M_{\max} \le \kappa R_{1.6} \Rightarrow M_{\text{thres}} \ge 1.2M_{\max}$$

NS radius constraint from GW170817

Bauswein et al. 2017

- ► R_{1.6} > 10.7 km
- Excludes very soft nuclear matter

Radius vs. tidal deformability

Bauswein, unpubl.

- ► Radius and tidal deformability scale tightly → Lambda > 210
- Radice et al. 2018 followed a very similar approach claiming Lambda > 400
 - \rightarrow only 4 EoS considered no complete coverage existing simulation data/parameter space (see also Tews et al. 2018)
 - \rightarrow full EoS dependence has to be investigated via Mthres

Discussion - robustness

- Binary masses well measured with high confidence error bar
- Clearly defined working hypothesis: delayed collapse
 - \rightarrow testable by refined emission models
 - \rightarrow as more events are observed more robust distinction
- Very conservative estimate, errors can be quantified
- Empirical relation can be tested by more elaborated simulations (but unlikely that MHD or neutrinos can have strong impact on M_{thres})
- Confirmed by semi-analytic collapse model
- ► Low-SNR constraint !!!

Future

- Any new detection can be employed if it allows distinction between prompt/delayed collapse
- ► With more events in the future our comprehension of em counterparts will grow → more robust discrimination of prompt/delayed collapse events
- Low-SNR detections sufficient $!!! \rightarrow$ that's the potential for the future
 - \rightarrow we don't need louder events, but more
 - \rightarrow complimentary to existing ideas for EoS constraints

Future detections (hypothetical discussion)

- \rightarrow as more events are observed, bands converge to true M_{thres}
- \rightarrow prompt collapse constrains M_{max} from above

Bauswein et al. 2017

Future plans

M_{max} from GW170817

- Arguments: no prompt collapse; no long-lasting pulsar spin-down (too less energy deposition)
- If GW170817 did not form a supramassive NS (rigidly rotating > M_{max})
 - \rightarrow M_{max} < ~2.2-2.4 M_{sun} (relying on some assumption)

Margalit & Metzger 2017

Future: Maximum mass

Empirical relation

$$M_{\rm thres} = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

► Sooner or later we'll know R_{1.6} (e.g. from postmerger) and M_{thres} (from several events – through presense/absence of postmerger GW emission or em counterpart)

=> direct inversion to get precise estimate of M_{max}

(see also current estimates e.g. by Margalit & Metzger, Rezzolla et al, Ruiz & Shapiro, Shibata et al., ...)

Postmerger GW emission* (dominant frequency of postmerger phase)

→ determine properties of EoS/NSs
 → postmerger GW spectrum reveals dynamics

* not detected for GW170817 – expected for current sensitivity and d=40 Mpc (Abbott et al. 2017)

Postmerger

Dominant postmerger oscillation frequency f_{peak} Very characteristic (robust feature in all models)

Gravitational waves – EoS survey

Here only 1.35-1.35 Msun mergers (binary masses measurable) – similar relations exist for other fixed binary setups !!!

~ 40 different NS EoSs

12

R [km]

14

16

Bauswein et al. 2012

18

Assess quality of empirical relation relation – only infinity norm meaningful $!!! \rightarrow$ as many EoS models as possible !!!

Gravitational waves – EoS survey

Smaller scatter in empirical relation (< 200 m) \rightarrow smaller error in radius measurement

Note: R of 1.6 M_{sun} NS scales with f_{peak} from 1.35-1.35 M_{sun} mergers (density regimes comparable)

Binary mass variations

Different total binary masses (symmetric)

Fixed chirp mass (asymmetric 1.2-1.5 M_{sun} binaries and symmetric 1.34-1.34 M_{sun} binaries)

Data analysis: see e.g. Clark et al. 2016 (PCA), Clark et al. 2014 (burst search), Chatziioannou et al 2017

 \rightarrow f_{peak} precisely measurable !!!

