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As a recipient of  The D R 
Stranks Travelling Fellowship, 
Phiala Shanahan (PhD student 
in theoretical particle physics, 
University of Adelaide) visited 
eight different institutes across 
Europe and the US, and gave talks 
at seven of those places including 
University of Bern, Argonne 
National Lab, MIT and the 
University of Washington. 
“Most of my work has involved chiral 

perturbation theory techniques to interpret 

lattice QCD results. A benefit of the travel 
has been that I’m much better aware of 

how my research ties in with different 

groups around the world.”

“I now have a real sense of the international 

community in my field of research; many 
of the names I see on papers aren’t simply 

names anymore.”

As a result of her visits, Phiala has started 

new collaborative work with people at 

several institutes and at the same time 

established many personal connections.  

“I had anticipated that it might be difficult to 
connect with people on a personal level as 

I visited each place for such a short time. I 

was quite mistaken.”

Phiala intends to apply for postdoc 

researcher positions in the near future, 

which makes this Travelling Fellowship an 

essential part for her next step. 

Phiala’s whole rewarding and positive 

experience started from a well-planned 

scholarship application process, and 

is supported by people from different 

institutions including her supervisors. 

“I think that my application was successful 

because I presented a detailed travel plan 

that maximised the benefit derived from the 
fellowship.”

“My advice to other students applying for 

similar scholarships is to start the process 

early.”

TRAVELLING FELLOWSHIP OPENS UP NEW 
RESEARCH CAREER OPPORTUNITIES 

“ I now have a real sense of 
the international community 
in my field of research; 
many of the names I see on 
papers aren’t simply names 
anymore.”

AuguST 2014

Phiala Shanahan (PhD student in theoretical particle 
physics, University of Adelaide)

TWO COEPP rESEArCHErS 
AWArDED FuTurE 
FELLOWSHIPS BY AuSTrALIAN 
rESEArCH COuNCIL

A big congratulations to Dr Brian A 

Petersen (honorary fellow at University of 

Melbourne) and Dr Martin White (lecturer 

at University of Adelaide) who were 

recently awarded Future Fellowships by the 

Australian Research Council. 

The fellowships provide project funding of 

more than $750,000 and an organisational 

contribution of up to $50,000 per year to 

support related infrastructure, equipment, 

travel and relocation costs. 

Dr Brian Petersen’s project expands the 

reach of ATLAS experiment at the Large 

Hadron Collider and further explores some 

fundamental questions about the nature of 

the universe. 

Dr Martin White will use his fellowship to 

invent new data mining techniques to test 

the viability of a wide class of theoretical 

dark matter models, using an extensive 

range of particle physics and astrophysics 

data.

▸ Case study LQCD with unphysical quark 
masses (mπ~800 MeV, 450 MeV) 

1. Spectrum and scattering of light nuclei 
(A<5) [PRD 87 (2013), 034506] 

2. Nuclear structure: magnetic moments, 
polarisabilities (A<5) [PRL 113,  252001 (2014), PRL 
116,  112301 (2016)] 

3. Nuclear reactions: np→dγ [PRL 115, 132001 
(2015)] 

4.  Gamow-Teller transitions: pp→deν, 
gA(3H) [PRL 119 062002 (2017)] 

5. Double β decay: pp→nn  
[PRL 119, 062003 (2017)] 

6. Gluon structure (A<4) [PRD 96 094512 (2017)] 

7. Scalar/tensor currents (A<4) [PRL 120 152002 
(2018)]

CASE STUDY: NUCLEI IN LQCD

NPLQCD: UNPHYSICAL NUCLEI
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★    Together with the electroweak theory, QCD   
underlies all the interesting nuclear and strong-

interaction phenomena that we study.
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3. Nuclear Structure and Reactions
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Figure 3.1: Nuclear landscape. Map of bound nuclei as a function of Z and N. Mean drip lines, where the nuclear binding ends, and their uncertainties 
(red) were obtained by averaging the results of different theoretical models.

May the Strong Force Be with You

A long-standing effort is to understand how QCD 

in the low-energy regime manifests itself in nuclear 

phenomena. We know, for example, that the nucleon-

nucleon interaction, which is governed by the quark 

and gluon dynamics at short distances, can be viewed 

at large distances in terms of pion exchange. Bridging 

these two distance scales, connecting hadrons with 

light nuclei, refines our insights into the structure of 

nuclear forces, a great prospect. LQCD calculations 

will be particularly useful for those parts of the nuclear 

force that are difficult to address experimentally, 

such as the forces encoun tered by three nucleons 

approaching each other closely (three-nucleon forces). 

Lattice developments already include computations of 

nucleon-nucleon scattering and the binding energies 

and magnetic moments of light nuclei; other recent 

theoretical advances have provided us with a systematic 

approach to the nuclear force. Experimentally, by 

knocking out nucleons from the nucleus using high-

energy electromagnetic probes, researchers have 

investigated the behavior of nucleonic pairs in nuclei at 

very short distances, as presented in Chapter 2.

Quantitative modeling requires high-quality input. To 

increase the predictive capability of nuclear theory, 

modern methodologies have been developed to 

optimize nuclear forces to few-body systems and light 

nuclei. Another important goal is to develop an accurate 

interaction effective in nuclei and rooted in ab-initio 

theory. Properties of nuclear forces that depend on 

neutron-to-proton imbalance are not well constrained 

by the existing data. FRIB, with its extended reach in the 

N/Z ratio, will dramatically improve the situation.

Life in the Nuclear Borderlands

The territory of neutron-rich nuclei is the most fertile 

ground for research in nuclear structure. One of the 

paradigms of nuclear structure is the shell model of the 

atomic nucleus, in which a common force genera ted by 

all other nucleons governs the motion of each neutron 

or proton. Thanks to this common force, nucleonic orbits 

bunch together in energy, thereby forming “shells,” and 

nuclei having filled nucleonic shells are exceptionally 

well bound. The numbers of nucleons needed to fill 

each successive shell are called the magic numbers: 

the traditional ones are 2, 8, 20, 28, 50, 82, and 126; 

until recently they have been assumed to be immutable. 

However, a dramatic series of discoveries with current 

rare isotope research on the proton-magic oxygen 

(Z=8), calcium (Z=20), nickel (Z=28), and tin (Z=50) 

isotopes have shaken that assumption. For example, 

spectroscopic studies of neutron-rich oxygen isotopes 

(Sidebar 3.1) provided substantive evidence for new 

magic numbers at N=14 and 16, an outcome that explains 

the surprising location of the drip line for oxygen.



The 2015 Long Range Plan for Nuclear Science

Reaching for the Horizon
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Sidebar 2.4: The States of QCD Matter
The study of states of matter governed by the strong 

force parallels progress in other fields of matter in 

which surprising “emergent phenomena,” striking 

macroscopic phenomena in no way apparent in the 

laws describing the interactions between microscopic 

constituents, have been discovered. High temperature 

superconductivity is an emergent phenomenon arising 

in strongly correlated, electromagnetically interacting 

matter. The first goals after its discovery included the 

mapping of its phase diagram, shown at the upper-left, 

and the characterization of the newly found phases of 

matter, including the strange metal phase. As with QGP, 

there is no known way to describe its structure and 

properties particle by particle; understanding strange 

metals remains a central challenge. Experimental 

progress can come by changing the material doping—

adding more holes than electrons—and by probing the 

material at shorter wavelengths—for example, with the 

angle resolved photo emission spectroscopy (ARPES) 

technique, shown on the lower left—with the goal of 

understanding how strong correlations result in the 

emergence of the surprising macroscopic phenomena. 

Near perfect fluidity is an equally exciting and 

unexpected emergent phenomenon, in this case arising 

in strongly interacting matter in the QGP phase. Doping 

QGP, adding more quarks than antiquarks, is done via 

changing the collision energy and enables a search for 

a possible critical point in the phase diagram shown in 

the upper right. The reach of the RHIC BES-II program 

that will be enabled by new instrumentation at RHIC is 

shown, as are the trajectories on the phase diagram 

followed by the cooling droplets of QGP produced in 

collisions with varying energy. The microscopy of QGP 

is enabled by new “microscopes,” such as sPHENIX, 

shown in the lower right, and upgraded detectors and 

luminosities in the combined RHIC and LHC program.
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LQCD FOR NUCLEI

QCD FOR NUCLEAR PHYSICS

ΛQCD
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▸ Nuclear physics is Standard Model physics 

▸ Can compute the mass of lead 
nucleus ... in principle  

▸ In practice: a hard problem 

▸ QCD in non-perturbative domain 

▸ Physics at multiple scales 

▸ At least two exponentially difficult 
computational challenges 

▸ Noise: statistical uncertainty grows  
exponentially with A 

▸ Contraction complexity grows factorially

Multi-scale physics 
with at least two 
exponentially difficult 
computational 
challenges

In principle can 
calculate properties 
of any nucleus from 
QCD and EW



Outline

✦ Lattice QCD primer 

✦ Bottlenecks: signal-to-noise 

✦ Light nuclei and BB scattering 

✦ External probes and nuclear reactions
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L

b} M⇡L � 1

b ⌧ M�1
N

volume:

lattice spacing:

Lattice QCD = QCD on a grid or lattice

Can use Effective Field Theory to extrapolate in L and b!

(systematic uncertainties from lattice artifacts are controlled)

infrared cutoff

ultraviolet cutoff

Non-perturbative definition of QCD
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Figure 1: A two dimensional slice of the four dimensional space-time lattice. µ and ⇤ denote
unit-vectors in the indicated directions. ⌅(x) denotes a fermion-field at the lattice-site x,
Uµ(x) denotes the gauge link from the lattice-site x to the site x + bµ, and Pµ⇥(x) denotes
the 1⇥ 1 Wilson plaquette centered at x+ bµ/2 + b⇤/2.

The path integral can be rigorously defined on a discrete space-time. In order to preserve gauge
invariance the gauge fields are discretized as special unitary matrices, in the group SU(3), on the links
of the lattice (see Figure 1). The discrete gauge action is the sum over all plaquettes Pµ⇥(x) which

are the product of the links Uµ(x) = exp
⇤
i
⌥ x+µ̂

x dx�Aµ(x�)
⌅
around the elementary plaquettes of the

lattice,

Sg(U) = �
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xµ⇥
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3
Re Tr Pµ⇥(x)
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, (5)

with

Pµ⇥ = Uµ(x)U⇥(x+ µ̂)U †
µ(x+ ⇤̂)U †

⇥(x) . (6)

� is the lattice gauge coupling that is related to the strong coupling via � = 2NC/g2s where NC is the
number of colors. Taking the naive continuum limit, this action becomes the familiar continuum gauge
action, �

⌥
d4x1

4
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Ga

µ⇥(x)
⇥2
. The action in Eq. 5 is the well known Wilson gauge [1] action, and while

this discretization is not unique, it is the simplest. It can be modified by adding larger loops with
coe⇥cients appropriately chosen to achieve better convergence to the continuum, which is the ultimate
goal of the calculation.
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2.2 Euclidean Space Correlation Functions

Most Euclidean space correlation functions computed in LQCD calculations (suitably Fourier trans-
formed) are the sums of exponential functions. The arguments of the exponentials are the product of
Euclidean time with the eigenvalues of the Hamiltonian associated with eigenstates in the finite-volume
that couple to the hadronic sources and sinks. For a lattice that has infinite extent in the time-direction,
the correlation function at large times becomes a single exponential dictated by the ground state en-
ergy and the overlap of the source and sink with the ground state. As an example, consider the pion
two-point function, C�+(t), generated by a source (and sink) of the form ⇥+(x, t) = u(x, t)�5d(x, t),

C�+(t) =
⇤

x

⇥0| ⇥�(x, t) ⇥+(0, 0) |0⇤ , (14)

where the sum over all lattice sites at each time-slice, t, projects onto the p = 0 spatial momentum
states. The source ⇥+(x, t) not only produces single pion states, but also all states with the quantum
numbers of the pion. More generally, the source and sink are smeared over lattice sites in the vicinity
of (x, t) to increase the overlap onto the ground state and lowest-lying excited states. Translating the
sink operator in time via ⇥+(x, t) = eĤt⇥+(x, 0)e�Ĥt, and inserting a complete set of states, gives 5

C�+(t) =
⇤

n

e�Ent

2En

⇤

x

⇥0| ⇥�(x, 0)|n⇤⇥n|⇥+(0, 0)|0⇤ � A0
e�m�t

2m�
. (15)

At finite lattice spacing, the correlation functions for Wilson fermions remain sums of exponential
functions, but for particular choices of parameters used in the domain-wall discretization, the correlation
functions exhibit additional sinusoidally modulated exponential behavior at short-times with a period
set by the lattice spacing [61].

It is straightforward to show that the lowest energy eigenvalue extracted from the correlation function
in Eqs. (14) and (15) corresponds to the mass of the ⇥+ (and, more generally, the mass of the lightest
hadronic state that couples to the source and sink) in the finite volume. The masses of stable single
particle states can be extracted from a Lattice QCD calculation with high accuracy as long as the lattice
spatial extent is large compared to the pion Compton-wavelength 6.

Once a correlation function is calculated, a common objective is to extract the argument of the
exponential function that persists at large times. One way to do this is to simply fit the function over a
finite number of time-slices to a single exponential function. A second method, that is somewhat more
useful in visually assessing the quality of the calculation, is to form the e�ective mass (EM) function,
e.g

Me�.(t; tJ) =
1

tJ
log

�
C�+(t)

C�+(t+ tJ)

⇥
� m� , (16)

where both t and Me�.(t; tJ) are in lattice units. At large times, Me�.(t; tJ) becomes a constant equal
to the mass of the lightest state contributing to the correlation function 7. The anti-periodic boundary-
conditions in the time-direction, imposed on the quark-fields in order to recover the correct fermionic
partition function, result in the single meson correlation functions being periodic in the time direction

5We assume the absence of external electroweak fields that may exert forces on hadrons in the lattice volume.
6Finite-volume e�ects are exponentially suppressed [62] by factors of e�m⇡L.
7This is obviously the most simplistic approach to this problem. One well-known method to extract the ground state

and excited state energies is that of Lüscher and Wol� [63, 65] in which the correlation functions resulting from di�erent
sources and sinks are calculated. The resulting matrix of correlation functions is diagonalized, and the EM function for
each resulting eigenvalue can be used to extract the spectrum.
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hadronic state that couples to the source and sink) in the finite volume. The masses of stable single
particle states can be extracted from a Lattice QCD calculation with high accuracy as long as the lattice
spatial extent is large compared to the pion Compton-wavelength 6.

Once a correlation function is calculated, a common objective is to extract the argument of the
exponential function that persists at large times. One way to do this is to simply fit the function over a
finite number of time-slices to a single exponential function. A second method, that is somewhat more
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e.g
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where both t and Me�.(t; tJ) are in lattice units. At large times, Me�.(t; tJ) becomes a constant equal
to the mass of the lightest state contributing to the correlation function 7. The anti-periodic boundary-
conditions in the time-direction, imposed on the quark-fields in order to recover the correct fermionic
partition function, result in the single meson correlation functions being periodic in the time direction

5We assume the absence of external electroweak fields that may exert forces on hadrons in the lattice volume.
6Finite-volume e�ects are exponentially suppressed [62] by factors of e�m⇡L.
7This is obviously the most simplistic approach to this problem. One well-known method to extract the ground state

and excited state energies is that of Lüscher and Wol� [63, 65] in which the correlation functions resulting from di�erent
sources and sinks are calculated. The resulting matrix of correlation functions is diagonalized, and the EM function for
each resulting eigenvalue can be used to extract the spectrum.
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FIG. 17: The pion EMP’s determined on the four lattice ensembles used in this work. Note that
the y-axis scale is the same in all four panels.

A. The Pion Mass

The finite-volume contribution to the mass of the pion in SU(2)L ⇤ SU(2)R ⇥PT is given
by [11]

m�(L)�m�(⇧) =
3m3
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m�L
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⌃
2K1(

⌃
2m�L) +

4

3
⌃
3
K1(

⌃
3m�L) + . . .

⇥
(28)

whereK1(x) is the modified Bessel function. The meson masses have di�erent overall volume
scaling to the baryons, due to the absence of a three-meson vertex. As K1(z) ⌅ e�z/

⌃
z, the

results of the Lattice QCD calculations are shown in fig. 19 as a function of e�m�L/(m�L)3/2

rather than e�m�L/(m�L) as was used for the baryons. Consequently, the naive fit that we
perform to the meson masses is of the form

m(V )
M (m�L) = m(⇥)

M + c(V )
M

e�m� L

(m�L)3/2
. (29)

With the current precision of the Lattice QCD calculation, we cannot distinguish be-
tween the fit forms of e�m�L/(m�L) and e�m�L/(m�L)3/2 with statistical significance.

The fit parameters are m(⇥)
� = 0.069073(63)(62) t.l.u. = 387.8(0.4)(0.4)(2.5) MeV and

c(V )
� = 0.23(12)(07) t.l.u. = (1.30(65)(39)(01))⇥ 103 MeV.
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sink operator in time via ⇥+(x, t) = eĤt⇥+(x, 0)e�Ĥt, and inserting a complete set of states, gives 5

C�+(t) =
⇤

n

e�Ent

2En

⇤

x

⇥0| ⇥�(x, 0)|n⇤⇥n|⇥+(0, 0)|0⇤ � A0
e�m�t

2m�
. (15)

At finite lattice spacing, the correlation functions for Wilson fermions remain sums of exponential
functions, but for particular choices of parameters used in the domain-wall discretization, the correlation
functions exhibit additional sinusoidally modulated exponential behavior at short-times with a period
set by the lattice spacing [61].

It is straightforward to show that the lowest energy eigenvalue extracted from the correlation function
in Eqs. (14) and (15) corresponds to the mass of the ⇥+ (and, more generally, the mass of the lightest
hadronic state that couples to the source and sink) in the finite volume. The masses of stable single
particle states can be extracted from a Lattice QCD calculation with high accuracy as long as the lattice
spatial extent is large compared to the pion Compton-wavelength 6.

Once a correlation function is calculated, a common objective is to extract the argument of the
exponential function that persists at large times. One way to do this is to simply fit the function over a
finite number of time-slices to a single exponential function. A second method, that is somewhat more
useful in visually assessing the quality of the calculation, is to form the e�ective mass (EM) function,
e.g
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where both t and Me�.(t; tJ) are in lattice units. At large times, Me�.(t; tJ) becomes a constant equal
to the mass of the lightest state contributing to the correlation function 7. The anti-periodic boundary-
conditions in the time-direction, imposed on the quark-fields in order to recover the correct fermionic
partition function, result in the single meson correlation functions being periodic in the time direction

5We assume the absence of external electroweak fields that may exert forces on hadrons in the lattice volume.
6Finite-volume e�ects are exponentially suppressed [62] by factors of e�m⇡L.
7This is obviously the most simplistic approach to this problem. One well-known method to extract the ground state

and excited state energies is that of Lüscher and Wol� [63, 65] in which the correlation functions resulting from di�erent
sources and sinks are calculated. The resulting matrix of correlation functions is diagonalized, and the EM function for
each resulting eigenvalue can be used to extract the spectrum.
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sink operator in time via ⇥+(x, t) = eĤt⇥+(x, 0)e�Ĥt, and inserting a complete set of states, gives 5

C�+(t) =
⇤

n

e�Ent

2En

⇤

x

⇥0| ⇥�(x, 0)|n⇤⇥n|⇥+(0, 0)|0⇤ � A0
e�m�t

2m�
. (15)

At finite lattice spacing, the correlation functions for Wilson fermions remain sums of exponential
functions, but for particular choices of parameters used in the domain-wall discretization, the correlation
functions exhibit additional sinusoidally modulated exponential behavior at short-times with a period
set by the lattice spacing [61].

It is straightforward to show that the lowest energy eigenvalue extracted from the correlation function
in Eqs. (14) and (15) corresponds to the mass of the ⇥+ (and, more generally, the mass of the lightest
hadronic state that couples to the source and sink) in the finite volume. The masses of stable single
particle states can be extracted from a Lattice QCD calculation with high accuracy as long as the lattice
spatial extent is large compared to the pion Compton-wavelength 6.

Once a correlation function is calculated, a common objective is to extract the argument of the
exponential function that persists at large times. One way to do this is to simply fit the function over a
finite number of time-slices to a single exponential function. A second method, that is somewhat more
useful in visually assessing the quality of the calculation, is to form the e�ective mass (EM) function,
e.g

Me�.(t; tJ) =
1

tJ
log

�
C�+(t)

C�+(t+ tJ)

⇥
� m� , (16)

where both t and Me�.(t; tJ) are in lattice units. At large times, Me�.(t; tJ) becomes a constant equal
to the mass of the lightest state contributing to the correlation function 7. The anti-periodic boundary-
conditions in the time-direction, imposed on the quark-fields in order to recover the correct fermionic
partition function, result in the single meson correlation functions being periodic in the time direction

5We assume the absence of external electroweak fields that may exert forces on hadrons in the lattice volume.
6Finite-volume e�ects are exponentially suppressed [62] by factors of e�m⇡L.
7This is obviously the most simplistic approach to this problem. One well-known method to extract the ground state
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FIG. 17: The pion EMP’s determined on the four lattice ensembles used in this work. Note that
the y-axis scale is the same in all four panels.
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sources and sinks are calculated. The resulting matrix of correlation functions is diagonalized, and the EM function for
each resulting eigenvalue can be used to extract the spectrum.
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calculations given in table I. As shown previously, the volume dependence of the mass of a
given baryon can be calculated order-by-order in HB�PT. The formally-leading contribution
to the volume dependence of the mass of an octet baryon results from a one-loop diagram
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of pions the errors are time-independent, and importantly do not exponentially grow with
time.

