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A LITTLE HISTORY

? AD 1998: the seminal paper Andersson and Kokkotas heralds the
advent of GW astereoseismology, declaring that “The day of the first
undeniable detection of gravitational waves should not be far away”
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A B S T R A C T
We present new results for pulsating neutron stars. We have calculated the eigenfrequencies of
the modes that one would expect to be the most important gravitational wave sources: the
fundamental fluid f mode, the first pressure p mode and the first gravitational wave w mode,
for twelve realistic equations of state. From these numerical data we have inferred a set of
‘empirical relations’ between the mode frequencies and the parameters of the star (the radius R
and the mass M). Some of these relations prove to be surprisingly robust, and we show how
they can be used to extract the details of the star from observed modes. The results indicate
that, should the various pulsation modes be detected by the new generation of gravitational
wave detectors that come online in a few years, the mass and the radius of neutron stars can be
deduced with errors no larger than a few per cent.
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1 I N T RO D U C T I O N

1.1 Motivation

The day of the first undeniable detection of gravitational waves
should not be far away. In less than five years, at least five large
interferometric gravitational wave detectors (LIGO, VIRGO,
GEO600 and TAMA) will be operating. At the same time a new
generation of spherical resonant detectors (GRAIL, SFERA, etc.)
could be sensitive enough to detect signals from supernova collapse
and binary coalescences in the Virgo cluster of galaxies. In other
words, recent advancements in technology are heralding the era of
gravitational wave astronomy. However, for this field to reach its
full potential, theoreticians must point out in advance the most
promising sources, the optimal methods of detection and the
appropriate bandwidth to which the detectors should be tuned.
Hence, the theoretical effort is presently focused on various sources
of potentially detectable gravitational waves, in order both to
characterize the waves and to devise detailed detection strategies.
Once gravitational waves are detected the first task will be to
identify the source. This should be possible from the general
character of the waveform and may not require very accurate
theoretical models, but accurate models will be of crucial impor-
tance for a deduction of the parameters of the source, i.e. for
gravitational wave ‘astronomy’.

With this paper we contribute to this rapidly growing field in two
ways. We present results for the gravitational waves from a
pulsating relativistic star, e.g. the violent oscillations of a compact
object formed after a core collapse. These results provide a means
for taking the fingerprints of the source, and suggest optimal

bandwidths to which a detector should be tuned to enable detection
of such signals. Specifically, we discuss how the information carried
by gravitational waves from a pulsating star can be used to infer,
with good precision, both the mass and the radius of the star, data
that would strongly constrain the supranuclear equation of state
(EOS).

The idea behind the present work is a familiar one in astronomy.
For many years, studies of the light variation of variable stars have
been used to deduce their internal structure (Unno et al. 1989). The
Newtonian theory of stellar pulsation was to a large extent devel-
oped in order to explain the pulsations of Cepheids and RR Lyrae.
This approach, known as asteroseismology (helioseismology in the
specific case of the Sun), has been quite successful in recent years.
The relativistic theory of stellar pulsation has now been developed
for thirty years, but it has not yet been applied in a similar way. So far,
the relativistic theory has no immediate connections to observations
(that are not already provided by the Newtonian theory). We believe
that this situation will change once the gravitational wave window
to the Universe is opened, and with this article we discuss how the
information carried by the gravitational wave signal can be inverted
to estimate the parameters of pulsating stars. That is, we take the
first (small) step towards gravitational wave asteroseismology.

1.2 Detectability of the waves

At the present time it is not clear that the gravitational waves from
pulsating neutron stars will be seen by the detectors that are
presently under construction. Our relative ignorance in this matter
is a result of the lack of accurate, fully relativistic models of, for