Bauswein et al. 2012, 2016

Strategy for radius measurements

- Measure binary masses from inspiral
- Construct f_{peak} R relation for this fixed binary masses and (optimally) chosen R
- Measure f_{peak} from postmerger GW signal
- Obtain radius by inverting f_{peak} R relation
- (possibly restrict to fixed mass ratios if mergers with high asymmetry are measured)

- Final error of radius measurement:
 - accuracy of f_{peak} measurement (see Clark et al. 2014, Clark et al. 2016)
 - maximum scatter in f-R relation (important to consider very large sample of EoSs)
 - systematic error in f-R relation

Data analysis

Principal Component analysis

Excluding recovered waveform from catalogue

Instrument	$\mathrm{SNR}_{\mathrm{full}}$	$D_{\rm hor} [{ m Mpc}]$	Ndet [year ⁻¹]
aLIGO	$2.99_{2.37}^{3.86}$	$29.89_{23.76}^{38.57}$	$0.01_{0.01}^{0.03}$
A+	$7.89_{6.25}^{10.16}$	$78.89_{62.52}^{101.67}$	$0.13_{0.10}^{0.20}$
LV	$14.06^{18.13}_{11.16}$	$140.56^{181.29}_{111.60}$	$0.41_{0.21}^{0.88}$
ET-D	$26.65_{20.81}^{34.28}$	$266.52_{208.06}^{342.80}$	$2.81_{1.33}^{5.98}$
CE	$41.50_{32.99}^{53.52}$	$414.62^{535.221}_{329.88}$	$10.59_{5.33}^{22.78}$

Clark et al. 2016, see also Clark et al 2014, Chatziioannou et al 2017, Bose et al. 2018

Outdated!!!

 \rightarrow possible at Ad. LIGO's design sensitivity

Model-agnostic data analysis

Based on wavelets

Chatziioannou et al. (2017)

Inferring the pressure at fixed density

1.35-1.35 Msun

Bauswein et al. 2012

Observable signature of (QCD) phase transition

Phase diagram of matter

GSI/FAIR

Does the phase transition to quark-gluon plasma occur (already) in neutron stars or only at higher densities?

EoS with 1st-order phase transition to quark matter

Bauswein et al. 2018

 EoS from Fischer et al. 2018 – as one example for an EoS with a strong 1st-order phase transition to deconfined quarks

Merger simulations

► GW spectrum 1.35-1.35 Msun

Bauswein et al. 2018

But: a high frequency on its own may not yet be characteristic for a phase transition

- \rightarrow unambiguous signature
- $(\rightarrow$ show that all purely baryonic EoS behave differently)

Signature of 1st order phase transition

- ► Tidal deformability measurable from inspiral to within 100-200 (Adv. Ligo design)
- Postmerger frequency measurable to within a few 10 Hz @ a few 10 Mpc (either Adv. Ligo or upgrade)
- ► Important: "all" purely hadronic EoSs (including hyperonic EoS) follow fpeak-Lambda relation → deviation characteristic for strong 1st order phase transition

Discussion

- Consistency with fpeak-Lambda relation points to
 - purely baryonic EoS
 - (or an at most weak phase transition \rightarrow no strong compactification)
 - in the tested (!) density regime
- fpeak also determines maximum density in postmerger remnant
- postmerger GW emission provides complimentary information to inspiral
 - \rightarrow probes higher density regime

Bauswein et al. 2018

Probed densities / NS masses

Dots: NS mass with central density = maximum density during early postmerger evolution

For 1.35-1.35 Msun merger – higher binary masses probe higher densities / NS masses

Conclusions

- ► NS radius must be larger than 10.7 km (very robust)
- More stringent constraints from future detections
- ► NS radius measurable from dominant postmerger frequency
- Explicitly shown by GW data analysis
- Threshold binary mass for prompt collapse \rightarrow maximum mass M_{max}
- Strong 1st order phase transitions leave characteristic imprint on GW (psotmerger frequency higher than expected from inspiral)
- ► Complementarity of inspiral and postmerger phase → postmerger probes higher density regime