The situation is, unfortunately, not so pleasant for systems involving any number of
baryons. For the case of a single proton, the correlation function has the form

⌥⇤ii(t)� =
�

x

⌥pi(x, t)pi(0, 0)� ⇤ Aii
p0 e�mpt , (22)

where an interpolating field that has non-vanishing overlap with the proton is pi ⇥
ua,T C�5dbui,c⇥abc, where a, b, c are color indices and i is a spin-index. The variance of this
correlation function is

N⌅2 ⇥ ⌥⇤ii†(t)⇤(t)ii� � ⌥⇤ii(t)�2 =
�

x

⌥pi(x, t)pi(x, t)pi(0, 0)pi(0, 0)� � ⌥⇤ii(t)�2

⇤ Ap2 e�3m⇤t � A2
p0 e�2mpt ⇤ Ap2 e�3m⇤t , (23)

and therefore the noise to signal ratio behaves as

⌅

x
=

⌅(t)

⌥⇤(t)� ⇥
1 
N

e(mp� 3
2m⇤)t . (24)

More generally, for a system of A nucleons, the noise to signal ratio behaves as

⌅

x
⇥ 1 

N
eA(mp� 3

2m⇤)t . (25)

Therefore, in addition to the signal itself falling as G ⇥ e�Ampt, the noise associated with
the correlator grows exponentially as in Eq. (25).

III. OUR CURRENT TECHNIQUES AND RESOURCES

The Lattice formulation of QCD is the perfect tool for evaluating the correlation functions
required to extract physical observables, such as hadron masses and phase shifts. It both
provides an ultraviolet regulator of the continuum field theory and converts functional inte-
grals into regular integrals of very high dimension. In the continuum, the QCD path integral
is

Z =

⇥
DAµD⇧̄D⇧ e

R
d4x(� 1

4F a
µ⇥F aµ⇥�⌅̄[Dµ�µ+m]⌅ + LG.F.) (26)

where Aµ is the gauge field representing the gluons, F a
µ⇤ is the gauge field strength and ⇧̄, ⇧

are the fermion fields representing the quarks. Dµ is the covariant derivative which ensures
gauge invariance and �µ are matrices satisfying the Cli�ord algebra. The physical quantities
in this theory can be calculated from correlation functions of operators O that are functions
of the quantum fields (quarks and gluons).

⌥O� =
1

Z

⇥
DAµD⇧̄D⇧ O e

R
d4x(� 1

4F a
µ⇥F aµ⇥�⌅̄[Dµ�µ+m]⌅ + LG.F.) (27)

We can now discretize the continuum path integral introducing a discrete space time. In
order to preserve gauge invariance the gauge fields are discretized as special unitary matrices,
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2. A Compilation of Deuteron Binding Energies from LQCD

This new calculation of the deuteron binding energy adds to a small number of previous calcu-
lations over a range of pion masses above ⇠ 300 MeV. This compilation is shown in Fig. 14. While
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FIG. 14: The pion mass dependence of the deuteron binding energy calculated with LQCD. The NPLQCD
anisotropic-clover result is from Ref. [10], the Yamazaki et al. results are from Refs. [14, 20] and the
NPLQCD isotropic-clover results are from this work and from Ref. [13].

there are LQCD calculations only at a few pion masses, the trend, surprisingly, appears to be that
the deuteron binding energy is approximately linear in the pion mass. The results of the HALQCD
collaboration (see, e.g. [17]), in which they do not find two-nucleon bound states at any pion mass
(to date) has not been included in this compilation as they are unable to precisely extract the
two-body binding energies and resort to modeling an energy-dependent object they extract from
lattice correlation functions.

B. Scattering in the 3S1-3D1 Coupled Channels

To recover the S-matrix in the 3S1-3D1 coupled channels, calculations must be performed that
isolate the phase shifts and mixing angle, �1↵, ✏1 and �1� , that are defined in eq. (8), from FV
volume observables that are accessible to LQCD calculations. The formalism has been put in place
to perform such calculations [35–38] through extending the seminal work of Lüscher [39, 40]. For
vanishing center-of-mass momentum, assuming that the contribution from �1� , D-waves and higher
are negligible, there is no contribution from ✏1 to the T1 energy eigenvalues, which are determined
only by �1↵, as given in eq. (9). Therefore, the FV induced T1 energy-shifts from those of two
non-interacting nucleons can be used to extract �1↵ below the inelastic threshold using the same
Lüscher machinery that is used to extract phase-shifts in the meson sector. In what follows, we
equate �1↵ with �(

3S1) for notational purposes.
Figures 15 show the e↵ective-k2 plots (Ek2Ps) associated with the first continuum T1 states in

each ensemble, with momentum near k = 2⇡/L. For an arbitrary two-body system, comprised of
particles with masses m1 and m2, with zero CoM momentum, k⇤2 is defined through

�E⇤ = E⇤
�m1 �m2 =

q
k⇤2 +m2

1
+
q
k⇤2 +m2

2
�m1 �m2 , (16)

where E⇤ is the energy in the CoM frame, defined by E⇤ =
p
E2 � |P|2 where E is the total energy

of the system and P is the momentum of the CoM. Figures 16 shows the Ek2Ps for states with
momentum near k = 2

p
2⇡/L. Inserting the values of k⇤ extracted from the plateau regions of the
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correlation functions scale as a power-law with the volume, and any multi-level model of these
correlation functions with the exclusion of one or more possible bound state(s) fails to reproduce
the behavior shown in Fig. 7.

In summary, the “mirage plateau” issue posed by Iritani et al. [52] appears to be irrelevant to
the calculations presented here. The results of the present work are consistent with the correlation
functions in each of two-baryon channels relaxing into a bound state at late times, with their
binding energies determined in the next section. Iritani et al. additionally question the validity of
the scattering amplitudes arising from these spectral studies, but again these claims have no bearing
on the current results as is shown in Appendix D (see also Ref. [99], where a coherent rebuttal of
Ref. [52] is presented).

C. Results and discussions

In this section, the results for the LQCD spectra will be used to: 1) obtain the S-wave5 scattering
amplitudes, explicitly the k⇤ cot � function, at low energies, 2) constrain the ERE parametrization
of the scattering amplitudes, 3) determine bound states and their binding energies, 4) examine
the naturalness of S-wave baryon-baryon interactions, and 5) provide constraints on the leading
SU(3)-symmetric interactions and well as the leading SU(6)-symmetric interactions in the limit of
large Nc.

1. k⇤ cot � function

Given the ten FV energy eigenvalues determined in the previous section for each two-baryon
channel, each scattering amplitude can be constrained at ten kinematic points via Lüscher’s QCs,
Eqs. (2) and (5). In the NR limit, the CM energy eigenvalues corresponding to a two-baryon
system at rest must be identical to that of the system in motion with two units of momentum
in one Cartesian direction (the direction of total spin in a spin-triplet system) [45]. Therefore,
two sets of energy eigenvalues obtained from d = (0, 0, 0) and d = (0, 0, 2) measurements on the
same ensemble do not provide constraints on scattering amplitude at distinct kinematic points.
Nonetheless, given that these are obtained from separate sets of measurements (they are different
Fourier projections of correlation functions with the same interpolating operators), including both
sets in the analysis leads to better constraints on the scattering parameters and the binding energies.

The S-wave scattering amplitude of the two-baryon channels with d = (0, 0, 0) and d = (0, 0, 2)
belonging to the 27 irrep, e.g. NN (1S0), is parametrized by a single phase shift, whose value
can be constrained at a given CM momentum using the QC in Eq. (2), up to contaminations
from G-wave interactions that are neglected. The resulting k⇤ cot � function is shown in Fig. 8 for
the ten energy eigenvalues obtained in the previous section. The figure includes the corresponding

2
p
⇡L

Z
d
00[1; (k⇤L/2⇡)2] functions from which k⇤ cot � is obtained, see Eqs. (2) and (3) with l = m = 0.

The (�
p

�k⇤2) function, whose intersection with k⇤ cot � determines the location of the bound state
pole in the amplitude (see Eq. (1)), is also shown in Fig. 8.

For the spin-triplet channels NN (3S1), N⌃ (3S1) and 1
p
2
(⌅0n+⌅�p) (3S1) associated with the

10, 10 and 8A irreps, respectively, additional mixing into the D-wave in anticipated. As discussed
in Sec. II A, in the Blatt-Biedenharn parametrization, and with the boost vectors d = (0, 0, 0) and
d = (0, 0, 2), the ↵-wave phase shift can be constrained at a given CM momentum using the QC in

5 The term S-wave is collectively used to refer to S-wave in spin-singlet channels and ↵-wave in spin-triplet channels.



TABLE II: Results from the lowest-lying continuum states in the 1S0 channel.

Ensemble |P| b�E |k|/m� k cot �/m� � (o)

243 ⇥ 48 0 0.0358(13)(16) 0.3506(64)(78) 0.175+.034
�0.031

+0.043
�0.036 63.4(3.8)(4.7)

243 ⇥ 48 1 0.1609(16)(37) 0.7197(41)(93) �0.30+0.07
�0.07

+0.15
�0.17 -67(5)(11)

323 ⇥ 48 0 0.0165(13)(22) 0.2373(92)(96) 0.030+0.031
�0.028

+0.057
�0.046 83(7)(13)

from each of the ensembles.
Below the inelastic threshold, at |k|2 = MNm� +m2

�/4, where k is the magnitude of the
three-momentum of each nucleon in the center-of-mass (CoM) frame, the s-wave scattering
amplitude can be uniquely described by a single phase shift and more directly k cot �. Near
threshold, and more generally, below the t-channel cut, k cot � has a power-series expansion
in terms of the kinetic energy of the two-nucleons,

k cot � = �1

a
+

1

2
r|k|2 + P |k|4 + O

�
|k|6

⇥
, (2)

called the e�ective range expansion (ERE), where a is the scattering length (using the nuclear
physics sign convention), r is the e�ective range and P is the shape parameter. While the
range of possible values of the scattering length is unbounded, the size of the e�ective range
and shape parameter are set by the range of the interaction. In fig. 3, the extracted values of
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FIG. 3: k cot � in the 1S0 channel. The positive energy values are given in Table II and the negative
energy value is determined from the di-neutron binding energy. The left panel is a two-parameter fit
to the ERE, and the right panel is a three-parameter fit to the ERE, as described in the text. The
inner (outer) shaded region corresponds to the statistical uncertainty (statistical and systematic
uncertainties combined in quadrature).

k cot �/m� given in Table II for |P| = 0 and from the di-neutron binding energy are shown as
a function of |k|2/m2

�. The three points shown in fig. 3 lie significantly below the t-channel
cut and so the ERE of k cot � can be fit to define the phase shift throughout this kinematic
regime. With three points to fit, two-parameter (left panel) and three-parameter (right
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Nucleon-nucleon scattering
panel) fits to the ERE of k cot �/m� are performed and are shown as the shaded regions in
fig. 3.

The successful description by a two-parameter fit indicates small values of the terms that
are higher order in the ERE, consistent with what is observed at the physical pion mass.
The scattering length and e�ective range determined from the two-parameter fit are

m�a
(1S0) = 9.50+0.78

�0.69
+1.10
�0.80 , m�r

(1S0) = 4.61+0.29
�0.31

+0.24
�0.26 , (3)

corresponding to

a(
1S0) = 2.33+0.19

�0.17
+0.27
�0.20 fm , r(

1S0) = 1.130+0.071
�0.077

+0.059
�0.063 fm . (4)

The uncertainties associated with a(
1S0) and r(

1S0) are correlated, and their 68% confidence
region is shown in fig. 4. The uncertainty in the scattering length is asymmetric as it is
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FIG. 4: The 68% confidence region associated with m�a(
1S0) and m�r(

1S0) in the 1S0 channel. The
inner region corresponds to statistical uncertainties and the outer region corresponds to statistical
and systematic uncertainties combined in quadrature.

the inverse scattering length that is the fit parameter. The shape parameter obtained from
the three parameter fit to the ERE expansion is consistent with zero: Pm3

� = �1+4
�5

+5
�8. The

scattering length and e�ective range extracted from the three-parameter fit are consistent
with the two-parameter fit, but with larger uncertainties. A full quantification of the the-
oretical error in the determination of the ERE parameters requires more calculations than
are currently available.

The phase shift below the t-channel cut can be determined from these fit parameters,
and is shown in fig. 5, along with the results of the LQCD calculations and the phase shift
at the physical values of the quark masses. We expect the phase shift predicted by the ERE
to deviate significantly from the true phase shift near the start of the t-channel cut, and this
is indeed suggested by fig. 5. Like the phase shift at the physical point, the phase shift at
the SU(3) symmetric point is found to change sign at larger momenta, consistent with the
presence of a repulsive hard core in the NN interaction.
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the inverse scattering length that is the fit parameter. The shape parameter obtained from
the three parameter fit to the ERE expansion is consistent with zero: Pm3
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�8. The

scattering length and e�ective range extracted from the three-parameter fit are consistent
with the two-parameter fit, but with larger uncertainties. A full quantification of the the-
oretical error in the determination of the ERE parameters requires more calculations than
are currently available.

The phase shift below the t-channel cut can be determined from these fit parameters,
and is shown in fig. 5, along with the results of the LQCD calculations and the phase shift
at the physical values of the quark masses. We expect the phase shift predicted by the ERE
to deviate significantly from the true phase shift near the start of the t-channel cut, and this
is indeed suggested by fig. 5. Like the phase shift at the physical point, the phase shift at
the SU(3) symmetric point is found to change sign at larger momenta, consistent with the
presence of a repulsive hard core in the NN interaction.

7

�23.71 fm
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In fig. 8, the extracted values of k cot �/m� given in Table III and from the deuteron
binding energy are shown as a function of |k|2/m2

�. Following the procedure used to analyze
the results in the 1S0-channel, again with three points to fit, two-parameter (left panel) and
three-parameter (right panel) fits to the ERE of k cot �/m� are performed and shown as
the shaded regions in fig. 8. The scattering length and e�ective range determined from the
two-parameter fit are

m�a
(3S1) = 7.45+0.57

�0.53
+0.71
�0.49 , m�r

(3S1) = 3.71+0.28
�0.31

+0.28
�0.35 , (5)

corresponding to

a(
3S1) = 1.82+0.14

�0.13
+0.17
�0.12 fm , r(

3S1) = 0.906+0.068
�0.075

+0.068
�0.084 fm , (6)

and fig. 9 shows the 68% confidence region for the extracted values of a(
3S1) and r(

3S1). The
shape parameter obtained from the three parameter fit to the ERE expansion is consistent
with zero: Pm3

� = 2+5
�6

+5
�6. Again the scattering length and e�ective range extracted from the

three-parameter fit are consistent with the two-parameter fit, but with larger uncertainties.
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FIG. 9: The 68% confidence region associated with m�a(
3S1) and m�r(

3S1) in the 3S1 channel. The
inner region corresponds to statistical uncertainties and the outer region corresponds to statistical
and systematic uncertainties combined in quadrature.

The phase shift below the t-channel cut can be determined from these fit parameters, and
is shown in fig. 10, along with the results of the LQCD calculations and the phase shift at
the physical point. As in the 1S0 channel, the phase shift predicted by the ERE is expected
to deviate significantly from the true phase shift near the t-channel cut, and this is seen in
fig. 10. Like the 3S1 phase shift at the physical point, and the phase shift we have obtained
in the 1S0 channel, the phase shift at the SU(3) symmetric point is found to change sign at
larger momenta, consistent with the presence of a repulsive hard core in the NN interaction.
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3S1). The
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with zero: Pm3
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The phase shift below the t-channel cut can be determined from these fit parameters, and
is shown in fig. 10, along with the results of the LQCD calculations and the phase shift at
the physical point. As in the 1S0 channel, the phase shift predicted by the ERE is expected
to deviate significantly from the true phase shift near the t-channel cut, and this is seen in
fig. 10. Like the 3S1 phase shift at the physical point, and the phase shift we have obtained
in the 1S0 channel, the phase shift at the SU(3) symmetric point is found to change sign at
larger momenta, consistent with the presence of a repulsive hard core in the NN interaction.
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The successful description by a two-parameter fit indicates small values of the terms that
are higher order in the ERE, consistent with what is observed at the physical pion mass.
The scattering length and e�ective range determined from the two-parameter fit are
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the inverse scattering length that is the fit parameter. The shape parameter obtained from
the three parameter fit to the ERE expansion is consistent with zero: Pm3

� = �1+4
�5

+5
�8. The

scattering length and e�ective range extracted from the three-parameter fit are consistent
with the two-parameter fit, but with larger uncertainties. A full quantification of the the-
oretical error in the determination of the ERE parameters requires more calculations than
are currently available.

The phase shift below the t-channel cut can be determined from these fit parameters,
and is shown in fig. 5, along with the results of the LQCD calculations and the phase shift
at the physical values of the quark masses. We expect the phase shift predicted by the ERE
to deviate significantly from the true phase shift near the start of the t-channel cut, and this
is indeed suggested by fig. 5. Like the phase shift at the physical point, the phase shift at
the SU(3) symmetric point is found to change sign at larger momenta, consistent with the
presence of a repulsive hard core in the NN interaction.
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Scattering in a finite volume

[Luescher(1990)]

S-matrix

2

teractions. Several years ago, the NPLQCD Collabora-

tion performed the first nf = 2 + 1 LQCD calculations

of YN interactions [24] (and NN interactions [25]) at un-

physical pion masses. Quenched and dynamical calcula-

tions were subsequently performed by the HALQCD Col-

laboration [26] and by NPLQCD [27]. Recent work by

NPLQCD [28–30] and HALQCD [31, 32] has shown that

the S = �2 H-dibaryon is bound for pion masses larger

than those of nature, and NPLQCD [30] has shown that

the same is true for the ⇥
�
⇥
�

with S = �4. In this

letter, we use the results of LQCD calculations to deter-

mine leading-order (LO) couplings of the YN EFT (using

Weinberg power counting [23]) which in turn allow for a

determination of YN interactions at the physical pion

mass.

In LQCD, Lüscher’s method [33–36] can be employed

to extract two-particle scattering amplitudes below in-

elastic thresholds. For a single scattering channel, the

deviation of the energy eigenvalues of the two-hadron

system in the lattice volume from the sum of the single-

hadron masses is related to the scattering phase shift

⇥(q). The Euclidean time behavior of LQCD correlation

functions of the form C⇤(t) = �0|⌃(t)⌃†
(0)|0 , where ⌃

represents an interpolating operator with the quantum

numbers of the one-particle or two-particle systems under

consideration, determines the ground-state energies of

the one-particle and two-particle systems, EA,B
1 = mA,B

and E(AB)
2 =

⌅
q2 +m2

A +

⌅
q2 +m2

B , respectively. The

form of the interpolating operators and the methodology

used for extracting the energy shift are discussed in detail

in Ref. [37]. By computing the masses of the particles and

the ground-state energy of the two-particle system, one

obtains the squared momentum q2, which can be either

positive or negative. For s-wave scattering below inelas-

tic thresholds, q2 is related to the real part of the inverse

scattering amplitude through the eigenvalue equation [34]

(neglecting phase shifts in l ⌅ 4 partial-waves):

q cot ⇥(q) =

1

⇧L
lim

�⇥⇤

|j|<�⇤

j

1

|j|2 � q2
�

L
2⇥

⇥2 � 4⇧� .(1)

This relation enables an LQCD determination of the

value of the phase shift at the momentum

⌅
q2.

Determining the ground-state energy of a system in

multiple lattice volumes allows for bound states to be

distinguished from scattering states. A bound state cor-

responds to a pole in the S matrix, and in the case of a

single scattering channel, is signaled by cot ⇥(q) ⌥ +i in
the large-volume limit. With calculations in two or more

lattice volumes that both have q2 < 0 and q cot ⇥(q) < 0

it is possible using Eq. (1) to perform an extrapolation

to infinite volume to determine the binding energy of

the bound state B⇤ = �2/m, where � is the binding

momentum [34–36]. The range of nuclear interactions

is determined by the pion mass, and therefore the use of

Lüscher’s method requires thatm⇥L ⌃ 1 to strongly sup-

press the contributions that depend exponentially upon

the volume, e�m�L
[38]. However, corrections of the form

e��L
, where ��1

is approximately the size of the bound

state, must also be small for the infinite volume extrap-

olation to rapidly converge.

Our results are from calculations on two ensembles

of nf = 2 + 1 anisotropic clover gauge-field configura-

tions [39, 40] at a pion mass of m⇥ ⇧ 389 MeV, a spa-

tial lattice spacing of bs ⇧ 0.123(1) fm, an anisotropy

of ⌅ ⇧ 3.5, and with spatial extents of 24 and 32 lat-

tice sites, corresponding to spatial dimensions of L ⇧ 3.0
and 3.9 fm, respectively, and temporal extents of 128, and

256 lattice sites, respectively. A detailed analysis demon-

strates that the single-baryon masses in these lattice en-

sembles are e⌅ectively in the infinite-volume limit [41],

and that exponential volume corrections can be neglected

in this work. Lüscher’s method assumes that the contin-

uum single-hadron energy-momentum relation is satisfied

over the range of energies used in the eigenvalue equation

in Eq. (1). As discussed in Refs. [28, 30], the uncertain-

ties in the energy-momentum relation translate to a 2%

uncertainty in the determination of q2.
We focus on

1S0 and
3S1 n⇤�

interactions, N⇤ in the

I = 3/2 channel, and do not consider the I = 1/2 N⇤-

N� coupled channels. Calculations in the I = 1/2 chan-

nel are complicated by the proximity in energy of the

ground and first-excited levels in the finite volume. More-

over, while the ⇤ is more massive than the �, the pres-

ence of �’s in dense matter does not lower the electron

Fermi energy. In the limit of SU(3) flavor symmetry,

the
1S0-channels are in symmetric irreducible representa-

tions of 8 ⇤ 8 = 27 ⇥ 10 ⇥ 10 ⇥ 8 ⇥ 8 ⇥ 1, and hence

the n⇤�
(along with the ⇥

�
⇥
�
, ⇤

�
⇤

�
, nn, and ⇤

�
⇥
�
)

transforms in the 27. YN and NN scattering data along

with the leading SU(3) breaking e⌅ects, arising from the

light-meson and baryon masses, suggest that all of these

channels are attractive at the physical pion mass, and

that ⇥
�
⇥
�

and ⇤
�
⇤

�
are bound [42–44]. By contrast,

the
3S1-channel of n⇤�

scattering transforms in the 10 in

the limit of SU(3) symmetry, and is therefore unrelated

to NN interactions. Hence, this channel is quite uncer-

tain, with disagreements among hadronic models as to

whether the interaction is attractive or repulsive.