Mon. Not. R. Astron. Soc. 299, 1059–1068 (1998)

q 1998 RAS

? AD 2004: OB, Ferrari & Gualtieri argue that GW astereoseismology is
promising to the extent to which neutron stars are described within a
realistic model
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The frequencies and damping times of the non radial oscillations of non rotating neutron stars are
computed for a set of recently proposed equations of state (EOS) which describe matter at supranuclear
densities. These EOS are obtained within two different approaches, the nonrelativistic nuclear many-
body theory and the relativistic mean field theory, that model hadronic interactions in different ways
leading to different composition and dynamics. Being the non radial oscillations associated to the
emission of gravitational waves, we fit the eigenfrequencies of the fundamental mode and of the first
pressure and gravitational-wave mode (polar and axial) with appropriate functions of the mass and
radius of the star, comparing the fits, when available, with those obtained by Andersson and Kokkotas
in 1998. We show that the identification in the spectrum of a detected gravitational signal of a sharp
pulse corresponding to the excitation of the fundamental mode or of the first p-mode, combined with
the knowledge of the mass of the star—the only observable on which we may have reliable
information—would allow to gain interesting information on the composition of the inner core. We
further discuss the detectability of these signals by gravitational detectors.
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I. INTRODUCTION

When a neutron star (NS) is perturbed by some exter-
nal or internal event, it can be set into non radial oscil-
lations, emitting gravitational waves at the characteristic
frequencies of its quasinormal modes. This may happen,
for instance, as a consequence of a glitch, of a close
interaction with an orbital companion, of a phase tran-
sition occurring in the inner core or in the aftermath of a
gravitational collapse. The frequencies and the damping
times of the quasinormal modes (QNM) carry informa-
tion on the structure of the star and on the status of
nuclear matter in its interior. In 1998, extending a pre-
vious work of Lindblom and Detweiler [1], Andersson and
Kokkotas computed the frequencies of the fundamental
mode (f-mode), of the first pressure mode (p1-mode) and
of the first polar wave mode (w1-mode) [2] of a non
rotating NS for a number of equations of state (EOS)
for superdense matter available at that time, the most
recent of which was that obtained by Wiringa, Fiks &
Fabrocini in 1988 [3]. They fitted the data with appropri-
ate functions of the macroscopical parameters of the star,
the radius and the mass, and showed how these empirical
relations could be used to put constraints on these pa-
rameters if the frequency of one or more modes could be
identified in a detected gravitational signal. It should be
stressed that, while the mass of a NS can be determined
with a good accuracy if the star is in a binary system, the
same cannot be said for the radius which, at present, is
very difficult to determine through astronomical obser-
vations; it is therefore very interesting to ascertain
whether gravitational-wave detection would help in put-
ting constraints on this important parameter. Knowing
the mass and the radius, we would also gain information

on the state and composition of matter at the extreme
densities and pressures that prevail in a NS core and that
are unreachable in a laboratory.

For instance, it has long been recognized that the
Fermi gas model, which leads to a simple polytropic
EOS, yields a maximum NS mass !0:7 M" that dramati-
cally fails to explain the observed NS masses; this failure
clearly shows that NS equilibrium requires a pressure
other than the degeneracy pressure, the origin of which
has to be traced back to the nature of hadronic interac-
tions. Unfortunately, the need of including dynamical
effects in the EOS is confronted with the complexity of
the fundamental theory of strong interactions, quantum
chromo dynamics (QCD). As a consequence, all available
models of the EOS of strongly interacting matter have
been obtained within models, based on the theoretical
knowledge of the underlying dynamics and constrained,
as much as possible, by empirical data.

In recent years, a number of new EOS have been
proposed to describe matter at supranuclear densities
(!> !0, !0 # 2:67 $ 1014 g=cm3 being the equilibrium
density of nuclear matter), some of them allowing for
the formation of a core of strange baryons and/or decon-
fined quarks, or for the appearance of a Bose condensate.
The present work is aimed at verifying whether, in the
light of the recent developments, the empirical relations
derived in [2] are still appropriate or need to be updated.

We consider a variety of EOS, described in detail in
Sec. II. For any of them we obtain the equilibrium, non
rotating, configurations for assigned values of the mass,
we solve the equations of stellar perturbations and com-
pute the frequencies of the quasinormal modes of vibra-
tion. The results obtained for the different EOS are
compared, looking for particular signatures in the behav-
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CONTINUOUS GW FROM NEUTRON STARS
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NEUTRON STARS OSCILLATION MODES

? Neutron stars have a rich spectrum of oscillation modes, whose
frequencies reflect different features of the star structure and dynamics

I f-mode: the most effective mechanism of GW emission. Depends
on the average density

I p-modes: acoustic modes, driven by pressure
I g-modes: driven by thermal or composition gradients. The main

restoring force is buoyancy
I w-modes: pure space-time modes
I r-modes: inertial mode of rotating stars, restored by the Coriolis

force. Driven unstable by GW emission (CFS instability)!