The low-energy n⇤�
interactions can be described by

an EFT of nucleons, hyperons and pseudoscalar mesons

(⇧, K and ⇤), constrained by chiral symmetry [19, 22, 23].

At leading order (LO) in the expansion, the n⇤�
inter-

action is given by one-meson exchange together with a

contact operator that encodes the low-energy e⌅ect of

short-distance interactions. As these contact operators

are independent of the light-quark masses, at LO the

quark-mass dependence of the n⇤�
interactions is dic-

tated by the meson masses. Therefore, in each partial

wave, a single lattice datum at a su⌥ciently low pion

mass determines the coe⌥cient of the contact opera-

?
M�1

R

L

R ⇠ m�1
⇡

R < L/2
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shown. Note that the vertical and horizontal error bars are displayed for simplicity and do not
reflect the strongly correlated distributions of the k⇤ cot � and k⇤2 results. The precise form of the
uncertainties are those shown in Fig. 8. In all channels, a two-parameter ERE describes the data
well. The three-parameter ERE fits provide only small improvements in the values of �2/d.o.f of
the fits, with the resulting scattering lengths and effective ranges being consistent with those of the
two-parameter fit but with larger uncertainties. The values of the inverse scattering lengths and
effective ranges from the two and three-parameter fits, as well as the shape parameters from the
three-parameter fits, are listed in Table II. The fit parameters are correlated, with their best values
described by a multi-dimensional confidence ellipsoid. The 68% and 98% confidence ellipses from
the two-parameter ERE are shown in Fig. 13, with the values of the center of the ellipses, their
semi-minor and semi-major axes, as well as the slope of the semi-major axis of each ellipse listed
in Table XIV of Appendix C.

The values of the inverse scattering lengths and effective ranges of the two-parameter EREs that
are tabulated in Table II in lattice units can be expressed in physical units:

27 irrep: a�1 = 0.44(+4)(+8)
(�5)(�8) fm

�1, r = 1.04(+10)(+18)
(�10)(�18) fm, (19)

10 irrep: a�1 = 0.63(+6)(+10)
(�5)(�11) fm

�1, r = 0.70(+16)(+12)
(�2)(�20) fm, (20)

10 irrep: a�1 = 0.16(+15)(+6)
(�13)(�6) fm

�1, r = 1.74(+36)(+34)
(�16)(�48) fm, (21)

8A irrep: a�1 = 0.88(+8)(+14)
(�7)(�14) fm

�1, r = 0.50(+10)(+14)
(�6)(�14) fm. (22)

The numbers in the first and second parentheses denote, respectively, the statistical uncertainty,
and the systematic uncertainty propagated from the corresponding uncertainties in the energies.
The uncertainty in the lattice spacing is small compared with other uncertainties. Although these
calculations have been performed for heavy quark masses at the flavor-symmetric point and without
QED interactions, it is still interesting to compare these parameters with those in nature. While
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FIG. 2: The EMPs of two baryons at rest (upper panel) and with d = (0, 0, 2) (lower panel) in the 27 irrep
for the SP (blue) and SS (pink) source-sink combinations (the upper panel of each segment), as well as the
EMP (the lower panel of each segment) corresponding to the ratio of the SS two-baryon correlation function
and the square of the SS single-baryon correlation function. The bands correspond to one-exponential fits
to the SS/SS correlation function ratios and obtain the energy shift �E = EBB � 2MB . The inner bands
represent the statistical uncertainty of the fits, while the outer bands correspond to the statistical and
systematic uncertainties combined in quadrature. The systematic uncertainty encompasses the variation of
the fit window, as described in the text, with the longest time interval considered shown in the plots. The
additional systematic resulting from multiple analyses is included in the bands. All quantities are expressed
in lattice units (l.u.).

In principle, two-baryon correlation functions contain spectral information beyond ground-state
energies. Although this study did not use a large basis of operators, physical intuition regarding
the differing nature of bound and scattering states of a two-baryon system suggested constructing
not only the two-baryon operators that interpolate to two baryons at rest or in motion with equal
velocity, but also those that interpolate to two baryons with relative back-to-back momenta. While
the former can have significant overlap onto a compact state in a finite volume (corresponding to
a bound state in infinite volume), they are not optimal interpolators for states corresponding to
the scattering states of infinite volume. This results in correlation functions that are dominated by

12

FIG. 1: The single-baryon EMPs for the SP (blue) and SS (pink) source-sink combinations. The center
and right panels present the same EMPs as in the left panel, rescaled to focus on the plateau region. The
bands correspond to a correlated single-exponential fit to the SP and SS correlation functions, and obtain
the mass of the baryon, MB . The inner bands represent the statistical uncertainty of the fits, while the outer
bands correspond to the statistical and systematic uncertainties combined in quadrature. The systematic
uncertainty encompasses the variation of the fit window, as described in the text, with the longest time
interval considered shown in the plots. The additional systematic resulting from multiple analyses is included
in the bands. All quantities are expressed in lattice units (l.u.).

exponential factors in both the numerator and the denominator of the ratio on the right-hand side
of Eq. (17) are negligible compared with unity, a fit to a single exponential can be performed at large
times, following the analysis steps described above, to obtain the energy shift �E ⌘ E(0)

BB � 2MB.
The effective energy-shift function associated with the ratio in Eq. (17) can be defined as

R(⌧ ;d, ⌧J) =
1

⌧J
log


R(⌧ ;d)

R(⌧ + ⌧J ;d)

�
⌧!1
�! �E. (18)

Given the form of R(⌧ ;d), flat behavior of R(⌧ ;d, ⌧J) in time is not a sufficient indicator that
the function R(⌧ ;d) is a single exponential. The values of overlap ratios in the numerator and
the denominator in Eq. (17) may conspire to give rise to flat behavior, despite neither the single-
baryon nor the two-baryon systems being in their respective ground states. As a result, in fitting
the quantity R(⌧ ;d), none of the fit intervals must begin earlier than the beginning of the single-
exponential regions in the single-baryon and two-baryon EMPs.
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determined in three volumes, a controlled extrapolation to infinite volume is possible in the present
work. Fitting to the truncated form of the FV QC for negative k⇤2 values, Eq. (8), the infinite-
volume binding momenta, (1), can be obtained in each channel. These results are presented in
Table III for measurements with d = (0, 0, 0) and (0, 0, 2), with complete agreement seen between
the two determinations. The bootstrap samples of extracted (1) values from each case can be
combined to obtain a conservative estimate of the binding momenta and their uncertainties, given
in the last row of Table III. The omitted terms in the truncated form in Eq. (8) are negligible as
e�

p
3(1)L is at most ⇠ 10�3 for the channels belonging to the 27, 10 and 8A irreps. The stability

of the extracted binding momenta has been verified by excluding lower-order terms and by adding
higher-order terms to the fits.

Table III also includes the (1) values for the channels belonging to the 10 irrep. As is seen from
Fig. 11, the ground-state energy in the largest volume is close to threshold. Nonetheless, assuming
that there is a bound state in this channel, a determination of (1) based on the fit to Eq. (8) is
fully consistent with the ground-state energies at the largest volume, as well as with the location of
the pole in the scattering amplitude. From these results, the existence of a bound state in the 10
irrep cannot be confirmed or excluded with statistical significance. Future calculations with higher
statistics are needed in order to draw robust conclusions about the nature of the ground state in
the 10 irrep.

In physical units, the binding energies of these states are:

27 irrep: B = 20.6(+1.8)
(�2.4)

(+2.8)
(�1.6) MeV, (25)

10 irrep: B = 27.9(+3.1)
(�2.3)

(+2.2)
(�1.4) MeV, (26)

10 irrep: B = 6.7(+3.3)
(�1.9)

(+1.8)
(�6.2) MeV, (27)

8A irrep: B = 40.7(+2.1)
(�3.2)

(+2.4)
(�1.4) MeV, (28)

where B = �2
q

�(1)2 + M2
B + 2MB. Again, the first uncertainty is statistical and the second

uncertainty encompasses both a fitting uncertainty and an uncertainty encoding variation among
multiple analyses. The uncertainty in the lattice spacing is small compared with other uncertainties.
These binding energies are consistent with our previous determination in Ref. [20, 21], and with
the binding energies obtained on the same ensembles of gauge-field configurations in Ref. [99] for
the ground states of the two-nucleon channels in the 27 and 10 irreps.

4. S-wave baryon-baryon interactions and naturalness

Interactions are considered unnatural if they give rise to some characteristic length scale of the
system that is much larger than their range. There are at least two measures to assess naturalness
in a two-particle system. For scattering states at low energies, scattering length defines a charac-
teristic length scale, and the range of interactions can be approximated by the effective range. As
an example, S-wave interactions in the spin-singlet and spin-triplet two-nucleon channels in nature
produce effective range to scattering length ratios, r/a, that are ⇡ �0.14 and ⇡ 0.32, respectively.
This indicates that both channels are unnatural, particularly the spin-singlet channel. When inter-
actions support a bound state, another characteristic length scale of the two-particle system is the
inverse of the binding momentum, which defines an intrinsic size for the bound state. Considering
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correlation functions scale as a power-law with the volume, and any multi-level model of these
correlation functions with the exclusion of one or more possible bound state(s) fails to reproduce
the behavior shown in Fig. 7.

In summary, the “mirage plateau” issue posed by Iritani et al. [52] appears to be irrelevant to
the calculations presented here. The results of the present work are consistent with the correlation
functions in each of two-baryon channels relaxing into a bound state at late times, with their
binding energies determined in the next section. Iritani et al. additionally question the validity of
the scattering amplitudes arising from these spectral studies, but again these claims have no bearing
on the current results as is shown in Appendix D (see also Ref. [99], where a coherent rebuttal of
Ref. [52] is presented).

C. Results and discussions

In this section, the results for the LQCD spectra will be used to: 1) obtain the S-wave5 scattering
amplitudes, explicitly the k⇤ cot � function, at low energies, 2) constrain the ERE parametrization
of the scattering amplitudes, 3) determine bound states and their binding energies, 4) examine
the naturalness of S-wave baryon-baryon interactions, and 5) provide constraints on the leading
SU(3)-symmetric interactions and well as the leading SU(6)-symmetric interactions in the limit of
large Nc.

1. k⇤ cot � function

Given the ten FV energy eigenvalues determined in the previous section for each two-baryon
channel, each scattering amplitude can be constrained at ten kinematic points via Lüscher’s QCs,
Eqs. (2) and (5). In the NR limit, the CM energy eigenvalues corresponding to a two-baryon
system at rest must be identical to that of the system in motion with two units of momentum
in one Cartesian direction (the direction of total spin in a spin-triplet system) [45]. Therefore,
two sets of energy eigenvalues obtained from d = (0, 0, 0) and d = (0, 0, 2) measurements on the
same ensemble do not provide constraints on scattering amplitude at distinct kinematic points.
Nonetheless, given that these are obtained from separate sets of measurements (they are different
Fourier projections of correlation functions with the same interpolating operators), including both
sets in the analysis leads to better constraints on the scattering parameters and the binding energies.

The S-wave scattering amplitude of the two-baryon channels with d = (0, 0, 0) and d = (0, 0, 2)
belonging to the 27 irrep, e.g. NN (1S0), is parametrized by a single phase shift, whose value
can be constrained at a given CM momentum using the QC in Eq. (2), up to contaminations
from G-wave interactions that are neglected. The resulting k⇤ cot � function is shown in Fig. 8 for
the ten energy eigenvalues obtained in the previous section. The figure includes the corresponding

2
p
⇡L

Z
d
00[1; (k⇤L/2⇡)2] functions from which k⇤ cot � is obtained, see Eqs. (2) and (3) with l = m = 0.

The (�
p

�k⇤2) function, whose intersection with k⇤ cot � determines the location of the bound state
pole in the amplitude (see Eq. (1)), is also shown in Fig. 8.

For the spin-triplet channels NN (3S1), N⌃ (3S1) and 1
p
2
(⌅0n+⌅�p) (3S1) associated with the

10, 10 and 8A irreps, respectively, additional mixing into the D-wave in anticipated. As discussed
in Sec. II A, in the Blatt-Biedenharn parametrization, and with the boost vectors d = (0, 0, 0) and
d = (0, 0, 2), the ↵-wave phase shift can be constrained at a given CM momentum using the QC in

5 The term S-wave is collectively used to refer to S-wave in spin-singlet channels and ↵-wave in spin-triplet channels.
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1. Solving the 3-d Schrodinger Equation - A Sanity Check

Given the confusing nature of this analysis, we have to be sure that our extracted potential
recovers the energy levels in the finite volume. So I had to learn how to do this e�ciently!

If we are given a potential V (r), how do we find the energy eigenvalues in a finite cubic
volume with periodic boundary conditions. the condensed matter types do this all the time.
We work in momentum space:
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which gives rise to a periodic potential with V (r) = V (r +mL) and periodic wavefunction
with  (r) =  (r+mL). We recall that with the periodic potential, spatial integrations are
limited to the cubic volume.

The 3-dim Schrodinger equation is
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after equating terms with the same exponential dependence. Working in the basis of mo-
mentum eigenstates defined by the n-vectors, we have matrix elements of the Hamiltonian
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Ṽ (k) ! VL(r) =
1

L3

X

n

e
i2⇡n·r/L
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Given the confusing nature of this analysis, we have to be sure that our extracted potential
recovers the energy levels in the finite volume. So I had to learn how to do this e�ciently!

If we are given a potential V (r), how do we find the energy eigenvalues in a finite cubic
volume with periodic boundary conditions. the condensed matter types do this all the time.
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which gives rise to a periodic potential with V (r) = V (r +mL) and periodic wavefunction
with  (r) =  (r+mL). We recall that with the periodic potential, spatial integrations are
limited to the cubic volume.
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mentum eigenstates defined by the n-vectors, we have matrix elements of the Hamiltonian
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FIG. 2: LQCD-predicted 3S1 n�� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

mass determines the coe⌃cient of the contact opera-

tor, thereby determining the LO interaction, including

energy-independent and local potentials, wavefunctions

and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the
1S0 n⇤�

channel are consistent with the SU(3) symmetry expecta-

tions. At m� ⇤ 389 MeV, using a volume extrapolation

as discussed above, we find that this channel has a bound

state, with binding energy B = 25± 9.3± 11 MeV. The

quality of the LQCD data in the
1S0 n⇤�

channel is com-

parable to that of its 27-plet partner ⇥�
⇥
�
, analyzed in

detail in Ref. [28] (see also [43]). In the EFT, the coe⌃-

cient of the LO contact operator in this channel is deter-

mined by tuning it to reproduce the LQCD-determined

binding energy. We find that this channel becomes un-

bound at m� ⇤ 300 MeV, in agreement with Ref. [44],

which constrained the LO contact operator using exper-

imental data. In Fig. 1, we show the predicted
1S0 n⇤�

phase shift at the physical pion mass — (dark, light) blue

bands correspond to (statistical, systematic) uncertain-

ties — and compare with the EFT constrained by ex-

perimental data [21], the Nijmegen NSC97f model [12],

and the Jülich ’04 model [16]. The systematic uncer-

tainties on our predictions include those arising from the

LQCD calculation (see [43]) as well as estimates of omit-

ted higher-order e⌅ects in the EFT.

The
3S1-

3D1 n⇤�
coupled channel is found to be highly

repulsive in the s-wave at m� ⇤ 389 MeV, requiring in-

teractions with a hard repulsive core of extended size.

Such a core, if large enough, would violate a condition re-

quired to use Lüscher’s relation, namely R ⌅ L/2 where

R is the range of the interaction. We have determined

the EFT potential directly by solving the 3-dimensional

Schrödinger equation in finite volume to reproduce the

energy levels obtained in the LQCD calculations. The re-

pulsive core is found to be large, and formally precludes

the use of Lüscher’s relation, but both methods lead to

phase shifts that agree within uncertainties, indicating

that the exponential corrections to Lüscher’s relation are

small. In Fig. 2, we show the predicted
3S1 n⇤�

phase

shift at the physical pion mass.

The n⇤�
interactions presented here are the crucial

ingredient in calculations that address whether ⇤
�
’s ap-

pear in dense neutron matter. As a first step, and in order

to understand the competition between attractive and re-

pulsive components of the n⇤�
interaction, we adopt a

result due to Fumi for the energy shift due to a static

impurity in a non-interacting Fermi system [45]:

�E = � 1

⇤µ

� kf

0
dk k

⇥
3

2

�3S1
(k) +

1

2

�1S0
(k)

⇤
, (2)

where µ is the reduced mass in the n⇤�
system. Us-

ing our LQCD determinations of the phase shifts, and

allowing for a 30% theoretical uncertainty, the resulting

energy shift and uncertainty band is shown in Fig. 3. At

neutron number density ⌅n ⇤ 0.4 fm
�3

, which may be

found in the interior of neutron stars, the neutron chem-

ical potential is µn ⇤ MN + 150 MeV due to neutron-

neutron interactions, and the electron chemical potential,

µe� ⇤ 200 MeV [46]. Therefore µn + µe� ⇤ 1290 MeV,

and consequently, if µ�� = M�+�E <⇤ 1290 MeV, that

is, �E <⇤ 100 MeV, then the ⇤
�
, and hence the strange

quark, will play a role in the dense medium. We find

using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at

⌅n = 0.4 fm
�3

. Corrections due to correlations among

neutrons are di⌃cult to estimate and will require many-

body calculations which are beyond the scope of this

study. Despite this caveat, the results shown in Fig. 3

indicate that the repulsion in the n⇤�
system is inad-

equate to exclude the presence of ⇤
�
’s in neutron star

matter, a conclusion that is consistent with previous phe-

nomenological modeling (for a review, see Ref. [47]).

In this letter, we have presented the first LQCD predic-

tions for hypernuclear physics, the
1S0 and

3S1 n⇤�
scat-

tering phase shifts shown in Fig. 1 and Fig. 2. While the

LQCD calculations have been performed at a single lat-

tice spacing, lattice-spacing artifacts are expected to be

smaller than the other systematic uncertainties. We an-

ticipate systematically refining the analysis presented in
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mass determines the coe⌃cient of the contact opera-

tor, thereby determining the LO interaction, including

energy-independent and local potentials, wavefunctions

and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the
1S0 n⇤�

channel are consistent with the SU(3) symmetry expecta-

tions. At m� ⇤ 389 MeV, using a volume extrapolation

as discussed above, we find that this channel has a bound

state, with binding energy B = 25± 9.3± 11 MeV. The

quality of the LQCD data in the
1S0 n⇤�

channel is com-

parable to that of its 27-plet partner ⇥�
⇥
�
, analyzed in

detail in Ref. [28] (see also [43]). In the EFT, the coe⌃-

cient of the LO contact operator in this channel is deter-

mined by tuning it to reproduce the LQCD-determined

binding energy. We find that this channel becomes un-

bound at m� ⇤ 300 MeV, in agreement with Ref. [44],

which constrained the LO contact operator using exper-

imental data. In Fig. 1, we show the predicted
1S0 n⇤�

phase shift at the physical pion mass — (dark, light) blue

bands correspond to (statistical, systematic) uncertain-

ties — and compare with the EFT constrained by ex-

perimental data [21], the Nijmegen NSC97f model [12],

and the Jülich ’04 model [16]. The systematic uncer-

tainties on our predictions include those arising from the

LQCD calculation (see [43]) as well as estimates of omit-

ted higher-order e⌅ects in the EFT.

The
3S1-

3D1 n⇤�
coupled channel is found to be highly

repulsive in the s-wave at m� ⇤ 389 MeV, requiring in-

teractions with a hard repulsive core of extended size.

Such a core, if large enough, would violate a condition re-

quired to use Lüscher’s relation, namely R ⌅ L/2 where

R is the range of the interaction. We have determined

the EFT potential directly by solving the 3-dimensional

Schrödinger equation in finite volume to reproduce the

energy levels obtained in the LQCD calculations. The re-

pulsive core is found to be large, and formally precludes

the use of Lüscher’s relation, but both methods lead to

phase shifts that agree within uncertainties, indicating

that the exponential corrections to Lüscher’s relation are

small. In Fig. 2, we show the predicted
3S1 n⇤�

phase

shift at the physical pion mass.

The n⇤�
interactions presented here are the crucial

ingredient in calculations that address whether ⇤
�
’s ap-

pear in dense neutron matter. As a first step, and in order

to understand the competition between attractive and re-

pulsive components of the n⇤�
interaction, we adopt a

result due to Fumi for the energy shift due to a static

impurity in a non-interacting Fermi system [45]:

�E = � 1

⇤µ

� kf

0
dk k

⇥
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�3S1
(k) +

1

2

�1S0
(k)

⇤
, (2)

where µ is the reduced mass in the n⇤�
system. Us-

ing our LQCD determinations of the phase shifts, and

allowing for a 30% theoretical uncertainty, the resulting

energy shift and uncertainty band is shown in Fig. 3. At

neutron number density ⌅n ⇤ 0.4 fm
�3

, which may be

found in the interior of neutron stars, the neutron chem-

ical potential is µn ⇤ MN + 150 MeV due to neutron-

neutron interactions, and the electron chemical potential,

µe� ⇤ 200 MeV [46]. Therefore µn + µe� ⇤ 1290 MeV,

and consequently, if µ�� = M�+�E <⇤ 1290 MeV, that

is, �E <⇤ 100 MeV, then the ⇤
�
, and hence the strange

quark, will play a role in the dense medium. We find

using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at

⌅n = 0.4 fm
�3

. Corrections due to correlations among

neutrons are di⌃cult to estimate and will require many-

body calculations which are beyond the scope of this

study. Despite this caveat, the results shown in Fig. 3

indicate that the repulsion in the n⇤�
system is inad-

equate to exclude the presence of ⇤
�
’s in neutron star

matter, a conclusion that is consistent with previous phe-

nomenological modeling (for a review, see Ref. [47]).