? The onset of the CFS instability depends on a variety of properties of
neutron star matter, ranging from the shear and bulk viscosity to the
superfluid and superconducting gap. The development of a theoretical
framework providing a realistic and consistent description of these is
needed
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PREAMBLE: COLLISION ENERGY IN DEGENERATE MATTER

? In degenerate matter, the center-of-mass energy of nucleon-nucleon
collisions, Ecm, is simply related to the particle density, n

? Head-on collisions in pure
neutron matter at density n

Ecm =
1

m
(3π2n)2/3

? Potential models used to predict the properties of dense nuclear mater
must be capable to describe nucleon-nucleon collisions at high energies
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POTENTIALS FROM CHIRAL EFFECTIVE FIELD THEORY

? Chiral Effective Field Theory (χEFT) provides a powerful
framework—based on the symmetries of the fundamental theory of
strong interactions—to derive two- and many-nucleon potentials in a
fully consistent fashion

? Being based on a low-momentum expansion, however, χEFT is
inherently limited, when it comes to describing nuclear interactions in
high-density nuclear matter

LOCAL CHIRAL EFFECTIVE FIELD THEORY . . . PHYSICAL REVIEW C 90, 054323 (2014)
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FIG. 3. (Color online) Phase shifts for the 1S0 and 3S1 -3D1 partial waves at LO, NLO, and N2LO in comparison with the Nijmegen PWA
[46]. The bands at each order correspond to the cutoff variation of R0 = 1.0−1.2 fm. At NLO and N2LO, we also vary the SFR cutoff from
!̃ = 1.0−1.4 GeV.

larger than 50 MeV. In addition, also the description of the
J = 1 mixing angle is poor at all orders, a fact that is clearly
reflected in the size of the cutoff bands.

In Fig. 4 we show the phase shifts for the P waves and the
J = 2 coupled channel. In the 1P1 channel the LO band starts
to deviate from the data already at low energies. Including
additional spin-orbit and tensor contributions at NLO improves

the description of the 1P1 channel only little. However, the
situation highly improves when going to N2LO.

In the 3P waves the phase shifts improve considerably
going from LO to higher orders and the description of
the 3P waves at N2LO is substantially better than in our
previous fits [15]. Furthermore, the description of the J = 2
coupled channel is considerably better than for the J = 1

0 50 100 150 200 250
Lab. Energy [MeV]

-30

-25

-20

-15

-10

-5

0

Ph
as

e 
Sh

ift
 [d

eg
]

0 50 100 150 200 250
Lab. Energy [MeV]

-10
-5
0
5

10
15
20
25
30
35
40

0 50 100 150 200 250
Lab. Energy [MeV]

-30

-25

-20

-15

-10

-5

0

1P1

3P0
3P1

0 50 100 150 200 250
Lab. Energy [MeV]

0

5

10

15

20

Ph
as

e 
Sh

ift
 [d

eg
]

0 50 100 150 200 250
Lab. Energy [MeV]

0

0.5

1

1.5

2

0 50 100 150 200 250
Lab. Energy [MeV]

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
3P2

3F2 ε2

FIG. 4. (Color online) Phase shifts for the 1P1, 3P0, 3P1, and 3P2 -3F2 partial waves at LO, NLO, and N2LO in comparison with the Nijmegen
PWA [46]. The bands are obtained as in Fig. 3.

054323-7

? Phase shifts obtained from the local potential of A. Gezerlis et al, PRC 90
054323 (2014). Recall: ELAB = 250 MeV corresponds to n ≈ 1.1n0 in
neutron matter
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PHENOMENOLOGICAL POTENTIALS

? Purely phenomenological potentials, such as those developed at ANL,
reproduce the nucleon-nucleon scattering phase shift up to the highest
available energies

? Phase shifts obtained from the
full AV18 (full line) and the
truncated AV6p model (dashes).
Data from gwdac.phys.gwu.edu.

? Phenomenological Hamiltonians also include three-nucleon potentials,
such as the UIX model, designed to explain the properties of the
three-nucleon system and the saturation density of isospin-symmetric
nuclear matter
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VALIDATION OF THE PHENOMENOLOGICAL APPROACH

? The validity of the phenomenological approach in the high energy
regime relevant to dense matter has been extensively tested, exploiting
the availability of independent data

? Cross section of the
3He(e, e′p) cross section
measured at Jefferson Lab, as
a function of the initial
momentum of the
knocked-out nucleon

TWO-BODY ELECTRODISINTEGRATION OF 3He AT . . . PHYSICAL REVIEW C 72, 064003 (2005)

namely we write

ρPWIA ∼
∫

dy
∫ 2π

0
dφxW (φx, y)F (φx, y) ≃ 1

Nc

Nc∑

c=1

F (c),

(5.5)
where the c’s denote configurations (φx, y) (total number Nc),
sampled with the Metropolis algorithm from a probability
density W (normalized to one), given by

W (φx, y) = 1
2π

∑

k

|ψk(y; f )|2. (5.6)

Note that W is uniform in 0 ! φx ! 2π . For each configuration
c, the function F is obtained by Gaussian integrations over the
x and cos θx variables, i.e.,

F (c) = 1
W (c)

∑

k,l

∫ 1

−1
d(cos θx)

∫ ∞

0
dx x2e−ipm·xψ∗

k (y; f )

× ρkl

(
q; −i

3
2
∇x

)
ψl(x, y; i). (5.7)

As a result, the statistical errors are very significantly reduced.
In Fig. 2 the CHH calculation of Npd (pm) is carried out
with this method, it uses a random walk consisting only of
20000 configurations. However, convergence in the (x, cos θx)
integrations requires of the order of (70,50) Gaussian points
at the highest pm, and so the present method turns out to be
computationally more time-consuming than the earlier version
at high pm.

Additional refinements in the present MC implementation
are (i) the application of gradient operators on the left, rather
than right, wave function, and (ii) the use of block averaging
for a more realistic estimation of the statistical errors.

Gradient operators, such as those occurring in the one-body
electromagnetic current, are discretized as

∇i,αψ(R) ≃ ψ(. . . ri + δêα . . .) − ψ(. . . ri − δêα . . .)
2 δ

,

(5.8)

where δ is a small increment (δ = 0.0005 fm in the calculations
reported here) and êα is a unit vector in the α-direction.
Therefore, again in the context of the PWIA calculation above,
the ∇x, when operating on the left, only acts on the plane
wave—in fact, an eigenfunction of ∇x . This further reduces
statistical errors, and also ensures that the PWIA relations
in Eq. (4.7) are satisfied—modulo tiny discretization errors of
order (δpm)2—at each configuration in the random walk, which
would not be the case if the gradient were left to operate on the
3He wave function to the right. Of course, the eigenfunction
property above is spoiled, when final state interactions are
taken into account; however, the error-reduction benefits
remain. The disadvantage of the procedure just outlined is
that it leads to an increase in computational time, since the
various gradients have to be evaluated, rather than once (when
acting to the right), as many times as the number of kinematics
being considered in the calculation.
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FIG. 3. (Color online) The experimental data for the 3He(e, e′p)d
cross section at φ = 180◦ are compared to the results of calculations
in plane-wave-impulse approximation (PWIA), or using the Glauber
approximation without (GLB) and with (GLB+MEC) inclusion of
two-body currents. The profile operator in the Glauber expansion is
derived from the full NN scattering amplitude, boosted from the c.m.
to the the rescattering (i.e., lab) frame.