In this letter, we have presented the first LQCD predic-

tions for hypernuclear physics, the
1S0 and

3S1 n⇤�
scat-

tering phase shifts shown in Fig. 1 and Fig. 2. While the

LQCD calculations have been performed at a single lat-

tice spacing, lattice-spacing artifacts are expected to be

smaller than the other systematic uncertainties. We an-

ticipate systematically refining the analysis presented in
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1. Solving the 3-d Schrodinger Equation - A Sanity Check

Given the confusing nature of this analysis, we have to be sure that our extracted potential
recovers the energy levels in the finite volume. So I had to learn how to do this e�ciently!

If we are given a potential V (r), how do we find the energy eigenvalues in a finite cubic
volume with periodic boundary conditions. the condensed matter types do this all the time.
We work in momentum space:

Ṽ (k) =
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Ṽ (
2⇡

L
n)

 ̃(k) =

Z
d
3r e

�ik·r
 (r) (11)

 (r) =

Z
d
3k

(2⇡)3
e
ik·r

 ̃(k) !  L(r) =
1

L3

X

n

e
i2⇡n·r/L

 ̃L(
2⇡

L
n) =

1
p
L3

X

n

e
i2⇡n·r/L

C(n) ,

which gives rise to a periodic potential with V (r) = V (r +mL) and periodic wavefunction
with  (r) =  (r+mL). We recall that with the periodic potential, spatial integrations are
limited to the cubic volume.

The 3-dim Schrodinger equation is
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after equating terms with the same exponential dependence. Working in the basis of mo-
mentum eigenstates defined by the n-vectors, we have matrix elements of the Hamiltonian
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compared with other determinations, as discussed in the text.

mass determines the coe⌃cient of the contact opera-

tor, thereby determining the LO interaction, including

energy-independent and local potentials, wavefunctions

and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the
1S0 n⇤�

channel are consistent with the SU(3) symmetry expecta-

tions. At m� ⇤ 389 MeV, using a volume extrapolation

as discussed above, we find that this channel has a bound

state, with binding energy B = 25± 9.3± 11 MeV. The

quality of the LQCD data in the
1S0 n⇤�

channel is com-

parable to that of its 27-plet partner ⇥�
⇥
�
, analyzed in

detail in Ref. [28] (see also [43]). In the EFT, the coe⌃-

cient of the LO contact operator in this channel is deter-

mined by tuning it to reproduce the LQCD-determined

binding energy. We find that this channel becomes un-

bound at m� ⇤ 300 MeV, in agreement with Ref. [44],

which constrained the LO contact operator using exper-

imental data. In Fig. 1, we show the predicted
1S0 n⇤�

phase shift at the physical pion mass — (dark, light) blue

bands correspond to (statistical, systematic) uncertain-

ties — and compare with the EFT constrained by ex-

perimental data [21], the Nijmegen NSC97f model [12],

and the Jülich ’04 model [16]. The systematic uncer-

tainties on our predictions include those arising from the

LQCD calculation (see [43]) as well as estimates of omit-

ted higher-order e⌅ects in the EFT.

The
3S1-

3D1 n⇤�
coupled channel is found to be highly

repulsive in the s-wave at m� ⇤ 389 MeV, requiring in-

teractions with a hard repulsive core of extended size.

Such a core, if large enough, would violate a condition re-

quired to use Lüscher’s relation, namely R ⌅ L/2 where

R is the range of the interaction. We have determined

the EFT potential directly by solving the 3-dimensional

Schrödinger equation in finite volume to reproduce the

energy levels obtained in the LQCD calculations. The re-

pulsive core is found to be large, and formally precludes

the use of Lüscher’s relation, but both methods lead to

phase shifts that agree within uncertainties, indicating

that the exponential corrections to Lüscher’s relation are

small. In Fig. 2, we show the predicted
3S1 n⇤�

phase

shift at the physical pion mass.

The n⇤�
interactions presented here are the crucial

ingredient in calculations that address whether ⇤
�
’s ap-

pear in dense neutron matter. As a first step, and in order

to understand the competition between attractive and re-

pulsive components of the n⇤�
interaction, we adopt a

result due to Fumi for the energy shift due to a static

impurity in a non-interacting Fermi system [45]:
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2
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where µ is the reduced mass in the n⇤�
system. Us-

ing our LQCD determinations of the phase shifts, and

allowing for a 30% theoretical uncertainty, the resulting

energy shift and uncertainty band is shown in Fig. 3. At

neutron number density ⌅n ⇤ 0.4 fm
�3

, which may be

found in the interior of neutron stars, the neutron chem-

ical potential is µn ⇤ MN + 150 MeV due to neutron-

neutron interactions, and the electron chemical potential,

µe� ⇤ 200 MeV [46]. Therefore µn + µe� ⇤ 1290 MeV,

and consequently, if µ�� = M�+�E <⇤ 1290 MeV, that

is, �E <⇤ 100 MeV, then the ⇤
�
, and hence the strange

quark, will play a role in the dense medium. We find

using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at

⌅n = 0.4 fm
�3

. Corrections due to correlations among

neutrons are di⌃cult to estimate and will require many-

body calculations which are beyond the scope of this

study. Despite this caveat, the results shown in Fig. 3

indicate that the repulsion in the n⇤�
system is inad-

equate to exclude the presence of ⇤
�
’s in neutron star

matter, a conclusion that is consistent with previous phe-

nomenological modeling (for a review, see Ref. [47]).

In this letter, we have presented the first LQCD predic-

tions for hypernuclear physics, the
1S0 and

3S1 n⇤�
scat-

tering phase shifts shown in Fig. 1 and Fig. 2. While the

LQCD calculations have been performed at a single lat-

tice spacing, lattice-spacing artifacts are expected to be

smaller than the other systematic uncertainties. We an-

ticipate systematically refining the analysis presented in
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FIG. 1: LQCD-predicted 1S0 n�� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.
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FIG. 2: LQCD-predicted 3S1 n�� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

mass determines the coe⌃cient of the contact opera-

tor, thereby determining the LO interaction, including

energy-independent and local potentials, wavefunctions

and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the
1S0 n⇤�

channel are consistent with the SU(3) symmetry expecta-

tions. At m� ⇤ 389 MeV, using a volume extrapolation

as discussed above, we find that this channel has a bound

state, with binding energy B = 25± 9.3± 11 MeV. The

quality of the LQCD data in the
1S0 n⇤�

channel is com-

parable to that of its 27-plet partner ⇥�
⇥
�
, analyzed in

detail in Ref. [28] (see also [43]). In the EFT, the coe⌃-

cient of the LO contact operator in this channel is deter-

mined by tuning it to reproduce the LQCD-determined

binding energy. We find that this channel becomes un-

bound at m� ⇤ 300 MeV, in agreement with Ref. [44],

which constrained the LO contact operator using exper-

imental data. In Fig. 1, we show the predicted
1S0 n⇤�

phase shift at the physical pion mass — (dark, light) blue

bands correspond to (statistical, systematic) uncertain-

ties — and compare with the EFT constrained by ex-

perimental data [21], the Nijmegen NSC97f model [12],

and the Jülich ’04 model [16]. The systematic uncer-

tainties on our predictions include those arising from the

LQCD calculation (see [43]) as well as estimates of omit-

ted higher-order e⌅ects in the EFT.

The
3S1-

3D1 n⇤�
coupled channel is found to be highly

repulsive in the s-wave at m� ⇤ 389 MeV, requiring in-

teractions with a hard repulsive core of extended size.

Such a core, if large enough, would violate a condition re-

quired to use Lüscher’s relation, namely R ⌅ L/2 where

R is the range of the interaction. We have determined

the EFT potential directly by solving the 3-dimensional

Schrödinger equation in finite volume to reproduce the

energy levels obtained in the LQCD calculations. The re-

pulsive core is found to be large, and formally precludes

the use of Lüscher’s relation, but both methods lead to

phase shifts that agree within uncertainties, indicating

that the exponential corrections to Lüscher’s relation are

small. In Fig. 2, we show the predicted
3S1 n⇤�

phase

shift at the physical pion mass.

The n⇤�
interactions presented here are the crucial

ingredient in calculations that address whether ⇤
�
’s ap-

pear in dense neutron matter. As a first step, and in order

to understand the competition between attractive and re-

pulsive components of the n⇤�
interaction, we adopt a

result due to Fumi for the energy shift due to a static

impurity in a non-interacting Fermi system [45]:

�E = � 1
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� kf

0
dk k
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2

�3S1
(k) +

1

2

�1S0
(k)

⇤
, (2)

where µ is the reduced mass in the n⇤�
system. Us-

ing our LQCD determinations of the phase shifts, and

allowing for a 30% theoretical uncertainty, the resulting

energy shift and uncertainty band is shown in Fig. 3. At

neutron number density ⌅n ⇤ 0.4 fm
�3

, which may be

found in the interior of neutron stars, the neutron chem-

ical potential is µn ⇤ MN + 150 MeV due to neutron-

neutron interactions, and the electron chemical potential,

µe� ⇤ 200 MeV [46]. Therefore µn + µe� ⇤ 1290 MeV,

and consequently, if µ�� = M�+�E <⇤ 1290 MeV, that

is, �E <⇤ 100 MeV, then the ⇤
�
, and hence the strange

quark, will play a role in the dense medium. We find

using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at

⌅n = 0.4 fm
�3

. Corrections due to correlations among

neutrons are di⌃cult to estimate and will require many-

body calculations which are beyond the scope of this

study. Despite this caveat, the results shown in Fig. 3

indicate that the repulsion in the n⇤�
system is inad-

equate to exclude the presence of ⇤
�
’s in neutron star

matter, a conclusion that is consistent with previous phe-

nomenological modeling (for a review, see Ref. [47]).

In this letter, we have presented the first LQCD predic-

tions for hypernuclear physics, the
1S0 and

3S1 n⇤�
scat-

tering phase shifts shown in Fig. 1 and Fig. 2. While the

LQCD calculations have been performed at a single lat-

tice spacing, lattice-spacing artifacts are expected to be

smaller than the other systematic uncertainties. We an-

ticipate systematically refining the analysis presented in
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1. Solving the 3-d Schrodinger Equation - A Sanity Check

Given the confusing nature of this analysis, we have to be sure that our extracted potential
recovers the energy levels in the finite volume. So I had to learn how to do this e�ciently!

If we are given a potential V (r), how do we find the energy eigenvalues in a finite cubic
volume with periodic boundary conditions. the condensed matter types do this all the time.
We work in momentum space:

Ṽ (k) =

Z
d
3r e

�ik·r
V (r)

V (r) =

Z
d
3k

(2⇡)3
e
ik·r

Ṽ (k) ! VL(r) =
1

L3

X

n

e
i2⇡n·r/L

Ṽ (
2⇡

L
n)

 ̃(k) =

Z
d
3r e

�ik·r
 (r) (11)

 (r) =

Z
d
3k

(2⇡)3
e
ik·r

 ̃(k) !  L(r) =
1

L3

X

n

e
i2⇡n·r/L

 ̃L(
2⇡

L
n) =

1
p
L3

X

n

e
i2⇡n·r/L

C(n) ,

which gives rise to a periodic potential with V (r) = V (r +mL) and periodic wavefunction
with  (r) =  (r+mL). We recall that with the periodic potential, spatial integrations are
limited to the cubic volume.

The 3-dim Schrodinger equation is

�~2
2µ

r2
 L(r) + VL(r) L(r) = E  L(r)

~2
2µ

✓
2⇡

L

◆2

|n|2  ̃L(
2⇡

L
n) +

X

n

Ṽ (
2⇡

L
(n� n))  ̃L(

2⇡

L
n) = EL  ̃L(

2⇡

L
n) , (12)

after equating terms with the same exponential dependence. Working in the basis of mo-
mentum eigenstates defined by the n-vectors, we have matrix elements of the Hamiltonian
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of the form

Ĥn,n0 =
2⇡2~2
µL2

|n|2 �n,n0 + Ṽ (
2⇡

L
(n� n0)) , (13)

a matrix that is easy to construct from the potential, giving a large symmetric matrix (for
a central potential), which can then be diagonalized to give the energy eigenvalues and
eigenvectors.

For the Yukawa potential, we know the Fourier transform to be

V (r) = �
e
�mr

r
! Ṽ (k) =

4⇡�

m2 + k2
, (14)

for the Gaussian potential

V (r) = ge
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2
r
2
! Ṽ (k) = g
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⇡

m

◆3

e
�k

2
/(4m2)

, (15)

and for the quartic potential, I have that

V (r) = ge
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4
r
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Ṽ (k) = g
⇡
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�
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4
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◆
�
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�

✓
5

4

◆
PFQ

✓
{}, {

3

2
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7

4
},

k
4

256m4

◆�
.(16)

Convergent results for the lowest energy eigenvalue have been obtained with both forms of
the potential (Gaussian-core and Quartic-core), but neither reproduce the energy-eigenvalues
obtained in our LQCD calculations. The energy of the lowest state in the L = 24 ensemble
is roughly 3x times that of the energy in the L = 32 ensemble. There is a clearly an
inconsistency somewhere.

Numerically implementing this procedure required some care due to the growth of the
number of integer triplets. I managed to have Mathematica include about 3/4 of the mo-
mentum vector on these lattices, limited by the volume and the lattice-spacing.

Of course, one solution is that the actual potential between the particles is independent
of separation over these lengths scale, with a height of V ⇠ 45 MeV. Of course, this pretty
crazy stu↵. Will suggested that we might be seeing an avoided level-crossing, and have
missed the lower state in the L = 32 ensemble. Time to go back an re-check our analysis of
these ensembles - something just look wrong.

The “sanity check” currently indicates insanity!
A di↵erent analysis, and one I am happier with is directly fitting the LO potential to

reproduce the energy-eigenvalues. This means that the phase-shifts both predicted and
fit will be model-dependent, and we do not have the luxury of having Lüchers relation to
rigorously constrain the S-matrix element. The core in this channel is simply big. All of
the previous discussions go through, and we fit the strength of the Gaussian core for each
core-mass. The results are quite insensitive to the mass, as long as it is large enough.

I have used the COM energy-di↵erences of

E24 = 43± 5.7± 8.7 MeV , E32 = 29.9± 5.3± 9.2 MeV . (17)

It is clear that the central values do not scale with ⇠ V
�1, but this is consistent within the

uncertainties. Fitting a Gaussian potential strength for a given value of mass, ⇤, produces
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which gives rise to a periodic potential with V (r) = V (r +mL) and periodic wavefunction
with  (r) =  (r+mL). We recall that with the periodic potential, spatial integrations are
limited to the cubic volume.
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compared with other determinations, as discussed in the text.
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FIG. 2: LQCD-predicted 3S1 n�� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

mass determines the coe⌃cient of the contact opera-

tor, thereby determining the LO interaction, including

energy-independent and local potentials, wavefunctions

and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the
1S0 n⇤�

channel are consistent with the SU(3) symmetry expecta-

tions. At m� ⇤ 389 MeV, using a volume extrapolation

as discussed above, we find that this channel has a bound

state, with binding energy B = 25± 9.3± 11 MeV. The

quality of the LQCD data in the
1S0 n⇤�

channel is com-

parable to that of its 27-plet partner ⇥�
⇥
�
, analyzed in

detail in Ref. [28] (see also [43]). In the EFT, the coe⌃-

cient of the LO contact operator in this channel is deter-

mined by tuning it to reproduce the LQCD-determined

binding energy. We find that this channel becomes un-

bound at m� ⇤ 300 MeV, in agreement with Ref. [44],

which constrained the LO contact operator using exper-

imental data. In Fig. 1, we show the predicted
1S0 n⇤�

phase shift at the physical pion mass — (dark, light) blue

bands correspond to (statistical, systematic) uncertain-

ties — and compare with the EFT constrained by ex-

perimental data [21], the Nijmegen NSC97f model [12],

and the Jülich ’04 model [16]. The systematic uncer-

tainties on our predictions include those arising from the

LQCD calculation (see [43]) as well as estimates of omit-

ted higher-order e⌅ects in the EFT.

The
3S1-

3D1 n⇤�
coupled channel is found to be highly

repulsive in the s-wave at m� ⇤ 389 MeV, requiring in-

teractions with a hard repulsive core of extended size.

Such a core, if large enough, would violate a condition re-

quired to use Lüscher’s relation, namely R ⌅ L/2 where

R is the range of the interaction. We have determined

the EFT potential directly by solving the 3-dimensional

Schrödinger equation in finite volume to reproduce the

energy levels obtained in the LQCD calculations. The re-

pulsive core is found to be large, and formally precludes

the use of Lüscher’s relation, but both methods lead to

phase shifts that agree within uncertainties, indicating

that the exponential corrections to Lüscher’s relation are

small. In Fig. 2, we show the predicted
3S1 n⇤�

phase

shift at the physical pion mass.

The n⇤�
interactions presented here are the crucial

ingredient in calculations that address whether ⇤
�
’s ap-

pear in dense neutron matter. As a first step, and in order

to understand the competition between attractive and re-

pulsive components of the n⇤�
interaction, we adopt a

result due to Fumi for the energy shift due to a static

impurity in a non-interacting Fermi system [45]:

�E = � 1

⇤µ

� kf

0
dk k

⇥
3

2

�3S1
(k) +

1

2

�1S0
(k)

⇤
, (2)

where µ is the reduced mass in the n⇤�
system. Us-

ing our LQCD determinations of the phase shifts, and

allowing for a 30% theoretical uncertainty, the resulting

energy shift and uncertainty band is shown in Fig. 3. At

neutron number density ⌅n ⇤ 0.4 fm
�3

, which may be

found in the interior of neutron stars, the neutron chem-

ical potential is µn ⇤ MN + 150 MeV due to neutron-

neutron interactions, and the electron chemical potential,

µe� ⇤ 200 MeV [46]. Therefore µn + µe� ⇤ 1290 MeV,

and consequently, if µ�� = M�+�E <⇤ 1290 MeV, that

is, �E <⇤ 100 MeV, then the ⇤
�
, and hence the strange

quark, will play a role in the dense medium. We find

using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at

⌅n = 0.4 fm
�3

. Corrections due to correlations among

neutrons are di⌃cult to estimate and will require many-

body calculations which are beyond the scope of this

study. Despite this caveat, the results shown in Fig. 3

indicate that the repulsion in the n⇤�
system is inad-

equate to exclude the presence of ⇤
�
’s in neutron star

matter, a conclusion that is consistent with previous phe-

nomenological modeling (for a review, see Ref. [47]).

In this letter, we have presented the first LQCD predic-

tions for hypernuclear physics, the
1S0 and

3S1 n⇤�
scat-

tering phase shifts shown in Fig. 1 and Fig. 2. While the

LQCD calculations have been performed at a single lat-

tice spacing, lattice-spacing artifacts are expected to be

smaller than the other systematic uncertainties. We an-

ticipate systematically refining the analysis presented in
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mass determines the coe⌃cient of the contact opera-

tor, thereby determining the LO interaction, including

energy-independent and local potentials, wavefunctions

and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the
1S0 n⇤�

channel are consistent with the SU(3) symmetry expecta-

tions. At m� ⇤ 389 MeV, using a volume extrapolation

as discussed above, we find that this channel has a bound

state, with binding energy B = 25± 9.3± 11 MeV. The

quality of the LQCD data in the
1S0 n⇤�

channel is com-

parable to that of its 27-plet partner ⇥�
⇥
�
, analyzed in

detail in Ref. [28] (see also [43]). In the EFT, the coe⌃-

cient of the LO contact operator in this channel is deter-

mined by tuning it to reproduce the LQCD-determined

binding energy. We find that this channel becomes un-

bound at m� ⇤ 300 MeV, in agreement with Ref. [44],

which constrained the LO contact operator using exper-

imental data. In Fig. 1, we show the predicted
1S0 n⇤�

phase shift at the physical pion mass — (dark, light) blue

bands correspond to (statistical, systematic) uncertain-

ties — and compare with the EFT constrained by ex-

perimental data [21], the Nijmegen NSC97f model [12],

and the Jülich ’04 model [16]. The systematic uncer-

tainties on our predictions include those arising from the

LQCD calculation (see [43]) as well as estimates of omit-

ted higher-order e⌅ects in the EFT.

The
3S1-

3D1 n⇤�
coupled channel is found to be highly

repulsive in the s-wave at m� ⇤ 389 MeV, requiring in-

teractions with a hard repulsive core of extended size.

Such a core, if large enough, would violate a condition re-

quired to use Lüscher’s relation, namely R ⌅ L/2 where

R is the range of the interaction. We have determined

the EFT potential directly by solving the 3-dimensional

Schrödinger equation in finite volume to reproduce the

energy levels obtained in the LQCD calculations. The re-

pulsive core is found to be large, and formally precludes

the use of Lüscher’s relation, but both methods lead to

phase shifts that agree within uncertainties, indicating

that the exponential corrections to Lüscher’s relation are

small. In Fig. 2, we show the predicted
3S1 n⇤�

phase

shift at the physical pion mass.

The n⇤�
interactions presented here are the crucial

ingredient in calculations that address whether ⇤
�
’s ap-

pear in dense neutron matter. As a first step, and in order

to understand the competition between attractive and re-

pulsive components of the n⇤�
interaction, we adopt a

result due to Fumi for the energy shift due to a static

impurity in a non-interacting Fermi system [45]:
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, (2)

where µ is the reduced mass in the n⇤�
system. Us-

ing our LQCD determinations of the phase shifts, and

allowing for a 30% theoretical uncertainty, the resulting

energy shift and uncertainty band is shown in Fig. 3. At

neutron number density ⌅n ⇤ 0.4 fm
�3

, which may be

found in the interior of neutron stars, the neutron chem-

ical potential is µn ⇤ MN + 150 MeV due to neutron-

neutron interactions, and the electron chemical potential,

µe� ⇤ 200 MeV [46]. Therefore µn + µe� ⇤ 1290 MeV,

and consequently, if µ�� = M�+�E <⇤ 1290 MeV, that

is, �E <⇤ 100 MeV, then the ⇤
�
, and hence the strange

quark, will play a role in the dense medium. We find

using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at

⌅n = 0.4 fm
�3

. Corrections due to correlations among

neutrons are di⌃cult to estimate and will require many-

body calculations which are beyond the scope of this

study. Despite this caveat, the results shown in Fig. 3

indicate that the repulsion in the n⇤�
system is inad-

equate to exclude the presence of ⇤
�
’s in neutron star

matter, a conclusion that is consistent with previous phe-

nomenological modeling (for a review, see Ref. [47]).

In this letter, we have presented the first LQCD predic-

tions for hypernuclear physics, the
1S0 and

3S1 n⇤�
scat-

tering phase shifts shown in Fig. 1 and Fig. 2. While the

LQCD calculations have been performed at a single lat-

tice spacing, lattice-spacing artifacts are expected to be

smaller than the other systematic uncertainties. We an-

ticipate systematically refining the analysis presented in
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1. Solving the 3-d Schrodinger Equation - A Sanity Check

Given the confusing nature of this analysis, we have to be sure that our extracted potential
recovers the energy levels in the finite volume. So I had to learn how to do this e�ciently!

If we are given a potential V (r), how do we find the energy eigenvalues in a finite cubic
volume with periodic boundary conditions. the condensed matter types do this all the time.
We work in momentum space:

Ṽ (k) =
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C(n) ,

which gives rise to a periodic potential with V (r) = V (r +mL) and periodic wavefunction
with  (r) =  (r+mL). We recall that with the periodic potential, spatial integrations are
limited to the cubic volume.

The 3-dim Schrodinger equation is
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after equating terms with the same exponential dependence. Working in the basis of mo-
mentum eigenstates defined by the n-vectors, we have matrix elements of the Hamiltonian
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The phase-shifts in the spin-singlet channels can be easily extracted from the scattering
amplitudes given in eq. (11) by using the relation (for non-relativistic systems)

δJ,JJ,0 =
1

2i
log

(

1 + i
MNp

2π
AJ,JJ,0

)

, (13)

from which parameters in the effective range expansion can be determined for p < mπ, mSS.
It is somewhat more complicated to determine the phase-shifts in the spin-triplet channels
as one has to disentangle them from the mixing parameters. However, at NLO (O(Q0)),
the mixing effects are higher order in the EFT and one can straightforwardly determine
parameters in the effective range expansion. In the P-waves, the scattering volumes, defined
to be

a(2S+1PJ) = − lim
p→0

tan δJ,11,S

p3
, (14)

are found to be, at NLO,

a(1P1) =
g2

AMN

4πf 2m2
π

+
g2
0MN

12πf 2m2
π

m2
SS − m2

π

m2
π

a(3P0) = −
g2

AMN

4πf 2m2
π

+
g2
0MN

4πf 2m2
π

m2
SS − m2

π

m2
π

a(3P1) =
g2

AMN

6πf 2m2
π

−
g2
0MN

6πf 2m2
π

m2
SS − m2

π

m2
π

a(3P2) = 0 , (15)

for which the QCD limit agrees with the well-known results [30].

B. The 1S0 Channel

The scattering amplitude in the 1S0 channel can be determined analytically order-by-
order in perturbation theory as BBSvK power-counting coincides with KSW power-counting
in this channel. The momentum and mq-independent four nucleon operator with coefficient

C(1S0)
0 enters at LO, and the bubble chains that it generates, as shown in Fig. 2, are resummed

to all orders to produce the LO scattering amplitude [21]. At NLO there are several different

+ + ...

FIG. 2. The LO contribution, O(Q−1), to the scattering amplitude in the 1S0 channel.

contributions. There is a contribution from OPGBE that can be dressed in a variety of
ways by the LO amplitude as shown in Fig. 3, and each dressing remains O(Q0). There

is a contribution from a momentum-dependent (p2) operator with coefficient C(1S0)
2 that is

7
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 = + + + ...

+

FIG. 3. The NLO contributions, O(Q0), to the scattering amplitude in the 1S0 channel. Dia-

gram (a) corresponds to an insertion of the momentum-dependent operator with coefficient C
(3S1)
2 ,

diagrams (b)-(d) correspond to dressed OPGBE, while diagram (e) denotes an insertion of the

mq-dependent operator with coefficient D
(1S0)
2 .

dressed by the LO amplitude. Also, there are two contributions from a single insertion of

mq, with coefficients D(1S0)
2A and D(1S0)

2B , which are also dressed by the LO amplitude.

The scattering amplitude at NLO, A(QCD)
1S0

, is the sum of the contributions shown in
Figs. 2 and 3,

A(QCD)
1S0

= A(QCD)
1S0,−1 +

∑

i

A(QCD)(i)
1S0,0 . (16)

It is straightforward to show that the individual contributions are

A(QCD)
1S0,−1 = −

C(1S0)
0

1 + C(1S0)
0

MN

4π
(µ + ip)

,

A(QCD)(I)
1S0,0 = −C(1S0)

2 p2

⎡

⎣

A(QCD)
1S0,−1

C(1S0)
0

⎤

⎦

2

, A(QCD)(II)
1S0,0 =

(

g2
A

2f 2

) (

−1 +
m2

π

4p2
ln

(

1 +
4p2

m2
π

))

,

A(QCD)(III)
1S0,0 =

g2
A

f 2

⎛

⎝

mπMNA(QCD)
1S0,−1

4π

⎞

⎠

(

−
(µ + ip)

mπ

+
mπ

2p
X(p, mπ)

)

,

A(QCD)(IV )
1S0,0 =

g2
A

2f 2

⎛

⎝

mπMNA(QCD)
1S0,−1

4π

⎞

⎠

2
(

1 −
(

µ + ip

mπ

)2

+ iX(p, mπ) − ln

(

mπ

µ

) )

,

A(QCD)(V )
1S0,0 = −D(1S0)

2 m2
π

⎡

⎣

A(QCD)
1S0,−1

C(1S0)
0

⎤

⎦

2

, X(p, mπ) = tan−1
(

2p

mπ

)

+
i

2
ln

(

1 +
4p2

m2
π

)

, (17)

where D(1S0)
2 = D(1S0)

2A + D(1S0)
2B , and µ is the renormalization scale. The PDS subtraction

procedure [21] has been used in defining the power-law divergent loop diagrams.
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Match to Effective Field Theory!

LO potential: ⇥, K, �

Fit coupling to match energy levels 

Now we have LO potential at ALL pion masses!
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FIG. 2: The analytic structure of the scattering amplitude in the complex p plane (a) without

QED and (b) with QED. The imaginary axis exhibits the QCD t-channel cut with its threshold

at m⇡/2, while the real axis gives the inelastic pion-production cut with its threshold at
p

m⇡M .

In the presence of QED, both the t-channel cut (dark blue) and the inelastic cut (yellow) begin at

the origin.

III. FINITE VOLUME COULOMB SCATTERING

A. Power Counting and Kinematics

In a cubic spatial volume with PBCs, a free particle can carry momentum p = 2⇡n/L, where
n is a triplet of integers. In the absence of zero modes, the momentum carried by a photon
is restricted to k � 2⇡/L and the relevant size of ⌘ in the FV is ⌘ ⇠ ↵ML, which implies
that for ML ⌧ 1/↵, QED interactions can be treated perturbatively in ↵. Of course, ⌘
grows with the spatial volume and, for a given M , there is a critical value of L at which
perturbation theory breaks down and the Coulomb ladders must be resummed to all orders,
as in the continuum. In addition, LQCD calculations have volumes large enough so that
M � 1/L, and this limit will also be assumed throughout this analysis. Note that due to
the absence of the zero mode, the inelastic threshold of the two-hadron state, which is set
by the two hadrons recoiling against a photon, is at

p
2⇡M/L+O(1/M).

The power-law nature of the expansion parameter leads to various subtleties. In the
absence of QED, hadron self energies contain FV corrections that are exponentially sup-
pressed by the dimensionless parameter m⇡L, and therefore, neglecting these corrections,
the kinematics in the FV are the same as in the continuum. This is no longer the case in
the presence of QED as the hadron masses have power-law volume dependencies [42–45].

The total CoM energy of the two-hadron system can be written as E
⇤ = 2ML + T

⇤L,
where T

⇤L is the CoM kinetic energy, and M
L is the mass of the single hadron, in the FV.

The ERE, while usually written in terms of an expansion in square of the hadron three
momentum, is an analytic function of E⇤ below the inelastic threshold, and with the FV
shift in the hadron mass(es), is evaluated at a shifted value of the kinetic energy in the FV,

p cot � = �
1

aC
+

1

2
r0p

2 + r1p
4 + ... = �

1

aC
+

1

2
r0MT

⇤ + r1M
2
T

⇤2 + ...
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SU(3) breaking e⌅ects, arising from the light-meson and

baryon masses, suggest that all of these channels are at-

tractive at the physical pion mass, and that ⇥
�
⇥
�

and

⇤
�
⇤

�
are bound [40–42]. By contrast, the

3S1-channel

of n⇤�
scattering transforms in the 10 in the limit of

SU(3) symmetry, and is therefore unrelated to NN in-

teractions. Hence, this channel is quite uncertain, with

disagreements among models as to whether the interac-

tion is attractive or repulsive.
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FIG. 1: LQCD-predicted 1S0 n�� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

The low-energy n⇤�
interactions can be described by

an EFT of nucleons, hyperons and pseudoscalar mesons

(⌅, K and ⇥), constrained by chiral symmetry [17, 20, 21].

At leading order (LO) in the expansion, the n⇤�
inter-

action is given by one-meson exchange together with a

contact operator that encodes the low-energy e⌅ect of

short-distance interactions. As these contact operators

are independent of the light-quark masses, at LO the

quark-mass dependence of the n⇤�
interactions are dic-

tated by the meson masses. Therefore, in each partial

wave, a single lattice datum at a su⌃ciently low pion

mass determines the coe⌃cient of the contact opera-

tor, thereby determining the LO interaction, including

energy-independent and local potentials, wavefunctions

and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the
1S0 n⇤�

channel are consistent with the SU(3) symmetry expec-

tations. At m� ⇤ 389 MeV, using volume extrapola-

tion as described above, we find that this channel has a

bound state, with binding energy B = 25±9.3±11 MeV.

In the EFT, the coe⌃cient of the LO contact operator

in this channel is determined by tuning it to reproduce

the LQCD-determined binding energy. We find that this

channel becomes unbound at m� ⇤ 300 MeV, in agree-

ment with Ref. [43], which constrained the LO contact

operator using experimental data. In Fig. 1, we show the

predicted
1S0 n⇤�

phase shift at the physical pion mass;

(dark, light) blue bands correspond to (statistical, sys-

tematic) uncertainties, and compare with the EFT con-

strained by experimental data [21], the Nijmegen NSC97f
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FIG. 2: LQCD-predicted 3S1 n�� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

model [12], and the Jülich ’04 model [16]. The system-

atic uncertainties on our predictions include estimates of

omitted higher-order e⌅ects in the EFT.

The
3S1 n⇤�

channel is found to be highly repulsive

at m� ⇤ 389 MeV, and the potential required to gen-

erate such an interaction requires a hard repulsive core

of extended size. Such a core, if large enough, violates

a condition required to use Lüscher’s relation, namely

R ⌅ L/2 where R is the range of the interaction, and so

we have determined EFT potentials directly by solving

the 3-dimensional Schrödinger equation to reproduce the

results of the LQCD calculations. The repulsive cores

are found to be large, and formally preclude the use of

Lüscher’s relation, but both methods lead to phase shifts

that agree within uncertainties. In Fig. 2, we show the

predicted
3S1 n⇤�

phase shift at the physical pion mass.

At neutron number density ⇧n ⇤ 0.4 fm
�3

, which is

a typical neutron-star core density, the neutron chemical

potential is µn ⇤ MN +150 MeV due to neutron-neutron

interactions, and the electron chemical potential, µe� ⇤
200 MeV [44]. Therefore µn + µe� ⇤ 1290 MeV, and

consequently, if µ�� = M� +�E <⇤ 1290 MeV, that is,

�E <⇤ 100 MeV, then the ⇤
�
, and hence the strange

quark, will play a role in the dense medium. In order to

estimate �E, we make use of Fumi’s theorem [45], which

provides the energy shift of an infinitely massive impurity

in a non-interacting Fermi gas, and is known to provide

an estimate that is reliable at the 30% level for the energy

shift of a finite-mass particle in a weakly-coupled Fermi

system. We assume that this is the case for a ⇤
�

in a

dense system of neutrons, for which the energy shift is

�E = � 1

⌅µ

� kf

0
dk k

⇥
3

2

�3S1
(k) +

1

2

�1S0
(k)

⇤
, (2)

where µ is the reduced mass in the n⇤�
system. Using

our numerical determinations of the phase shifts, the re-

sulting energy shift and uncertainty is shown in Fig. 3.

As �E = 46± 13± 24 MeV at ⇧n = 0.4 fm
�3

, we expect

that the ⇤
�

and strange quarks do play an important
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result enables an extraction of all SW coefficients of the LO SU(3)-symmetric interactions.

Fit Coupling {27, 8A}
�
10, 8A

�
{27, 10}

�
10, 10

�
{10, 8A} Combined

Unnatural

a
h

2⇡

MB

i
2.015(+55)

(�56) 2.071(+62)
(�54) 1.868(+43)

(�41) 1.972(+52)
(�50) 2.20(+13)

(�11) 1.972(+68)
(�68)

b

3

h
2⇡

MB

i
1.14(+54)

(�47) 0.62(+55)
(�51) �0.150(+88)

(�91) �0.284(+99)
(�97) �0.59(+18)

(�15) �0.22(+17)
(�17)

Natural

a
h

2⇡

MB

i
�11.9(+1.6)

(�2.3) �9.3(+1.0)
(�1.2) �18.7(+5.3)

(�8.5) �13.8(+3.5)
(�7.0) �3.5(+9.3)

(�5.3) �10.2(+2.6)
(�2.6)

b

3

h
2⇡

MB

i
35(+14)

(�20) 12(+10)
(�9) �20(+24)

(�64) �26(+21)
(�63) �38(+27)

(�85) 13(+22)
(�22)

1

TABLE V: The coefficients, a and b/3, of the leading SU(6) effective interactions obtained by solving
the pairs of equations in Eq. (14) with µ = m⇡ for the unnatural case and µ = 0 for the natural case
(corresponding to a tree-level expansion of the scattering amplitudes). The last column shows the result of
a constant fit to all five determinations. The coefficients a and b/3 are given in units of [ 2⇡

MB
], with MB

being the baryon mass in this calculation, expressed in lattice units.
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coefficients c1, . . . , c6 become

�

1

a(27)
+ µ

��1

=
MB

2⇡
(c1 � c2 + c5 � c6) ,


�

1

a(10)
+ µ

��1

=
MB

2⇡
(c1 + c2 + c5 + c6) ,


�

1

a(10)
+ µ

��1

=
MB

2⇡
(�c1 � c2 + c5 + c6) ,


�

1

a(8A)
+ µ

��1

=
MB

2⇡

✓
3c3
2

+
3c4
2

+ c5 + c6

◆
,


�

1

a(8S)
+ µ

��1

=
MB

2⇡

✓
�

2c1
3

+
2c2
3

�
5c3
6

+
5c4
6

+ c5 � c6

◆
,


�

1

a(1)
+ µ

��1

=
MB

2⇡

✓
�

c1
3

+
c2
3

�
8c3
3

+
8c4
3

+ c5 � c6

◆
, (13)

where MB denotes the baryon mass, and the ci coefficients on the right-hand side are evaluated at
the renormalization scale µ. For natural interactions, the renormalization scale µ is set equal to zero
in the left-hand side of these equations, corresponding to a tree-level expansion of the scattering
amplitude in these couplings.

The large-Nc limit has interesting consequences and gives rise to further simplification of the
interactions of two baryons [54]. As argued in Ref. [54], in the limit of SU(2) flavor symmetry, the
interactions among two nucleons are invariant under a spin-flavor SU(4) symmetry up to corrections
that scale as 1/N2

c . Including the strange quarks and in the limit of SU(3) flavor symmetry,
interactions are invariant under an SU(6) symmetry up to corrections that scale as 1/Nc. Focussing
on the latter case (which contains the former case as a subgroup), it can be shown that there are only
two independent dimension-six SU(6)-symmetric interactions of two octet baryons, with coefficients
a and b.4 These are expressed in terms of a baryon field that transforms as a three-index symmetric
tensor under SU(6) [54]. The corresponding coefficients a and b can, once again, be matched to the
scattering amplitudes at LO in a momentum expansion. For unnaturally large scattering lengths,
the SU(3) relations in Eqs. (13) become

�

1

a(27)
+ µ

��1

=
MB

2⇡
(a �

b

27
) + O

✓
1

N2
c

◆
,


�

1

a(10)
+ µ

��1

=
MB

2⇡
(a �

b

27
) + O

✓
1

N2
c

◆
,


�

1

a(10)
+ µ

��1

=
MB

2⇡
(a +

7b

27
) + O

✓
1

Nc

◆
,


�

1

a(8A)
+ µ

��1
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MB

2⇡
(a +

b

27
) + O

✓
1

Nc

◆
,


�

1

a(8S)
+ µ

��1
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MB

2⇡
(a +

b

3
) + O

✓
1

Nc

◆
,


�

1

a(1)
+ µ

��1

=
MB

2⇡
(a �

b

3
) + O

✓
1

Nc

◆
, (14)

where the coefficients on the right-hand side are evaluated at the renormalization scale µ. For
natural interactions, µ is set equal to zero in the left-hand side of these equations, corresponding
to a tree-level expansion of the amplitudes in these couplings. Note that the scattering lengths
in channels belonging to the 27 and 10 are the same up to 1/N2

c corrections. Recalling that the

4 The SU(6) coefficient “a” should not be confused with the scattering length. In the following sections, the scattering
length carries a superscript denoting the irrep it corresponds to, while the SU(6) coefficient a is left as is. In a
few cases where the subscripts on scattering lengths are omitted, these two letters can be distinguished from the
context. Similarly, the SU(6) coefficient “b” should not be confused with the lattice spacing.
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length carries a superscript denoting the irrep it corresponds to, while the SU(6) coefficient a is left as is. In a
few cases where the subscripts on scattering lengths are omitted, these two letters can be distinguished from the
context. Similarly, the SU(6) coefficient “b” should not be confused with the lattice spacing.
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where MB denotes the baryon mass, and the ci coefficients on the right-hand side are evaluated at
the renormalization scale µ. For natural interactions, the renormalization scale µ is set equal to zero
in the left-hand side of these equations, corresponding to a tree-level expansion of the scattering
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The mixing parameter, ✏, adds an extra unknown to the QC in the spin-triplet channels. Con-
straining this parameter, as discussed in Ref. [65], requires knowledge of the spectra of two-baryon
systems with the total spin aligned both parallel and perpendicular to the boost vector, and with
boost momenta that have at least one component equal to unity modulo 2 (in units of 2⇡/L). As
not all distinct orientations of total spin with respect to the boost momenta are constructed in
forming the correlation functions of spin-triplet systems in this work, the ✏ parameter cannot be
constrained here for the spin-triplet channels. This also implies that for boost vector d = (0, 0, 1),
the corrections to the QC from the s-d mixing might be significant at the order of low-energy EFT
considered, and constraints on the ↵-wave phase shift arising from a simple ↵-wave QC may be
contaminated. On the other hand, for boost vectors of the form d = (2n1, 2n2, 2n3), with each ni

being an integer, in particular for the (0, 0, 0) and (0, 0, 2) boost vectors that are considered in this
work, the ↵-wave QC,

k⇤ cot �↵ = 4⇡cd00(k
⇤2; L), (5)

is exact up to corrections from �-wave interactions.2 These corrections are subleading at the order
in the EFT considered below and will therefore be neglected. Given that this QC is identical to
the S-wave QC in the spin-singlet channels, the s and ↵ subscripts on the phase shifts will be
suppressed in the rest of this paper, as their assignment should be clear from the channels under
consideration.

Once the phase shifts are determined at several CM energies, a low-energy parametrization of
the scattering amplitude as a function of energy, with only a few unknown parameters, can be
constrained over a given range of energies. In the baryon-baryon channels well below the t-channel
cut, the most common parametrization is the effective range expansion (ERE). For S-wave (↵-wave)
interactions, the ERE is an expansion of the k⇤ cot � function in k⇤2,

k⇤ cot � = �
1

a
+

1

2
rk⇤2 + Pk⇤4 + . . . , (7)

where a, r and P are the scattering length, effective range and the leading shape parameter,
respectively. The ellipsis denotes terms that are higher order in the momentum expansion. Lüscher’s
QC condition provides (up to exponentially small volume corrections and discretization effects) an
exact constraint on the amplitude at corresponding energies regardless of the complexities present
in the analytic structure of the amplitude below the inelastic thresholds. It is the output of the QC
that allows the efficacy of given parametrizations of the amplitude to be assessed. For example,
although the ERE is guaranteed to have a nonzero radius of convergence around k⇤2 = 0, the
convergence rate is not known a priori, and fits with higher order terms in the ERE may be needed.
With numerical calculations for a range of momenta, the appropriateness of a given truncation of
the ERE must be carefully tested.

Lüscher’s QC contains information about possible bound states in the system through an analytic
continuation of the condition to negative energies. In particular, it is straightforward to show that
for k⇤2 < 0, and for boost vectors of the type d = (2n1, 2n2, 2n3),
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8
p

3
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p
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�
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e�2(1)L
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!
, (8)

2 In the Blatt-Biedenharn parametrization, the spin-triplet coupled-channel scattering amplitude is

M↵�� =
4⇡

MBk⇤

✓
cot �↵ cos2 ✏+ cot �� sin2 ✏� i sin ✏ cos ✏ (cot �↵ � cot ��)
sin ✏ cos ✏ (cot �↵ � cot ��) cot �� cos2 ✏+ cot �↵ sin2 ✏� i

◆�1

. (6)
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FIG. 2: Shown are examples of the phase shift determination in several partial wave channels, as well as representative ERE
fits. The dashed vertical lines indicate the momentum at which the t-channel cut occurs (q = m⇡/2). In most panels we plot
q2`+1 cot �` which is used to determine the parameters in the ERE. In the upper right panel we also show the phase shift � 3P2

as a function of the lattice momenta.

arising from the truncation of the ERE. In addition, in
the 3S1 channel we find a second pole near threshold,
corresponding to Bd = 3.3(1.00.9)(

0.6
0.2) MeV. With this pre-

cision, it is unclear whether this state corresponds to a
true bound state or a near-threshold scattering state. Im-
proved analysis techniques, such as employing a full basis
of interpolating fields in momentum space, as has been
successfully used in the two-meson systems [28, 29, 39–
41], or additional statistics are necessary to settle this
matter.