A crude estimate of the MC error is obtained as

((F ) = 1√
Nc

⎡

⎣ 1
Nc

Nc∑

c=1

F 2(c) −
[

1
Nc

Nc∑

c=1

F (c)

]2
⎤

⎦
1/2

,

(5.9)
it assumes that the distribution F (c) is Gaussian, whereas
in practice this is generally not the case. A better estimate,
adopted in the present work, is obtained by dividing the set of
Nc samples into Mc blocks containing nc samples each:

fm = 1
nc

mnc∑

c=(m−1)nc+1

F (c). (5.10)

Then,

((f ) = 1√
Mc

⎡

⎣ 1
Mc

Mc∑

m=1

f 2
m −

(
1

Mc

Mc∑

m=1

fm

)2
⎤

⎦
1/2

, (5.11)

where nc can be chosen large enough so as to make the
distribution of fm Gaussian (in practice, nc has been taken
of the order of 100).

VI. RESULTS

The predicted cross sections are compared with the data
taken at JLab (E89-044) [1] in Figs. 3 and 4. The in-plane
measurements were carried out in quasielastic kinematics with
the proton being detected on either side of the three-momentum
transfer q (the kinematics in Figs. 3 and 4 have, respectively,
φ = 180◦ and 0◦ deg, in the notation of Sec. IV). From these
cross sections, the longitudinal-transverse asymmetry ALT is

064003-7

? Monte Carlo calculations carried out using the phenomenological
AV18+UIX Hamiltonian provide an excellent description of the data for
proton momenta up to ∼ 700 MeV. No adjustable parameters involved!
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PERTURBATION THEORY WITH STRONGLY REPULSIVE FORCES

? A prominent feature of the nucleon-nucleon potential is the presence of
a strong repulsive core

? NN potential in the 1S0 channel

(a) (b)

Figure 2: (a) Several phenomenological NN potentials in the 1S0 channel from Ref. [21]. (b) Momentum-
space matrix elements of the Argonne v18 (AV18) 1S0 potential after Fourier (Bessel) transformation.1

and we use such plots throughout this review.1 The elastic regime for NN scattering corresponds to
relative momenta k ! 2 fm−1. The strong low- to high-momentum coupling driven by the short-range
repulsion is manifested in Fig. 3(a) by the large regions of non-zero off-diagonal matrix elements. A
consequence is a suppression of probability in the relative wave function (“short-range correlations”),
as seen for the deuteron in Fig. 3(b).

The potentials in Fig. 2(a) are partial-wave local; that is, in each partial wave they are functions
of the separation r alone. This condition, which simplifies certain types of numerical calculations,2

constrains the radial dependence to be similar to Fig. 2(a) if the potential is to reproduce elastic phase
shifts, and in particular necessitates a strong short-range repulsion in the S-waves. The similarity
of all such potentials, perhaps combined with experience from the Coulomb potential, has led to the
(often implicit) misconception that the nuclear potential must have this form. This prejudice has been
reinforced recently by QCD lattice calculations that apparently validate a repulsive core [25–28].

For finite-mass composite particles, locality is a feature we expect at long distances, but non-local
interactions would be more natural at short distances. In fact, the potential at short range is far
removed from an observable, and locality is imposed on potentials for convenience, not because of
physical necessity. Recall that we are free to apply a short-range unitary transformation U to the
Hamiltonian (and to other operators at the same time),

En = ⟨Ψn|H|Ψn⟩ =
(
⟨Ψn|U †)UHU † (

U |Ψn⟩
)

= ⟨Ψ̃n|H̃|Ψ̃n⟩ , (1)

and the physics described by H and H̃ is indistinguishable by experiment. Thus there are an infinite
number of equally valid potentials, and once we allow non-locality, a repulsive core and the strong low-
to high-momentum coupling is no longer inevitable.

The EFT approach uses this freedom to construct a systematic expansion of the Hamiltonian. A
particular EFT is associated with a momentum scale Λb that is the dividing point between resolved,

1In units where ! = c = m = 1 (with nucleon mass m), the momentum-space potential is given in fm. In addition, we
typically express momenta in fm−1 (the conversion to MeV is using !c ≈ 197 MeVfm).

2For example, in current implementations of Green’s Function Monte Carlo (GFMC) calculations [22], the potential
must be (almost) diagonal in coordinate space, such as the Argonne v18 potential.

4

? Perturbative calculations of nuclear matter properties can only be
performed using effective interactions, obtained from renormalisation of
the bare potential
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RENORMALISATION OF THE NUCLEON-NUCLEON POTENTIAL

? In the early days of nuclear matter theory, renormalisation was based on
the replacement of the bare interaction, v. with the G-matrix describing
nucleon-nucleon scattering in the nuclear medium

T = = +

G = v + v
Q

H0 −W
G

? The G-matrix approach has been extensively employed in conjunction
with phenomenological potentials

? More recently, soft of the nucleon-nucleon interactions have been
obtained from renormalisation group evolution of potentials derived
within χEFT
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SCREENING OF THE REPULSIVE CORE

? Renormalisation group evolution essentially amounts to screening the
repulsive core of the potential through the action of a cutoff, Λ, in
momentum space

? Screening can also be implemented in coordinate space, through a
transformation of the basis of eigenstates of the non interacting system

? Transformation of the
two-nucleons wave function in
nuclear matter

φij(r)→ ψij(r) = fij(r)φij(r)

? The role of the momentum cutoff Λ is played by the correlation range, d,
such that fij(r ≥ d) = 1, which depends on density
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THE CBF EFFECTIVE INTERACTION

? The Correlated Basis Function (CBF) formalism is based on the
transformation from Fermi gas (FG) states to correlated states

|nFG〉 → |n〉 = F |nFG〉

? The definition of the CBF effective interaction follows from the
requirement (note: H include both the two- and three-nucleon
potentials)

〈H〉 = 〈0|H|0〉 =
3

5

k2
F

2m
+ 〈0FG|Veff |0FG〉

implying
Heff = H0 + Veff = F †HF

? For any given density, the operator F is determined in such a way as to
reproduce the value of 〈H〉 obtained from accurate many-body
calculations (Quantum Monte Carlo, or Variational FHNC/SOC )
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? CBF effective interaction in the T = 1 channel at nuclear matter
equilibrium density, obtained from the Argonne v′6 + UIX nuclear
Hamiltonian
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? Density dependence of the ground state energy per nucleon of
unpolarized pure neutron matter (PNM) and isopspin-symmetric
nuclear matter (SNM) obtained from the Argonne v′6 + UIX nuclear
Hamiltonian

? Note that the v′6 + UIX Hamiltonian, while yielding saturation at
ρ ≈ ρ0 = 0.16 fm−3, underestimates the equilibrium energy of SNM by
∼ 5 MeV, corresponding to a ∼ 15% underestimate of the interaction
energy
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? Energy of unpolarized nuclear matter as a function of baryon density
and proton fraction 0 ≤ xp ≤ 0.5. The generalization to spin-polarized
matter is straightforward.
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SINGLE-NUCLEON SPECTRUM

? Momentum dependence of proton and neutron spectra at nuclear
matter equilibrium density and different proton fraction
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EFFECTIVE MASS (HARTEE-FOCK)

? Density dependence of m?(kF )/m
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DENSITY DEPENDENCE OF ∆F IN PURE NEUTRON MATTER

? Gap function obtained using the bare v′6 potential (dashed line)
with kinetic energy spectrum (dashed line) and the CBF effective
interaction with Hartee-Fock spectrum (solid line)
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IN-MEDIUM CROSS SECTION

? Neutron-Neutron Channel

W (p,p′) = 2π |Veff(p− p′)|2 ρ(p′)

dσ

dΩp′
=

m?2

16π2
|Veff(p− p′)|2
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SHEAR VISCOSITY OF PNM

? Density dependence of ηT 2 of PNM

? Medium modifications of the scattering cross section increase
ηT 2 by a factor ∼ 3− 7 @ ρ/ρ0 ∼ 1− 2
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FREQUENCIES OF QUASI NORMAL MODES OF PNS
G. Camelio, A, Lovato, L. Gualtieri, OB, J. Pons, and V. Ferrari
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perturbed fluid element to the equilibrium position. For
the pn-modes, or “pressure modes”, (n = 1, 2, . . . ) the
main restoring force is due to pressure; for the gn modes
(n = 1, 2, . . . ), or “gravity modes”, the main restoring
force is buoyancy. The order n of the mode corresponds
to the number of nodes of the radial eigenfunction of the
displacement vector. The f -mode, i.e., the fundamental
mode of the star, describes the global pulsation motion
of the fluid, and has no radial nodes. In a cold neutron
star, typical values for the QNM frequencies and damping
times are νf ≃ 1.5 − 2.5 kHz, τf ≃ 0.1 s, νp1 ≃ 5 −
10 kHz, and τp1 = 1 − 10 s. The g-modes are due to
the presence of thermal and/or composition gradients; in
absence of composition gradients, all g-modes of a cold
neutron star degenerate to zero frequency. Conversely,
they are present in a PNS [12, 14], as we shall show below.