Corresponding to each of these poles we find finite vol-
ume states whose energies are consistent with the ex-
pected exponential volume dependence associated with
bound states. However, with only two volumes we can-
not definitively state whether the volume dependence is
exponential or polynomial. The large negatively shifted
energy levels, determined with the local operators, are
consistent with those in Ref. [48], which also used local
fields. The state closer to threshold (and additionally, the
negative energy state near threshold in the 1S0 channel)
has strong overlap onto the non-local NN interpolating
field, and has not been found in previous works. This

is consistent with the intuition that the wavefunction for
a shallow bound state is more extended in space, and
thus will have poor overlap with an interpolating field
involving only two nucleons at the same point.

Summary: This work presents the implementation of
new two-nucleon interpolating fields which allow, for the
first time, a robust determination of ` > 0 scattering
phase shifts in the NN sector. Further, this improved ba-
sis of interpolating operators are sensitive to additional
states in the S-wave spectrum that were not found us-
ing only local operators and greater statistics. This has
been made possible by three previously unexploited tools.
First was the development of displaced two-nucleon inter-
polating sources. These are necessary to have apprecia-
ble overlap with partial waves beyond the S-wave as the
` 6= 0 orbital wavefunctions are zero at the origin. Second
was the use of momentum space sink operators that were
not restricted to the simplest cubic irreps. Finally, we
applied the formalism for two-nucleon systems in a finite
volume [59], with notable success for the 3P2 channel.
This work represents the first crucial step towards the
study of more challenging systems such as three-neutron
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Nuclear structure: magnetic moments

✦ Hadronic and nuclear correlation functions are modified in the 
presence of a background magnetic field:

✦ Can extract magnetic moments, polarizabilities, …

✦ Extendable to external electric fields, etc.

Magnetic Moments 
Expectations and Landau Levels 

 

Landau levels present for charged particles contaminate the 
extraction of polarizabilities

2

quark propagators were generated from 48 uniformly dis-
tributed Gaussian-smeared sources for each of four mag-
netic field strengths (for further details of the production,
see Refs. [4, 5]).

Background electromagnetic fields have been used ex-
tensively to calculate electromagnetic properties of single
hadrons, such as the magnetic moments of the lowest-
lying baryons [6–14] and electromagnetic polarizabilities
of mesons and baryons [9, 12–17]. In order that the quark
fields, with electric charges Qu = + 2

3
and Qd,s = �

1

3
for

the up-, down- and strange-quarks, respectively, satisfy
spatially-periodic boundary conditions in the presence of
a background magnetic field, it is well-known [18] that
the lattice links, Uµ(x), associated with the UQ(1) gauge
field are of the form

Uµ(x) = ei
6⇡Qqñ

L2 x1�µ,2
⇥ e�i

6⇡Qqñ

L x2�µ,1�x1,L�1 , (1)

for quark of flavour q, where ñ must be an integer. The
uniform magnetic field, B, resulting from these links is

eB =
6⇡ñ

L2
ẑ , (2)

where e is the magnitude of the electric charge and ẑ is
a unit vector in the x3-direction. In physical units, the
background magnetic fields exploited with this ensemble
of gauge-field configurations are e|B| ⇠ 0.046 |ñ| GeV2.
To optimize the re-use of light-quark propagators in the
production, calculations were performed for UQ(1) fields
with ñ = 0, 1,�2,+4. Four field strengths were found
to be su�cient for this initial investigation. With three
degenerate flavors of light quarks, and a traceless electric-
charge matrix, there are no contributions from coupling
of the B field to sea quarks at leading order in the elec-
tric charge. Therefore, the magnetic moments presented
here are complete calculations (there are no missing dis-
connected contributions).

The ground-state energy of a non-relativistic hadron
of mass M , and charge Qe in a uniform magnetic field is

E(B) = M +
|QeB|

2M
� µ ·B

� 2⇡�M0 |B|
2
� 2⇡�M2TijBiBj + ... , (3)

where the ellipses denote terms that are cubic and higher
in the magnetic field, as well as terms that are 1/M
suppressed [19, 20]. The first contribution in eq. (3) is
the hadron’s rest mass, the second is the energy of the
lowest-lying Landau level, the third is from the interac-
tion of its magnetic moment, µ, and the fourth and fifth
terms are from its scalar and quadrupole magnetic polar-
izabilities, �M0,M2, respectively (Tij is a traceless sym-
metric tensor [21]). The magnetic moment term is only
present for particles with spin, and �M2 is only present
for j � 1. In order to determine µ using lattice QCD
calculations, two-point correlation functions associated
with the hadron or nucleus of interest in the jz = ±j

FIG. 1: The correlator ratios R(B) as a function of time
slice for the various states (p, n, d, 3He, and 3H) for ñ =
+1,�2,+4. Fits to the ratios are also shown.

magnetic sub-states, C(B)

jz
(t), can be calculated in the

presence of background fields of the form given in Eq. (1)
with strength B = ẑ · B. The energies of ground-states
aligned and anti-aligned with the magnetic field, EB

±j ,
will be split by spin-dependent interactions, and the dif-
ference, �E(B) = EB

+j � EB
�j , can be extracted from the

correlation functions that we consider. The component
of �E(B) that is linear in B determines µ via Eq. (3).
Explicitly, the energy di↵erence is determined from the
large time behaviour of

R(B) =
C(B)

j (t) C(0)

�j (t)

C(B)

�j (t) C(0)

j (t)

t!1
�! Ze��E(B)t . (4)

Each term in this ratio is a correlation function with the
quantum numbers of the nuclear state that is being con-
sidered, which we compute using the methods of Ref. [3].
As discussed in Ref. [14], subtracting the contribution
from the correlation functions calculated in the absence
of a magnetic field reduces fluctuations in the ratio, en-
abling a more precise determination of the magnetic mo-

2

quark propagators were generated from 48 uniformly dis-
tributed Gaussian-smeared sources for each of four mag-
netic field strengths (for further details of the production,
see Refs. [4, 5]).

Background electromagnetic fields have been used ex-
tensively to calculate electromagnetic properties of single
hadrons, such as the magnetic moments of the lowest-
lying baryons [6–14] and electromagnetic polarizabilities
of mesons and baryons [9, 12–17]. In order that the quark
fields, with electric charges Qu = + 2

3
and Qd,s = �

1

3
for

the up-, down- and strange-quarks, respectively, satisfy
spatially-periodic boundary conditions in the presence of
a background magnetic field, it is well-known [18] that
the lattice links, Uµ(x), associated with the UQ(1) gauge
field are of the form

Uµ(x) = ei
6⇡Qqñ
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L2
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E(B) = �2µ |B| + � |B|

3, where �
is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µp = 1.792(19)(37) NM
(nuclear magnetons) and µn = �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.

of the magnetic moment using the above form. These
results agree with previous calculations [14] within the
uncertainties. In the more natural units of lattice nu-
clear magnetons (LNM), e

2MN
, where MN is the mass

of the nucleon at the quark masses of the lattice cal-
culation, the magnetic moments are µp = 3.119(33)(64)
LNM and µn = �1.981(05)(18) LNM. These values at
this unphysical pion mass can be compared with those
of nature, µexpt

p = 2.792847356(23) NM and µexpt

n =
�1.9130427(05) NM, which are remarkably close to the
lattice results. In fact, when comparing all available
lattice QCD results for the nucleon magnetic moments
in units of LNM, the dependence upon the light-quark
masses is surprisingly small, reminiscent of the almost
completely flat pion mass dependence of the nucleon ax-
ial coupling, gA.

In Figure 2, we also show �E(B) as a function of |ñ|

for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µd = 1.218(38)(87)
LNM for the deuteron, µ3He = �2.29(03)(12) LNM for
3He and µ3H = 3.56(05)(18) LNM for the triton. These
can be compared with the experimental values of µexpt

d =
0.8574382308(72) NM, µexpt

3He
= �2.127625306(25) NM

and µexpt

3H
= 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µSM

d = µp+µn, µSM
3He

= µn (where
the two protons in the 1s-state are spin paired to jp = 0
and the neutron is in the 1s-state) and µSM

3H
= µp (where

the two neutrons in the 1s-state are spin paired to jn = 0

|B|
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gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E(B) = �2µ |B| + � |B|

3, where �
is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µp = 1.792(19)(37) NM
(nuclear magnetons) and µn = �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.

of the magnetic moment using the above form. These
results agree with previous calculations [14] within the
uncertainties. In the more natural units of lattice nu-
clear magnetons (LNM), e

2MN
, where MN is the mass

of the nucleon at the quark masses of the lattice cal-
culation, the magnetic moments are µp = 3.119(33)(64)
LNM and µn = �1.981(05)(18) LNM. These values at
this unphysical pion mass can be compared with those
of nature, µexpt

p = 2.792847356(23) NM and µexpt

n =
�1.9130427(05) NM, which are remarkably close to the
lattice results. In fact, when comparing all available
lattice QCD results for the nucleon magnetic moments
in units of LNM, the dependence upon the light-quark
masses is surprisingly small, reminiscent of the almost
completely flat pion mass dependence of the nucleon ax-
ial coupling, gA.

In Figure 2, we also show �E(B) as a function of |ñ|

for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µd = 1.218(38)(87)
LNM for the deuteron, µ3He = �2.29(03)(12) LNM for
3He and µ3H = 3.56(05)(18) LNM for the triton. These
can be compared with the experimental values of µexpt

d =
0.8574382308(72) NM, µexpt

3He
= �2.127625306(25) NM

and µexpt

3H
= 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µSM

d = µp+µn, µSM
3He

= µn (where
the two protons in the 1s-state are spin paired to jp = 0
and the neutron is in the 1s-state) and µSM

3H
= µp (where

the two neutrons in the 1s-state are spin paired to jn = 0

In units of appropriate nuclear magnetons (heavy MN)
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E(B) = �2µ |B| + � |B|

3, where �
is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µp = 1.792(19)(37) NM
(nuclear magnetons) and µn = �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.

of the magnetic moment using the above form. These
results agree with previous calculations [14] within the
uncertainties. In the more natural units of lattice nu-
clear magnetons (LNM), e

2MN
, where MN is the mass

of the nucleon at the quark masses of the lattice cal-
culation, the magnetic moments are µp = 3.119(33)(64)
LNM and µn = �1.981(05)(18) LNM. These values at
this unphysical pion mass can be compared with those
of nature, µexpt

p = 2.792847356(23) NM and µexpt

n =
�1.9130427(05) NM, which are remarkably close to the
lattice results. In fact, when comparing all available
lattice QCD results for the nucleon magnetic moments
in units of LNM, the dependence upon the light-quark
masses is surprisingly small, reminiscent of the almost
completely flat pion mass dependence of the nucleon ax-
ial coupling, gA.

In Figure 2, we also show �E(B) as a function of |ñ|

for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µd = 1.218(38)(87)
LNM for the deuteron, µ3He = �2.29(03)(12) LNM for
3He and µ3H = 3.56(05)(18) LNM for the triton. These
can be compared with the experimental values of µexpt

d =
0.8574382308(72) NM, µexpt

3He
= �2.127625306(25) NM

and µexpt

3H
= 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µSM

d = µp+µn, µSM
3He

= µn (where
the two protons in the 1s-state are spin paired to jp = 0
and the neutron is in the 1s-state) and µSM

3H
= µp (where

the two neutrons in the 1s-state are spin paired to jn = 0
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State �̂ = M
2

N (M� �MN )/e2 ⇥ � � [10�4fm3]

n 0.198
⇣

+0.009

�0.011

⌘
(0.010) 1.253

⇣
+0.056

�0.067

⌘
(0.055)

p 0.83
⇣

+0.10

�0.07

⌘
(0.04) 5.22

⇣
+0.66

�0.45

⌘
(0.23)

nn 0.296
⇣

+0.019

�0.018

⌘
(0.015) 1.872

⇣
+0.121

�0.113

⌘
(0.082)

pp 0.84
⇣

+0.41

�0.36

⌘
(0.04) 5.31

⇣
+2.59

�2.27

⌘
(0.23)

d(jz = ±1) 0.70
⇣

+0.24

�0.23

⌘
(0.04) 4.4

⇣
+1.6

�1.5

⌘
(0.2)

3He 0.85
⇣

+0.34

�0.32

⌘
(0.04) 5.4

⇣
+2.2

�2.1

⌘
(0.2)

3H 0.40
⇣

+0.27

�0.27

⌘
(0.02) 2.6(1.7)(0.1)

4He 0.54
⇣

+0.32

�0.31

⌘
(0.03) 3.4

⇣
+2.0

�1.9

⌘
(0.2)

TABLE III: The magnetic polarizabilities calculated in this work at a pion mass of m⇡ ⇠ 806 MeV. An
additional 5% uncertainty is associated with each polarizability as an estimate of discretization and finite
volume e↵ects. For the polarizabilities presented in physical units, an additional scale setting systematic
uncertainty (3%) is included in quadrature in the second uncertainty.
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FIG. 22: A summary of the magnetic moments of the nucleons and light nuclei calculated with LQCD at
SU(3) symmetric quark masses corresponding to a pion mass of m⇡ ⇠ 806 MeV. The results are presented in
units of natural nuclear magnetons. The red dashed lines correspond to the experimental magnetic moments.

neutron star to lower its energy by spontaneously generating a large magnetic field. Second, a large
isovector component to the nucleon magnetic polarizability is found. The proton polarizability is
found to be considerably larger than that in nature while the neutron polarizability is consistent
with the phenomenological value, but much more precise. Third, analysis of the jz = Iz = 0 np

system leads to a precise extraction of the coe�cient, L1, of the short-distance two-body mag-
netic current operator connecting the 3

S1 and 1
S0 states in the context of EFT(⇡/). This operator

provides an important contribution to the np ! d� capture cross-section near threshold, which is
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✦ Almost no quark mass dependence in units of 
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Nuclear magnetic moments
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FIG. 4: The di↵erences between the nuclear magnetic mo-
ments and the predictions of the naive shell-model. The
results of the lattice QCD calculation at a pion mass of
m⇡ ⇠ 806 MeV, in units of lattice nuclear magnetons, are
shown as the solid bands. The inner band corresponds to
the statistical uncertainties, while the outer bands correspond
to the statistical and systematic uncertainties combined in
quadrature, including estimates of the uncertainties from lat-
tice spacing and volume. The red dashed lines show the ex-
perimentally measured di↵erences.

and the proton is in the 1s-state). For these simple s-
shell nuclei, the proton and neutron magnetic moments
correspond to the Schmidt limits [22]. In nature, 3He is
one of the very few nuclei that lie outside the Schmidt
limits [23]. In our calculations we also find that 3He
lies outside the Schmidt limits at this heavier pion mass,
with �µ3He = µ3He � µn = �0.340(24)(93) LNM (com-
pared to the experimental di↵erence of �µexpt

3He
= �0.215

NM) , and similarly for the triton �µ3H = µ3H � µp =
+0.45(04)(16) LNM (compared to the experimental dif-
ference of �µexpt

3H
= +0.186 NM), corresponding to ⇠ 10%

deviations from the naive shell-model predictions. These
quantities are summarized in Figure 4.

At a phenomenological level, it is not di�cult to under-
stand why the magnetic moments scale, to a large degree,
with the nucleon mass. The success of the non-relativistic
quark model (NRQM) in describing the magnetic mo-
ments of the lowest-lying baryons as the sum of contri-
butions from three weakly-bound non-relativistic quarks,
with up- and down-quark masses of MU,D ⇠ 300 MeV
and strange-quark mass of MS ⇠ 500 MeV, suggests
that naive scaling with the hadron mass should cap-
ture most of the quark-mass dependence. From the per-
spective of chiral perturbation theory (�PT), the lead-
ing contributions to the nucleon magnetic moments are
from dimension-five operators, with the leading quark-
mass dependence arising from mesons loops that are sup-
pressed in the chiral expansion, and scaling linearly with
the mass of the pion. Consistency of the magnetic mo-
ments calculated in the NRQM and in �PT suggests
that the nucleon mass scales linearly with the pion mass,
which is inconsistent with chiral power counting, but con-

sistent with the results obtained from analysis of lattice
QCD calculations [24]. It should be emphasized that the
magnetic moments of the light nuclei that we study here
are well understood in the context of nuclear chiral ef-
fective field theory, where pions and nucleons are the ef-
fective degrees of freedom, and heavier meson-exchange-
type contributions are included as various contact inter-
actions among nucleons (see, for instance, Ref. [25]).

The present calculations have been performed at a sin-
gle lattice spacing and in one lattice volume, and the lack
of continuum and infinite volume extrapolations intro-
duces systematic uncertainties into our results. Chiral
perturbation theory can be used to estimate the finite
volume (FV) e↵ects in the magnetic moments, using the
sum of the known [26] e↵ects on the constituent nucle-
ons. These contributions are <

⇠ 1% in all cases. There
may be additional e↵ects beyond the single particle con-
tributions, however the binding energies of light nuclei
calculated previously in multiple volumes at this quark
mass [4] demonstrate that the current lattice volume is
large enough for such FV e↵ects to be negligible. In
contrast, calculations with multiple lattice spacings have
not been performed at this heavier pion mass, and conse-
quently this systematic uncertainty remains to be quan-
tified. However, electromagnetic contributions to the ac-
tion are perturbatively improved as they are included as a
background field in the link variables. Consequently, the
lattice spacing artifacts are expected to be small, entering
at O(⇤2

QCD
a2) ⇠ 3% for ⇤QCD = 300 MeV. To account

for these e↵ects, we combine the two sources of uncer-
tainty in quadrature and assess an overall multiplicative
systematic uncertainty of 3% on all the extracted mo-
ments. For the nuclei, this is small compared to the other
systematic uncertainties, but for the neutron in particu-
lar, it is the dominant uncertainty.

In conclusion, we have presented the results of lattice
QCD calculations of the magnetic moments of the light-
est nuclei at the flavor SU(3) symmetric point. We find
that, when rescaled by the mass of the nucleon, the mag-
netic moments of the proton, neutron, deuteron, 3He and
triton are remarkably close to their experimental values.
The magnetic moment of 3He is very close to that of a
free neutron, consistent with the two protons in the 1s-
state spin-paired to jp = 0 and the valence neutron in the
1s-state. Analogous results are found for the triton, and
the magnetic moment of the deuteron is consistent with
the sum of the neutron and proton magnetic moments.
This work demonstrates for the first time that QCD can
be used to calculate the structure of nuclei from first
principles. Calculations using these techniques at lighter
quark masses and for larger nuclei are ongoing and will
be reported in future work. Perhaps even more impor-
tantly, these results reveal aspects of the nature of nuclei,
not at the physical quark masses, but in a more general
setting where Standard Model parameters are allowed to
vary. In particular, they indicate that the phenomeno-
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E(B) = �2µ |B| + � |B|

3, where �
is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µp = 1.792(19)(37) NM
(nuclear magnetons) and µn = �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.

of the magnetic moment using the above form. These
results agree with previous calculations [14] within the
uncertainties. In the more natural units of lattice nu-
clear magnetons (LNM), e

2MN
, where MN is the mass

of the nucleon at the quark masses of the lattice cal-
culation, the magnetic moments are µp = 3.119(33)(64)
LNM and µn = �1.981(05)(18) LNM. These values at
this unphysical pion mass can be compared with those
of nature, µexpt

p = 2.792847356(23) NM and µexpt

n =
�1.9130427(05) NM, which are remarkably close to the
lattice results. In fact, when comparing all available
lattice QCD results for the nucleon magnetic moments
in units of LNM, the dependence upon the light-quark
masses is surprisingly small, reminiscent of the almost
completely flat pion mass dependence of the nucleon ax-
ial coupling, gA.

In Figure 2, we also show �E(B) as a function of |ñ|

for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µd = 1.218(38)(87)
LNM for the deuteron, µ3He = �2.29(03)(12) LNM for
3He and µ3H = 3.56(05)(18) LNM for the triton. These
can be compared with the experimental values of µexpt

d =
0.8574382308(72) NM, µexpt

3He
= �2.127625306(25) NM

and µexpt

3H
= 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µSM

d = µp+µn, µSM
3He

= µn (where
the two protons in the 1s-state are spin paired to jp = 0
and the neutron is in the 1s-state) and µSM

3H
= µp (where

the two neutrons in the 1s-state are spin paired to jn = 0
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FIG. 4: The di↵erences between the nuclear magnetic mo-
ments and the predictions of the naive shell-model. The
results of the lattice QCD calculation at a pion mass of
m⇡ ⇠ 806 MeV, in units of lattice nuclear magnetons, are
shown as the solid bands. The inner band corresponds to
the statistical uncertainties, while the outer bands correspond
to the statistical and systematic uncertainties combined in
quadrature, including estimates of the uncertainties from lat-
tice spacing and volume. The red dashed lines show the ex-
perimentally measured di↵erences.

and the proton is in the 1s-state). For these simple s-
shell nuclei, the proton and neutron magnetic moments
correspond to the Schmidt limits [22]. In nature, 3He is
one of the very few nuclei that lie outside the Schmidt
limits [23]. In our calculations we also find that 3He
lies outside the Schmidt limits at this heavier pion mass,
with �µ3He = µ3He � µn = �0.340(24)(93) LNM (com-
pared to the experimental di↵erence of �µexpt

3He
= �0.215

NM) , and similarly for the triton �µ3H = µ3H � µp =
+0.45(04)(16) LNM (compared to the experimental dif-
ference of �µexpt

3H
= +0.186 NM), corresponding to ⇠ 10%

deviations from the naive shell-model predictions. These
quantities are summarized in Figure 4.

At a phenomenological level, it is not di�cult to under-
stand why the magnetic moments scale, to a large degree,
with the nucleon mass. The success of the non-relativistic
quark model (NRQM) in describing the magnetic mo-
ments of the lowest-lying baryons as the sum of contri-
butions from three weakly-bound non-relativistic quarks,
with up- and down-quark masses of MU,D ⇠ 300 MeV
and strange-quark mass of MS ⇠ 500 MeV, suggests
that naive scaling with the hadron mass should cap-
ture most of the quark-mass dependence. From the per-
spective of chiral perturbation theory (�PT), the lead-
ing contributions to the nucleon magnetic moments are
from dimension-five operators, with the leading quark-
mass dependence arising from mesons loops that are sup-
pressed in the chiral expansion, and scaling linearly with
the mass of the pion. Consistency of the magnetic mo-
ments calculated in the NRQM and in �PT suggests
that the nucleon mass scales linearly with the pion mass,
which is inconsistent with chiral power counting, but con-

sistent with the results obtained from analysis of lattice
QCD calculations [24]. It should be emphasized that the
magnetic moments of the light nuclei that we study here
are well understood in the context of nuclear chiral ef-
fective field theory, where pions and nucleons are the ef-
fective degrees of freedom, and heavier meson-exchange-
type contributions are included as various contact inter-
actions among nucleons (see, for instance, Ref. [25]).
The present calculations have been performed at a sin-

gle lattice spacing and in one lattice volume, and the lack
of continuum and infinite volume extrapolations intro-
duces systematic uncertainties into our results. Chiral
perturbation theory can be used to estimate the finite
volume (FV) e↵ects in the magnetic moments, using the
sum of the known [26] e↵ects on the constituent nucle-
ons. These contributions are <

⇠ 1% in all cases. There
may be additional e↵ects beyond the single particle con-
tributions, however the binding energies of light nuclei
calculated previously in multiple volumes at this quark
mass [4] demonstrate that the current lattice volume is
large enough for such FV e↵ects to be negligible. In
contrast, calculations with multiple lattice spacings have
not been performed at this heavier pion mass, and conse-
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This work demonstrates for the first time that QCD can
be used to calculate the structure of nuclei from first
principles. Calculations using these techniques at lighter
quark masses and for larger nuclei are ongoing and will
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FIG. 2: The calculated �E(B) of the proton and neutron
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as a function of |ñ|. The shaded regions corresponds to fits
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dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E(B) = �2µ |B| + � |B|

3, where �
is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µp = 1.792(19)(37) NM
(nuclear magnetons) and µn = �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.

of the magnetic moment using the above form. These
results agree with previous calculations [14] within the
uncertainties. In the more natural units of lattice nu-
clear magnetons (LNM), e
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, where MN is the mass

of the nucleon at the quark masses of the lattice cal-
culation, the magnetic moments are µp = 3.119(33)(64)
LNM and µn = �1.981(05)(18) LNM. These values at
this unphysical pion mass can be compared with those
of nature, µexpt

p = 2.792847356(23) NM and µexpt

n =
�1.9130427(05) NM, which are remarkably close to the
lattice results. In fact, when comparing all available
lattice QCD results for the nucleon magnetic moments
in units of LNM, the dependence upon the light-quark
masses is surprisingly small, reminiscent of the almost
completely flat pion mass dependence of the nucleon ax-
ial coupling, gA.

In Figure 2, we also show �E(B) as a function of |ñ|

for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µd = 1.218(38)(87)
LNM for the deuteron, µ3He = �2.29(03)(12) LNM for
3He and µ3H = 3.56(05)(18) LNM for the triton. These
can be compared with the experimental values of µexpt

d =
0.8574382308(72) NM, µexpt

3He
= �2.127625306(25) NM

and µexpt

3H
= 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µSM

d = µp+µn, µSM
3He

= µn (where
the two protons in the 1s-state are spin paired to jp = 0
and the neutron is in the 1s-state) and µSM
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all of the individual correlators in the ratio exhibit sin-
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assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.
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the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E(B) = �2µ |B| + � |B|

3, where �
is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µp = 1.792(19)(37) NM
(nuclear magnetons) and µn = �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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bands corresponds to the statistical uncertainties, while the
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dashed lines show the experimentally measured values at the
physical quark masses.
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ial coupling, gA.
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dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E(B) = �2µ |B| + � |B|

3, where �
is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µp = 1.792(19)(37) NM
(nuclear magnetons) and µn = �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction

p

n

d

3He

3H

-2

0

2

4

�
[�
�
�
]

FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E(B) = �2µ |B| + � |B|

3, where �
is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µp = 1.792(19)(37) NM
(nuclear magnetons) and µn = �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E(B) = �2µ |B| + � |B|

3, where �
is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µp = 1.792(19)(37) NM
(nuclear magnetons) and µn = �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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all of the individual correlators in the ratio exhibit sin-
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ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.
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tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
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the energy splittings of the nucleons and nuclei as a func-
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(nuclear magnetons) and µn = �1.138(03)(10) NM, re-
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dashed lines show the experimentally measured values at the
physical quark masses.
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E(B) = �2µ |B| + � |B|

3, where �
is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µp = 1.792(19)(37) NM
(nuclear magnetons) and µn = �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E(B) = �2µ |B| + � |B|

3, where �
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dashed lines show the experimentally measured values at the
physical quark masses.
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shows the correlator ratios and associated fits for the var-
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3, where �
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certainties combined in quadrature, and include our estimates
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dashed lines show the experimentally measured values at the
physical quark masses.
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FIG. 23: A summary of the magnetic polarizabilities of the nucleons and light nuclei calculated with
LQCD at a pion mass of m⇡ ⇠ 806 MeV. The upper panel presents the dimensionless quantity �̂ =
M

2

N (M� �MN )�/e2 obtained from the fits with the inner shaded region representing the total uncertainty
arising from statistical and fitting systematic uncertainties. The outer shaded region assesses additional
systematic uncertainties from discretization e↵ects and FV e↵ects, combined in quadrature and applied
multiplicatively. The lower panel presents the polarizabilities in physical units; in this case, the outer
shaded region also includes the e↵ect of the scale setting uncertainty.

a critical input for calculations of the production of elements in big-bang nucleosynthesis and in
other environments as is discussed further in Ref [29].

These calculations are the first of their kind and are the initial steps in a comprehensive program

Nuclear structure: polarizabilities
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Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body
electromagnetic contributions to the radiative capture process np ! d�, and the photo-disintegration
processes �(⇤)d ! np. In nuclear potential models, such contributions are described by phenomeno-
logical meson-exchange currents, while in the present work, they are determined directly from the
quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in multiple
background magnetic fields are performed at two values of the quark masses, corresponding to pion
masses of m⇡ ⇠ 450 and 806 MeV, and are combined with pionless nuclear e↵ective field theory to
determine these low-energy inelastic processes. Extrapolating to the physical pion mass, a cross sec-
tion of �lqcd(np ! d�) = 332.4( +5.4

�4.7 ) mb is obtained at an incident neutron speed of v = 2, 200 m/s,

consistent with the experimental value of �expt(np ! d�) = 334.2(0.5) mb.

PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp

The radiative capture process, np ! d�, plays a crit-
ical role in big-bang nucleosynthesis (BBN) as it is the
starting point for the chain of reactions that form most
of the light nuclei in the cosmos. Studies of radia-
tive capture [1–3], and the inverse processes of deuteron
electro- and photo-disintegration, �(⇤)d ! np [4–7], have
constrained these cross-sections and have also provided
critical insights into the interactions between nucleons
and photons. They conclusively show the importance of
non-nucleonic degrees of freedom in nuclei, which arise
from meson-exchange currents (MECs) in the context
of nuclear potential models [8, 9]. Nevertheless, in the
energy range relevant for BBN, experimental investiga-
tions are challenging [10]. For the analogous weak in-
teractions of multi-nucleon systems, considerably less is
known from experiment but these processes are equally
important. The weak two-nucleon interactions currently
contribute the largest uncertainty in calculations of the
rate for proton-proton fusion in the Sun [11–17], and in
neutrino-disintegration of the deuteron [18], which is a
critical process needed to disentangle solar neutrino os-
cillations. Given the phenomenological importance of
electroweak interactions in light nuclei, direct determi-
nations from the underlying theory of strong interaction,
quantum chromodynamics (QCD), are fundamental to
future theoretical progress. Such determinations are also
of significant phenomenological importance for calibrat-
ing long-baseline neutrino experiments and for investiga-

tions of double beta decay in nuclei. In this Letter, we
take the initial steps towards meeting this challenge and
present the first lattice QCD (LQCD) calculations of the
np ! d� process. The results are in good agreement with
experiment and show that QCD calculations of the less
well-determined electroweak processes involving light nu-
clei are within reach. Similarly, the present calculations
open the way for QCD studies of light nuclear matrix ele-
ments of scalar [19] (and other) currents relevant for dark
matter direct detection experiments and other searches
for physics beyond the Standard Model.
The low-energy cross section for np ! d� is conve-

niently written as a multipole expansion in the electro-
magnetic (EM) field [20, 21],

�(np ! d�) =
e2(�2

0 + |p|2)3

M4�3
0 |p|

|X̃M1|
2 + ... , (1)

where X̃M1 is the M1 amplitude, �0 is the binding mo-
mentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribu-
tion from E1 and higher-order multipoles (higher multi-
poles can be included systematically and improve the re-
liability of the description [22], but are not relevant at the
level of precision of the present work). In a pionless e↵ec-
tive field theory expansion [23–25], employing dibaryon
fields to resum e↵ective range contributions [26, 27], the
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�4.7 ) mb is obtained at an incident neutron speed of v = 2, 200 m/s,

consistent with the experimental value of �expt(np ! d�) = 334.2(0.5) mb.
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The radiative capture process, np ! d�, plays a crit-
ical role in big-bang nucleosynthesis (BBN) as it is the
starting point for the chain of reactions that form most
of the light nuclei in the cosmos. Studies of radia-
tive capture [1–3], and the inverse processes of deuteron
electro- and photo-disintegration, �(⇤)d ! np [4–7], have
constrained these cross-sections and have also provided
critical insights into the interactions between nucleons
and photons. They conclusively show the importance of
non-nucleonic degrees of freedom in nuclei, which arise
from meson-exchange currents (MECs) in the context
of nuclear potential models [8, 9]. Nevertheless, in the
energy range relevant for BBN, experimental investiga-
tions are challenging [10]. For the analogous weak in-
teractions of multi-nucleon systems, considerably less is
known from experiment but these processes are equally
important. The weak two-nucleon interactions currently
contribute the largest uncertainty in calculations of the
rate for proton-proton fusion in the Sun [11–17], and in
neutrino-disintegration of the deuteron [18], which is a
critical process needed to disentangle solar neutrino os-
cillations. Given the phenomenological importance of
electroweak interactions in light nuclei, direct determi-
nations from the underlying theory of strong interaction,
quantum chromodynamics (QCD), are fundamental to
future theoretical progress. Such determinations are also
of significant phenomenological importance for calibrat-
ing long-baseline neutrino experiments and for investiga-

tions of double beta decay in nuclei. In this Letter, we
take the initial steps towards meeting this challenge and
present the first lattice QCD (LQCD) calculations of the
np ! d� process. The results are in good agreement with
experiment and show that QCD calculations of the less
well-determined electroweak processes involving light nu-
clei are within reach. Similarly, the present calculations
open the way for QCD studies of light nuclear matrix ele-
ments of scalar [19] (and other) currents relevant for dark
matter direct detection experiments and other searches
for physics beyond the Standard Model.
The low-energy cross section for np ! d� is conve-

niently written as a multipole expansion in the electro-
magnetic (EM) field [20, 21],

�(np ! d�) =
e2(�2

0 + |p|2)3

M4�3
0 |p|

|X̃M1|
2 + ... , (1)

where X̃M1 is the M1 amplitude, �0 is the binding mo-
mentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribu-
tion from E1 and higher-order multipoles (higher multi-
poles can be included systematically and improve the re-
liability of the description [22], but are not relevant at the
level of precision of the present work). In a pionless e↵ec-
tive field theory expansion [23–25], employing dibaryon
fields to resum e↵ective range contributions [26, 27], the
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electromagnetic contributions to the radiative capture process np ! d�, and the photo-disintegration
processes �(⇤)d ! np. In nuclear potential models, such contributions are described by phenomeno-
logical meson-exchange currents, while in the present work, they are determined directly from the
quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in multiple
background magnetic fields are performed at two values of the quark masses, corresponding to pion
masses of m⇡ ⇠ 450 and 806 MeV, and are combined with pionless nuclear e↵ective field theory to
determine these low-energy inelastic processes. Extrapolating to the physical pion mass, a cross sec-
tion of �lqcd(np ! d�) = 332.4( +5.4

�4.7 ) mb is obtained at an incident neutron speed of v = 2, 200 m/s,

consistent with the experimental value of �expt(np ! d�) = 334.2(0.5) mb.
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The radiative capture process, np ! d�, plays a crit-
ical role in big-bang nucleosynthesis (BBN) as it is the
starting point for the chain of reactions that form most
of the light nuclei in the cosmos. Studies of radia-
tive capture [1–3], and the inverse processes of deuteron
electro- and photo-disintegration, �(⇤)d ! np [4–7], have
constrained these cross-sections and have also provided
critical insights into the interactions between nucleons
and photons. They conclusively show the importance of
non-nucleonic degrees of freedom in nuclei, which arise
from meson-exchange currents (MECs) in the context
of nuclear potential models [8, 9]. Nevertheless, in the
energy range relevant for BBN, experimental investiga-
tions are challenging [10]. For the analogous weak in-
teractions of multi-nucleon systems, considerably less is
known from experiment but these processes are equally
important. The weak two-nucleon interactions currently
contribute the largest uncertainty in calculations of the
rate for proton-proton fusion in the Sun [11–17], and in
neutrino-disintegration of the deuteron [18], which is a
critical process needed to disentangle solar neutrino os-
cillations. Given the phenomenological importance of
electroweak interactions in light nuclei, direct determi-
nations from the underlying theory of strong interaction,
quantum chromodynamics (QCD), are fundamental to
future theoretical progress. Such determinations are also
of significant phenomenological importance for calibrat-
ing long-baseline neutrino experiments and for investiga-

tions of double beta decay in nuclei. In this Letter, we
take the initial steps towards meeting this challenge and
present the first lattice QCD (LQCD) calculations of the
np ! d� process. The results are in good agreement with
experiment and show that QCD calculations of the less
well-determined electroweak processes involving light nu-
clei are within reach. Similarly, the present calculations
open the way for QCD studies of light nuclear matrix ele-
ments of scalar [19] (and other) currents relevant for dark
matter direct detection experiments and other searches
for physics beyond the Standard Model.
The low-energy cross section for np ! d� is conve-

niently written as a multipole expansion in the electro-
magnetic (EM) field [20, 21],

�(np ! d�) =
e2(�2

0 + |p|2)3

M4�3
0 |p|

|X̃M1|
2 + ... , (1)

where X̃M1 is the M1 amplitude, �0 is the binding mo-
mentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribu-
tion from E1 and higher-order multipoles (higher multi-
poles can be included systematically and improve the re-
liability of the description [22], but are not relevant at the
level of precision of the present work). In a pionless e↵ec-
tive field theory expansion [23–25], employing dibaryon
fields to resum e↵ective range contributions [26, 27], the
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processes �(⇤)d ! np. In nuclear potential models, such contributions are described by phenomeno-
logical meson-exchange currents, while in the present work, they are determined directly from the
quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in multiple
background magnetic fields are performed at two values of the quark masses, corresponding to pion
masses of m⇡ ⇠ 450 and 806 MeV, and are combined with pionless nuclear e↵ective field theory to
determine these low-energy inelastic processes. Extrapolating to the physical pion mass, a cross sec-
tion of �lqcd(np ! d�) = 332.4( +5.4

�4.7 ) mb is obtained at an incident neutron speed of v = 2, 200 m/s,

consistent with the experimental value of �expt(np ! d�) = 334.2(0.5) mb.

PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp

The radiative capture process, np ! d�, plays a crit-
ical role in big-bang nucleosynthesis (BBN) as it is the
starting point for the chain of reactions that form most
of the light nuclei in the cosmos. Studies of radia-
tive capture [1–3], and the inverse processes of deuteron
electro- and photo-disintegration, �(⇤)d ! np [4–7], have
constrained these cross-sections and have also provided
critical insights into the interactions between nucleons
and photons. They conclusively show the importance of
non-nucleonic degrees of freedom in nuclei, which arise
from meson-exchange currents (MECs) in the context
of nuclear potential models [8, 9]. Nevertheless, in the
energy range relevant for BBN, experimental investiga-
tions are challenging [10]. For the analogous weak in-
teractions of multi-nucleon systems, considerably less is
known from experiment but these processes are equally
important. The weak two-nucleon interactions currently
contribute the largest uncertainty in calculations of the
rate for proton-proton fusion in the Sun [11–17], and in
neutrino-disintegration of the deuteron [18], which is a
critical process needed to disentangle solar neutrino os-
cillations. Given the phenomenological importance of
electroweak interactions in light nuclei, direct determi-
nations from the underlying theory of strong interaction,
quantum chromodynamics (QCD), are fundamental to
future theoretical progress. Such determinations are also
of significant phenomenological importance for calibrat-
ing long-baseline neutrino experiments and for investiga-

tions of double beta decay in nuclei. In this Letter, we
take the initial steps towards meeting this challenge and
present the first lattice QCD (LQCD) calculations of the
np ! d� process. The results are in good agreement with
experiment and show that QCD calculations of the less
well-determined electroweak processes involving light nu-
clei are within reach. Similarly, the present calculations
open the way for QCD studies of light nuclear matrix ele-
ments of scalar [19] (and other) currents relevant for dark
matter direct detection experiments and other searches
for physics beyond the Standard Model.
The low-energy cross section for np ! d� is conve-

niently written as a multipole expansion in the electro-
magnetic (EM) field [20, 21],

�(np ! d�) =
e2(�2

0 + |p|2)3

M4�3
0 |p|

|X̃M1|
2 + ... , (1)

where X̃M1 is the M1 amplitude, �0 is the binding mo-
mentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribu-
tion from E1 and higher-order multipoles (higher multi-
poles can be included systematically and improve the re-
liability of the description [22], but are not relevant at the
level of precision of the present work). In a pionless e↵ec-
tive field theory expansion [23–25], employing dibaryon
fields to resum e↵ective range contributions [26, 27], the
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to be placed on the inverse scattering lengths and effective ranges. The extracted phase shifts
allowed for matching to NEFTs, from which low energy counterterms were extracted and issues
of convergence investigated. These results suggest that the relatively large size of the deuteron
compared with the range of the nuclear forces may persist over a large range of light-quark masses
and, therefore, might be a rather generic feature. The 1S0 channel, in contrast, is finely tuned at
the physical light-quark masses, and the range of masses over which this persists remains to be
determined.
The results of these calculations appeared in Physical Review D, and this article was selected as an
Editors Suggestion.

3. Cross Section of np ! dg

Calculations of two-nucleon systems were used to isolate the short-distance two-body electromag-
netic contributions to the radiative capture process np! dg, and the photo-disintegration processes
g(⇤)d ! np [6], as shown in Fig. 4. In nuclear potential models, such contributions are described
by phenomenological meson-exchange currents, while we were able to determine them directly
from the quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in
multiple background magnetic fields were performed at two values of the quark masses, corre-
sponding to pion masses of mp ⇠ 450 and 805 MeV, and were combined with pionless EFT to
determine the rate of this low-energy inelastic process. Extrapolating to the physical pion mass,
a cross section of slqcd(np ! dg) = 334.9( +5.4

�4.7 ) mb was obtained at an incident neutron speed of
v = 2,200 m/s, consistent with the experimental value of sexpt(np ! dg) = 334.2(0.5) mb. This is
the first LQCD calculation of an inelastic nuclear reaction and our paper has appeared in Physical
Review Letters [6].

FIG. 4: The short-distance correlated two-nucleon (meson-exchange current) contribution to np ! dg [6,
20].

4. The Magnetic Structure of Light Nuclei

Background magnetic fields were used to calculate the magnetic moments and magnetic polariz-
abilities of the nucleons and of light nuclei with A  4 at the flavor SU(3)-symmetric point where
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The radiative capture process, np ! d�, plays a crit-
ical role in big-bang nucleosynthesis (BBN) as it is the
starting point for the chain of reactions that form most
of the light nuclei in the cosmos. Studies of radia-
tive capture [1–3], and the inverse processes of deuteron
electro- and photo-disintegration, �(⇤)d ! np [4–7], have
constrained these cross-sections and have also provided
critical insights into the interactions between nucleons
and photons. They conclusively show the importance of
non-nucleonic degrees of freedom in nuclei, which arise
from meson-exchange currents (MECs) in the context
of nuclear potential models [8, 9]. Nevertheless, in the
energy range relevant for BBN, experimental investiga-
tions are challenging [10]. For the analogous weak in-
teractions of multi-nucleon systems, considerably less is
known from experiment but these processes are equally
important. The weak two-nucleon interactions currently
contribute the largest uncertainty in calculations of the
rate for proton-proton fusion in the Sun [11–17], and in
neutrino-disintegration of the deuteron [18], which is a
critical process needed to disentangle solar neutrino os-
cillations. Given the phenomenological importance of
electroweak interactions in light nuclei, direct determi-
nations from the underlying theory of strong interaction,
quantum chromodynamics (QCD), are fundamental to
future theoretical progress. Such determinations are also
of significant phenomenological importance for calibrat-
ing long-baseline neutrino experiments and for investiga-

tions of double beta decay in nuclei. In this Letter, we
take the initial steps towards meeting this challenge and
present the first lattice QCD (LQCD) calculations of the
np ! d� process. The results are in good agreement with
experiment and show that QCD calculations of the less
well-determined electroweak processes involving light nu-
clei are within reach. Similarly, the present calculations
open the way for QCD studies of light nuclear matrix ele-
ments of scalar [19] (and other) currents relevant for dark
matter direct detection experiments and other searches
for physics beyond the Standard Model.
The low-energy cross section for np ! d� is conve-

niently written as a multipole expansion in the electro-
magnetic (EM) field [20, 21],

�(np ! d�) =
e2(�2

0 + |p|2)3

M4�3
0 |p|

|X̃M1|
2 + ... , (1)

where X̃M1 is the M1 amplitude, �0 is the binding mo-
mentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribu-
tion from E1 and higher-order multipoles (higher multi-
poles can be included systematically and improve the re-
liability of the description [22], but are not relevant at the
level of precision of the present work). In a pionless e↵ec-
tive field theory expansion [23–25], employing dibaryon
fields to resum e↵ective range contributions [26, 27], the
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not present in the Standard Model [18–21]. Although
the dominant contributions to the decay rate are under
theoretical control, as this is a super-allowed process, the
Gamow-Teller (GT) contribution (axial current) is some-
what more challenging to address than the Fermi (F)
contribution (vector current). Improved constraints on
multi-body contributions to the GT matrix element will
translate into reduced uncertainties in predictions for de-
cays of larger nuclei.