To determine the quasi-normal mode frequencies at a
given time t of the stellar evolution, we have first evolved
the PNS, finding the profiles of the pressure P (r, t), the
energy density ϵ(r, t), the baryon number density nB(r, t),
and the sound speed, cs(r, t), for the three EoSs and
the different values of the baryonic mass we consider
in this paper. Then we have determined the “effective
barotropic EoS” by inverting the pressure-radius profile,
thus finding r = r(P, t) and then ϵeff (P ; t) = ϵ(r(P, t), t)
and ceff

s (P ; t) = cs(r(P, t), t). Using these expressions,
we have solved the equations of stellar perturbations (we
used the formulation of [40]), to find the frequencies and
damping times of the first p- and g-modes and of the
fundamental mode.

A. Results of the numerical evolution

We have evolved three stellar models with baryon
masses (1.25, 1.40, and 1.60 M⊙) and the EoSs LS-bulk,
CBF-EI and GM3, which was used in [12]. For this EoS,
the QNM frequencies we compute for the 1.60 M⊙ star
agree with those of “model A” of [12] within a few per-
cent. We think that the small differences between our
results and those of [12] are due to differences in the ini-
tial profiles and in the details of the treatment of the
diffusion processes. The numerical values of the f -, g1-
and p1- QNM frequencies and damping times are tabu-
lated in Appendix C.

In Fig. 7 we show, as an example, how the QNM fre-
quencies and damping times change during the first 5
seconds of the PNS life. The plots are given for the
three EoSs we consider, and for a star with baryonic mass
MB = 1.40 M⊙ as an example.

In the upper panel we show the frequency of the g1-
and of the f - modes, in the mid panel the frequency of
the mode p1, and in the lower panel the damping time
of the three modes. From the upper panel of Fig. 7 we
see that during the first second, νg1 approaches νf , but
they never cross. At later times, νg1 increases, reaches a
maximum and then decreases, whereas νf does the op-
posite: it reaches a minimum slightly before νg1 reaches
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FIG. 7. Time dependence of the PNS quasi-normal mode
frequencies and damping times for the three EoSs and for
MB = 1.40 M⊙.

its maximum, and then increases toward the asymptotic
value of the corresponding cold neutron star. This be-
haviour is a general feature of the three EoS; however,
the minimum (maximum) of νf (νg1) occurs at different
times for different EoSs. In particular it occurs earlier
for CBF-EI (about half a second before LS-bulk), which
is the EoS which exhibits the largest time variation of
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its maximum, and then increases toward the asymptotic
value of the corresponding cold neutron star. This be-
haviour is a general feature of the three EoS; however,
the minimum (maximum) of νf (νg1) occurs at different
times for different EoSs. In particular it occurs earlier
for CBF-EI (about half a second before LS-bulk), which
is the EoS which exhibits the largest time variation of
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SUMMARY & OUTLOOK

? The detection of continuous gravitational waves will provide an
unprecedented opportunity and a challenge for the understanding of
the properties of neutron stars

? Nuclear Hamiltonians suitable for the description of dense matter can
be obtained from phenomenology, exploiting the availability of a wealth
of experimental information on short-range nuclear dynamics

? The formalism based on Correlated Basis Function provides a
framework to obtain effective interactions—as well as the associated
effective operators—allowing the calculation of nuclear matter
properties in low-order perturbation theory

? The existing results suggest that a fully consistent treatment of processes
such as the onset of the CFS instability will be feasible in the not too far
future
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Backup slides
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DENSITY DEPENDENCE OF THE EFFECTIVE INTERACTION

? 1S0 channel

24 / 22



PRESSURE OF SNM AND SYMMETRY ENERGY
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EXTENSION TO T > 0

? Assuminhg that thermal effect do not significantly affect the dynamics
of strong interactions, the effective interaciotns can be used to obtain the
properties of nuclear matter at T > 0

? Replace θ(kF − k)→ {1 + exp[e(k)− µ]/T}−1
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THERMAL CONDUCTIVITY OF PNM
? Results from PRC 81, 024305 (2009). Three-nucleon interactions

not taken into account.

? The transport coefficients computed using the CBF effective
interaction is remarkably close to the result obtained within the
G-matrix approach using the same bare NN potential.
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NEUTRINO MEAN FREE PATH IN COLD NEUTRON MATTER
? The mean free path of non degenerate neutrinos at zero

temperature is obtained from

1

λ
=
G2

F

4
ρ

∫
d3q

(2π)3

[
(1 + cos θ)S(q, ω) + C2

A(3− cos θ)S(q, ω)
]

where S and S are the density (Fermi) and spin (Gamow Teller)
response, respectively [A. Lovato et al, NPA 89, 025804 (2013);
PRC 89, 025804 (2013)]
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NEUTRINO LUNINOSITY OF PROTO NEUTRON STARS (PNS)
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FIG. 5. Time dependence of the total neutrino luminosity (upper row), gravitational mass (middle row), and stellar radius (lower
row) of a PNS evolved with the three EoSs discussed in this paper and the baryon stellar masses MB = (1.25, 1.40, 1.60) M⊙.
The black solid lines correspond to the GM3 EoS determined through the fit and the procedure described in Sec. II C, the blue
dashed lines to the LS-bulk EoS, and the dot-dashed red lines to the CBF-EI EoS.
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FIG. 6. Signal in the Super-Kamiokande III Cherenkov detector, for the three EoSs considered in this paper. In the top panels,
electron antineutrino detection rate; in the bottom panels, electron antineutrino cumulative detection. In the left plots, we
consider a star with MB = 1.25 M⊙, in the central plots MB = 1.40 M⊙, and in the right plots MB = 1.60 M⊙. Colors and
linestyles are as in Fig. 5.

all neutrino species, and (iii) a vanishing chemical poten-
tial for the muon and tauon neutrinos everywhere in the
star. The assumptions (i) and (ii) are reasonable in the
interior of the star, and lose accuracy near the stellar bor-
der, where the diffusion approximation breaks down and
in practice the fluxes are always flux-limited. To obtain
a precise description of the neutrino emitted spectrum,
one has to employ multi-flavour multi-group evolution-
ary codes (see e.g. [11]), that possibly also account for
neutrino leakage near the stellar border. This is outside
the aims of our work; however our approximations are
reasonable as far as one is interested in total quantities,
in particular the total neutrino luminosity Lν (Fig. 5),
which is equal to minus the gravitational mass variation
rate,

Lν = e2φ(R)4πR2Hν(R) = −dM

dt
, (44)

where Hν(R) is the neutrino energy luminosity at the
stellar border.

We determine the formula to estimate the signal in
terrestrial detectors following [9] and applying a slight
modification introduced by [3], and we specify our re-
sults for the Super-Kamiokande III detector [36, 37]. The
main reaction that occurs in a water detector like Super-
Kamiokande is the electron antineutrino absorption on
protons, ν̄e + p → n + e+ (Eq. (1) of [36]). The number
flux of antineutrinos arriving at the detector is given by

dN
dt

=
σ̃0ñpM
4πD2

eφν TνLν̄e

GW (eφν Tν, Eth)

7π4/120
, (45)

GW =

∫ ∞

Eth/T

x2
(
x − ∆

T

) √(
x − ∆

T

)2 −
(

me

T

)2

1 + ex
W (xT )dx,

(46)

where ñp ≃ 6.7 × 1031 kton−1 is the number of free pro-
tons (i.e., hydrogen atoms) per unit water mass of the
detector, σ̃0 = 0.941× 10−43 cm2MeV−2, M is the water
mass of the detector, D is the SN distance from the de-
tector, GW is a modified and truncated Fermi integral,
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