In this Letter, results of the first LQCD calculations
of the pp ! de+⌫e fusion process and the Gamow-Teller
matrix element contributing to tritium �-decay are pre-
sented, albeit at unphysically large values of the light
quark masses. These are accomplished using a new algo-
rithm for implementing background fields, which is supe-
rior to existing methods. Further, the quantities of inter-
est are extracted at high precision using a refined analysis
strategy. For pp ! de+⌫e, the deviations from the single-
nucleon contributions are small but are well resolved with
the new technique. The leading two-nucleon axial coun-
terterm of pionless e↵ective field theory (EFT(⇡/)), L1,A,
is determined. The axial coupling of 3H that determines
the matrix element for 3H !

3He e�⌫̄ in the isospin limit
is found to be slightly smaller than that of the proton and
consistent with previous phenomenological estimates [6].

Background Axial Fields: Background field techniques
were first used in LQCD in the pioneering works of
Ref. [22] and Refs. [23, 24] in the cases of axial and
magnetic fields, respectively. Significant e↵ort has gone
into using background electromagnetic fields to extract
magnetic moments and electromagnetic polarizabilities
of hadrons [25–29] and nuclei [30–32], as well as the mag-
netic transition amplitude for the np ! d� process [33].
Very recently, axial background fields have been inves-
tigated in order to extract the axial charge of the pro-
ton [34, 35], and generalizations to nonzero momentum
transfer [36–38] have been used [39] to access electromag-
netic and axial form factors of the nucleon.

In this work, a new method is used to generate
hadronic correlation functions order-by-order in the
background field. In the standard approach, correlation
functions are constructed from the contraction of quark
propagators that are modified by the presence of a back-
ground field. The same e↵ect can be achieved by directly
constructing propagators that include explicit current in-
sertions, then using such propagators to construct corre-
lation functions. For the quantities studied in this work
only a single insertion of the background axial field is
required. To this end, the compound propagator

S(q)

�q ;�
(x, y) = S(q)(x, y) + �q

Z
dzS(q)(x, z)�S(q)(z, y)(1)

is constructed for � = �3�5 and flavors q = {u, d},
where S(q)(x, y) is the quark propagator of flavour q and
�q is a constant (a similar approach is implemented in

Ref. [40] in a di↵erent context). The second term in
this expression is computed using standard sequential
source techniques and the procedure can be repeated to
produce propagators with second and higher-order cou-
plings. These compound propagators are su�cient to
construct the isovector axial-current matrix elements for
zero momentum insertion in any hadronic or nuclear sys-
tem.1 This work focuses on zero-momentum–projected
correlation functions,

C(h)

�u;�d
(t) =

X

x

h0|�h(x, t)�
†

h
(0)|0i�u;�d , (2)

where h. . .i�u;�d denotes the expectation value deter-
mined using the compound propagators. The interpolat-
ing operators for hadrons and nuclei, �h, are those previ-
ously used to study spectroscopy of these systems [41, 42].

By construction, C(h)

�u;�d
(t) is a polynomial of maximum

order �Nu
u

�Nd
d

in the field strengths, where Nu(d) is the
number of up(down) quarks in the particular interpolat-
ing operator.

Details of the LQCD Calculation: The calculations
presented below used an ensemble of gauge-field config-
urations generated with a clover-improved fermion ac-
tion [43] and a Lüscher-Weisz gauge action [44]. The
ensemble was generated with Nf = 3 degenerate light-
quark flavors with masses tuned to the physical strange
quark mass, producing a pion of mass m⇡ ⇠ 806 MeV,
with a volume of L3

⇥T = 323⇥48 and a lattice spacing of
a ⇠ 0.12 fm. For these calculations, 440 configurations,
with a spacing of 10 trajectories between configurations,
were used. Correlation functions were computed for
h = {p, n, d, nn, np(1S0), pp, 3H, 3He} from propagators
generated from a smeared source and either a smeared
(SS) or point (SP) sink. Sixteen di↵erent source loca-
tions were averaged over on each configuration. Com-
pound propagators and correlation functions were cal-
culated at six di↵erent values of the background field
strength parameter � = {±0.05,±0.1,±0.2}. The axial
current renormalisation factor ZA = 0.867(19)(30)(43)
was determined from computations of the vector current
in the proton, noting that ZA = ZV + O(a) and assign-
ing a 5% systematic uncertainty associated with lattice-
spacing artifacts.2

The Proton Axial Charge: The simplest matrix ele-
ment of the isovector axial current determines the axial
charge of the proton. The correlation function C(p)

�u;�d
(t)

is at most quadratic in �u and linear in �d when con-

structed from the compound propagators S(u)

�u;�3�5
(x, y)

1
This work does not address isoscalar responses which involve also

insertions on the sea-quark propagators.
2
A determination that removes the leading lattice-spacing ar-

tifacts leads to ZA = 0.8623(01)(71) [45] at a pion mass of

m⇡ ⇠ 317 MeV.

Nuclear structure: axial transitions

✦ Axial coupling to the NN system
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not present in the Standard Model [18–21]. Although
the dominant contributions to the decay rate are under
theoretical control, as this is a super-allowed process, the
Gamow-Teller (GT) contribution (axial current) is some-
what more challenging to address than the Fermi (F)
contribution (vector current). Improved constraints on
multi-body contributions to the GT matrix element will
translate into reduced uncertainties in predictions for de-
cays of larger nuclei.

In this Letter, results of the first LQCD calculations
of the pp ! de+⌫e fusion process and the Gamow-Teller
matrix element contributing to tritium �-decay are pre-
sented, albeit at unphysically large values of the light
quark masses. These are accomplished using a new algo-
rithm for implementing background fields, which is supe-
rior to existing methods. Further, the quantities of inter-
est are extracted at high precision using a refined analysis
strategy. For pp ! de+⌫e, the deviations from the single-
nucleon contributions are small but are well resolved with
the new technique. The leading two-nucleon axial coun-
terterm of pionless e↵ective field theory (EFT(⇡/)), L1,A,
is determined. The axial coupling of 3H that determines
the matrix element for 3H !

3He e�⌫̄ in the isospin limit
is found to be slightly smaller than that of the proton and
consistent with previous phenomenological estimates [6].

Background Axial Fields: Background field techniques
were first used in LQCD in the pioneering works of
Ref. [22] and Refs. [23, 24] in the cases of axial and
magnetic fields, respectively. Significant e↵ort has gone
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Z
dzS(q)(x, z)�S(q)(z, y)(1)

is constructed for � = �3�5 and flavors q = {u, d},
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C(h)

�u;�d
(t) =

X

x

h0|�h(x, t)�
†

h
(0)|0i�u;�d , (2)

where h. . .i�u;�d denotes the expectation value deter-
mined using the compound propagators. The interpolat-
ing operators for hadrons and nuclei, �h, are those previ-
ously used to study spectroscopy of these systems [41, 42].

By construction, C(h)

�u;�d
(t) is a polynomial of maximum

order �Nu
u

�Nd
d

in the field strengths, where Nu(d) is the
number of up(down) quarks in the particular interpolat-
ing operator.

Details of the LQCD Calculation: The calculations
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h = {p, n, d, nn, np(1S0), pp, 3H, 3He} from propagators
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charge of the proton. The correlation function C(p)

�u;�d
(t)

is at most quadratic in �u and linear in �d when con-

structed from the compound propagators S(u)

�u;�3�5
(x, y)

1
This work does not address isoscalar responses which involve also

insertions on the sea-quark propagators.
2
A determination that removes the leading lattice-spacing ar-

tifacts leads to ZA = 0.8623(01)(71) [45] at a pion mass of

m⇡ ⇠ 317 MeV.

Nuclear structure: axial transitions

✦ Axial coupling to the NN system
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of these ratios lead to

gA(3H)

ZA

= 1.272(6)(17),
gA(3H)

gA
= 0.979(3)(10), (6)

where the first uncertainties are statistical and the sec-
ond arise from systematics as described for gA. The result
for gA(3H)/gA compares favorably with the (much more
precise) experimentally-determined value of hGTi =
0.9511(13) [6] at the physical quark masses. In the con-
text of EFT(⇡/), the short-distance two-nucleon axial-
vector operator, with coe�cient L1,A [4], is expected to
give the leading contribution to the di↵erence of this ra-
tio from unity. In pionful EFTs, deviations from unity
are dominated by multi-body pion-exchanges. This has
recently been explicitly computed to N4LO in Weinberg’s
power counting [5, 6].

The Low-Energy Proton-Proton Fusion Cross Section:
The low-energy cross section for pp ! de+⌫ is dictated
by the matrix element

��⌦d; j
��A�

k

�� pp
↵�� ⌘ gAC⌘

r
32⇡

�3
⇤(p) �jk, (7)

where C⌘ is the Sommerfeld factor and � is the deuteron
binding momentum. The quantity ⇤(p) has been calcu-
lated at threshold to N3LO [3] and N4LO [4] in EFT(⇡/),
and S11(0), the quantity governing the cross-section for
the fusion process, is proportional to ⇤(0)2. At N3LO,
⇤(0) is related to the renormalization-scale independent
short-distance quantity Lsd�2b

1,A
that is solely two-body,

along with scattering parameters and Coulomb correc-
tions [4]:

⇤(0) =
1

p
1� �⇢

{e� � �app[1� �e�E1(�)]

+
1

2
�2app

p
r1⇢}�

1

2gA
�app

p
1� �⇢ Lsd�2b

1,A
. (8)

Here � = ↵Mp/�, where ↵ is the QED fine-structure
constant and Mp is the mass of the proton, app is the
pp scattering length, r1 and ⇢ are the e↵ective ranges in
the 1S0 and 3S1 channels, respectively, and E1(�) is the
incomplete gamma function. A determination of Lsd�2b

1,A
,

or equivalently of the commonly-used scale-independent
coupling L1,A [4] 3, is a goal of the present LQCD calcu-
lations.

A background isovector axial field mixes the
Jz = Iz = 0 components of the 3S1 and 1S0 two-nucleon
channels, enabling the pp-fusion matrix element to be ac-
cessed. Using the new background field construction, the

relevant o↵-diagonal matrix element C(
3
S1,

1
S0)

�u;�d
(t) is a cu-

bic polynomial in both �u and �d. In Ref. [33], the anal-
ogous mixing between the two-nucleon channels induced

3 L1,A =
1

2gA

1��⇢
� Lsd�2b

1,A � 1
2

p
r1⇢.

by an isovector magnetic field was treated by diagonaliz-
ing a (channel-space) matrix of correlators and determin-
ing the splittings between energy eigenvalues. This pro-
vided access to the matrix element dictating np ! d� at
low energies, as was proposed in Ref. [51]. Such a method
can also be used for the axial field, but the improved ap-
proach used here makes use of the finite-order polyno-
mial structure to access the matrix element directly. For
a background field that couples to the u quarks,

C(
3
S1,

1
S0)

�u;�d=0
(t) = �u

tX

⌧=0

X

x

h0|�3
3S1

(x, t)Au

3
(⌧)�†

1S0
(0)|0i

+ c2�
2

u
+ c3�

3

u
, (9)

where �3
3S1

(�1S0
) is an interpolating field for the Jz = 0

(Iz = 0) component of the 3S1 (1S0) channel, and c2,3 are
irrelevant terms. Calculations of the axial matrix element
at four or more values of �u allow for the extraction of
the term that is linear in �u. A similar procedure obtains
the term that is linear in �d from background fields cou-
pling to the d quark. Taking the di↵erence of the ratios
of these terms to the corresponding zero-field two-point
functions determines the transition matrix element in the
finite lattice volume;

R3S1,
1S0

(t) =
C(

3
S1,

1
S0)

�u,�d=0
(t)

���
O(�u)

� C(
3
S1,

1
S0)

�u=0,�d
(t)

���
O(�d)q

C(3S1,
3S1)

�u=0,�d=0
(t)C(1S0,

1S0)

�u=0,�d=0
(t)

.(10)

Consequently, the di↵erence between ratios at neighbor-
ing timeslices determines the isovector matrix element

R3S1,
1S0

(t) ⌘ R3S1,
1S0

(t+ 1)�R3S1,
1S0

(t)

!

⌦
3S1; Jz = 0

��A3

3

�� 1S0; Iz = 0
↵

ZA

, (11)

in the limit where �E = Ed � Epp is small (as is
the case with the quark masses used in this calcu-
lation [41]), and when the contributions from excited
states are suppressed. This quantity, measured with
both SS and SP correlators, is shown in Fig. 3, along
with the extracted value of the axial matrix element,⌦
3S1; Jz = 0

��A3

3

�� 1S0; Iz = 0
↵
/ZA = 2.568(5)(16), where

the first uncertainty is statistical and the second is a sys-
tematic encompassing choices of fit ranges in time and
field strength as well as variations in analysis techniques.
At the pion mass of this study, the initial and final two-
nucleon states are deeply bound [41] and the associated
finite-volume e↵ects in the matrix elements are negligi-
ble [52, 53]. At lighter values of the quark masses, where
the np(1S0) system is not bound and the deuteron is only
weakly bound, finite volume e↵ects become more compli-
cated, requiring analysis in the framework developed in
Refs. [52, 53].
To isolate the two-body contribution, the combina-

tion R3S1,
1S0

(t)� 2Rp(t) is formed as shown in the lower
panel of Fig. 3. Taking advantage of the near-degeneracy
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FIG. 3. The ratios of correlation functions that determine
the unrenormalized isovector axial matrix element in the Jz =
Iz = 0 coupled two-nucleon system (upper panel), and the
di↵erence between the axial matrix element in this channel
and 2gA (lower panel). The orange diamonds (blue circles)
correspond to the SS (SP) e↵ective correlator ratios and the
bands correspond to fits to the asymptotic plateau behavior.

of the 3S1 and 1S0 two-nucleon channels at the quark
masses used in this calculation, it is straightforward to
show that this correlated di↵erence leads directly to the
short-distance two-nucleon counter term, Lsd�2b

1,A
. Fitting

a constant to the late time behavior of this quantity leads
to

Lsd,2b

1,A

ZA

=

⌦
3S1; Jz = 0

��A3

3

�� 1S0; Iz = 0
↵
� 2gA

2ZA

= �0.0107(12)(48), (12)

where the first uncertainty is statistical and the second
encompasses fitting and analysis systematics.

In light of the behavior of the analogous quantity con-
tributing to np ! d� [33], Lsd,2b

1,A
is likely to be largely

insensitive to the mass of the light quarks. Consequently,
the result obtained here at m⇡ ⇠ 806 MeV can be used
to estimate the value of Lsd�2b

1,A
at the physical pion mass

by including an additional 50% additive uncertainty mo-
tivated by the mass-dependence of the two body coun-
terterm in the np ! d� process [33]. Inserting this uncer-
tainty into Eq. (7), the threshold value of ⇤(p) in this sys-
tem at physical values of quark masses is determined to
be ⇤(0) = 2.6585(6)(71)(25), where the uncertainties are
statistical, fitting systematics, and mass extrapolation
systematics, respectively. This result is remarkably close
to the currently-accepted very precise phenomenological
value, ⇤(0) = 2.652(2) [10]. The N4LO relation of Ref. [4]
(with K1,A = 0) gives ⇤(0) = 2.6178 + 0.0106 L1,A, en-
abling a determination of the EFT(⇡/) coupling

L1,A = 3.83(5)(70)(24)(XX) fm3, (13)

at a renormalization scale µ = m⇡. The uncertainties
are statistical, fitting systematic, mass extrapolation sys-
tematic, and scale uncertainty, respectively. This value is

also very close to previous phenomenological estimates,
as summarized in Refs. [10, 13].

Summary: The primary results of this work are the
isovector axial-current matrix elements in two and three-
nucleon systems calculated directly from the underlying
theory of the strong interactions using LQCD. The ax-
ial matrix elements that have been calculated determine
the cross-section for the pp fusion process pp ! de+⌫
and the Gamow-Teller contribution to tritium �-decay,
3H !

3He e�⌫. While the calculations are performed
at unphysical quark masses corresponding to m⇡ ⇠ 806
MeV and at a single lattice spacing and volume, the mild
mass dependence of the analogous short-distance quan-
tity in the np ! d� magnetic transition enables an esti-
mate of the pp ! de+⌫ matrix element at the physical
point, and the results are found to agree within uncer-
tainties with experiment. Future LQCD calculations at
lighter quark masses, larger volumes, and finer lattice
spacings, making use of the new techniques that are in-
troduced here, will enable extractions of these axial ma-
trix elements with fully quantified uncertainties and will
be of great importance in phenomenology, providing in-
creasingly precise values for the pp-fusion cross section
and GT matrix element in tritium �-decay.

Beyond the current study, background axial-field cal-
culations also allow the extraction of second-order re-
sponses as well as momentum-dependent responses.
Second-order responses are important for determining
nuclear ��-decay matrix elements, both with and with-
out (in the light Majorana scenario) the emission of as-
sociated neutrinos. Momentum-dependent axial back-
ground fields will allow the determination of nuclear
e↵ects in neutrino-nucleus scattering. In both cases,
LQCD calculations of these quantities in light nuclei will
provide vital input with which to constrain the nuclear
many-body methods that are used to determine the ma-
trix elements for these processes.
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FIG. 3. The ratios of correlation functions that determine
the unrenormalized isovector axial matrix element in the Jz =
Iz = 0 coupled two-nucleon system (upper panel), and the
di↵erence between the axial matrix element in this channel
and 2gA (lower panel). The orange diamonds (blue circles)
correspond to the SS (SP) e↵ective correlator ratios and the
bands correspond to fits to the asymptotic plateau behavior.

3S1 and 1S0 two-nucleon channels at the quark masses
used in this calculation, it is straightforward to show
that this correlated di↵erence leads directly to the short-
distance two-nucleon quantity, Lsd�2b

1,A
. Fitting a constant

to the late time behavior of this quantity leads to
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where the first uncertainty is statistical and the second
encompasses fitting and analysis systematics.

In light of the behavior of the analogous quantity con-
tributing to np ! d� [33], Lsd,2b

1,A
is likely to be largely

insensitive to the mass of the light quarks. Consequently,
the result obtained here at m⇡ ⇠ 806 MeV can be used
to estimate the value of Lsd�2b

1,A
at the physical pion mass

by including an additional 50% additive uncertainty mo-
tivated by the mass-dependence of the two body coun-
terterm in the np ! d� process [33]. Inserting this un-
certainty into Eq. (7), the threshold value of ⇤(p) in this
system at physical values of quark masses is determined
to be ⇤(0) = 2.6585(6)(71)(25), where the uncertainties
are statistical, fitting systematics, and mass extrapola-
tion systematics, respectively. Uncertainties in the scat-
tering parameters and other physical mass inputs are also
propagated and included in the systematic uncertainty.
This result is remarkably close to the currently-accepted
very precise phenomenological value, ⇤(0) = 2.652(2)
[10]. The N4LO relation of Ref. [4] (with K1,A = 0)
gives ⇤(0) = 2.62(1) + 0.0105(1) L1,A, enabling a deter-
mination of the EFT(⇡/) coupling

L1,A = 3.8(1)(10)(3) fm3, (14)

at a renormalization scale µ = m⇡. The uncertainties
are statistical, fitting systematic and mass extrapolation
systematic, respectively. This value is also very close to
previous phenomenological estimates, as summarized in
Refs. [10, 13].

Summary: The primary results of this work are the
isovector axial-current matrix elements in two and three-
nucleon systems calculated directly from the underlying
theory of the strong interactions using LQCD. The ax-
ial matrix elements that have been calculated determine
the cross-section for the pp fusion process pp ! de+⌫
and the Gamow-Teller contribution to tritium �-decay,
3H !

3He e�⌫. While the calculations are performed
at unphysical quark masses corresponding to m⇡ ⇠ 806
MeV and at a single lattice spacing and volume, the mild
mass dependence of the analogous short-distance quan-
tity in the np ! d� magnetic transition enables an esti-
mate of the pp ! de+⌫ matrix element at the physical
point, and the results are found to agree within uncer-
tainties with experiment. Future LQCD calculations at
lighter quark masses, larger volumes, and finer lattice
spacings, making use of the new techniques that are in-
troduced here, will enable extractions of these axial ma-
trix elements with fully quantified uncertainties and will
be of great importance in phenomenology, providing in-
creasingly precise values for the pp-fusion cross section
and GT matrix element in tritium �-decay.

Beyond the current study, background axial-field cal-
culations also allow the extraction of second-order re-
sponses as well as momentum-dependent responses.
Second-order responses are important for determining
nuclear ��-decay matrix elements, both with and with-
out (in the light Majorana scenario) the emission of as-
sociated neutrinos. Momentum-dependent axial back-
ground fields will allow the determination of nuclear
e↵ects in neutrino-nucleus scattering. In both cases,
LQCD calculations of these quantities in light nuclei will
provide vital input with which to constrain the nuclear
many-body methods that are used to determine the ma-
trix elements for these processes.
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✦ Progress has been made in benchmarking lattice QCD calculations of 
nucleon-nucleon interactions. 

✦ The goal of lattice QCD is to calculate unknown observables with 
fully-controlled uncertainties. 

✦ Background field method is proving remarkably successful. 
Scalar MEs have also been computed: large deviations in some 
cases from sum of single nucleon MEs. 

✦ Prospect of a quantitative connection to QCD makes this an 
exciting time for nuclear physics.


