Nuclear reactions from lattice QCD simulations

Silas Beane

Erice
9/18/2018

NPLQCD: UNPHYSICAL NUCLE

> Case study LOCD with unphysical quark masses ($\mathrm{m}_{\mathrm{n}} \sim 800 \mathrm{MeV}, 450 \mathrm{MeV}$)

1. Spectrum and scattering of light nuclei (A<5) [PRD 87 (2013), 034506]
2. Nuclear structure: magnetic moments, polarisabilities (A<5) [PRL 113, 252001 (2014), PRL 116, 112301 (2016)]
3. Nuclear reactions: $n p \rightarrow d \gamma$ IPRL 115, 132001 (2015)]
4. Gamow-Teller transitions: $p p \rightarrow d e v$, $\mathrm{g}_{\mathrm{A}}\left({ }^{3} \mathrm{H}\right)$ [PRLL 119062002 (2017)]
5. Double β decay: $p p \rightarrow n n$ [PRL 119, 062003 (2017)]
6. Gluon structure ($\mathrm{A}<4)_{\text {[PRD } 96094512 \text { (2017)] }}$

7. Scalar/tensor currents (A<4) [PRL 120152002 (2018)]

Together with the electroweak theory, QCD underlies all the interesting nuclear and stronginteraction phenomena that we study.

Spin-pairing

Shell-structure

Vibrational and rotational excitations

In principle can calculate properties of any nucleus from QCD and EW

Multi-scale physics with at least two exponentially difficult computational challenges

GeV

Outline

- Lattice QCD primer
- Bottlenecks: signal-to-noise
- Light nuclei and BB scattering
- External probes and nuclear reactions

LATTICE QCD = QCD ON A GRID OR LATTICE

Non-perturbative definition of QCD

volume: $M_{\pi} L \gg 1$ infrared cutoff $b \ll M_{N}^{-1}$

ultraviolet cutoff

Can use Effective Field Theory to extrapolate in L and b !
(systematic uncertainties from lattice artifacts are controlled)

QCD path integral with Montecarlo

$\langle\mathcal{O}\rangle \sim \int d U_{\mu} d \bar{\psi} d \psi \mathcal{O}(U, \psi, \bar{\psi}) e^{-S_{g}(U)-\bar{\psi} D(U) \psi}$

QCD path integral with Montecarlo

$$
\langle\mathcal{O}\rangle \sim \int d U_{\mu} d \bar{\psi} d \psi \mathcal{O}(U, \psi, \bar{\psi}) e^{-S_{g}(U)-\bar{\psi} D(U) \psi}
$$

N gauge configurations
(accelerator)

$$
\langle\mathcal{O}\rangle \sim \int d U_{\mu} \mathcal{O}\left(D(U)^{-1}\right) \operatorname{det}(f(U)){ }_{e^{-S_{g}(U)}}^{=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}\left(D\left(U_{i}\right)^{-1}\right)}
$$

Estimate of
\mathcal{O} with
$\sigma_{\mathcal{O}} \sim 1 / \sqrt{N}$

Correlators in Euclidean Space

$$
\pi^{+}(\mathbf{x}, t)=\bar{u}(\mathbf{x}, t) \gamma_{5} d(\mathbf{x}, t)
$$

$$
C_{\pi^{+}}(t)=\sum_{\mathbf{x}}\langle 0| \pi^{-}(\mathbf{x}, t) \pi^{+}(\mathbf{0}, 0)|0\rangle
$$

$$
\pi^{+}(\mathbf{x}, t)=e^{\hat{H} t} \pi^{+}(\mathbf{x}, 0) e^{-\hat{H} t}
$$

$$
C_{\pi}+(t)=\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}} \sum_{\mathbf{x}}\langle 0| \pi^{-}(\mathbf{x}, 0)|n\rangle\langle n| \pi^{+}(\mathbf{0}, 0)|0\rangle \rightarrow A_{0} \frac{e^{-m_{\pi} t}}{2 m_{\pi}}
$$

Infinite sum of exponentials: $\quad E_{0}=m_{\pi}=\frac{1}{t_{s}} \log \left(\frac{C_{+2}(t)}{C_{+1}(t+t)}\right)$

$$
C_{\pi^{+}}(t)=\sum_{\mathbf{x}}\langle 0| \pi^{-}(\mathbf{x}, t) \pi^{+}(\mathbf{0}, 0)|0\rangle \longrightarrow e^{-m_{\pi} t} \ldots
$$

Why is lattice QCD for nuclear physics hard ?

O Signal/noise (sign problem) and statistics

0
Number of contractions
[Detmold,Orginos(2012),Doi,Endres(2012)]

Signal/Noise Problem

$$
C_{\pi^{+}}(t)=\sum_{\mathbf{x}}\langle 0| \pi^{-}(\mathbf{x}, t) \pi^{+}(\mathbf{0}, 0)|0\rangle \longrightarrow e^{-m_{\pi} t} \ldots
$$

pions are easy! (i.e. cheap)

baryons are hard! (i.e. costly)

(Need quantum computers?)

Deuteron binding energy from LQCD

LIGHT (HYPER)NUCLEI AT SU(3) POINT

Nucleon-nucleon scattering

$$
k \cot \delta=-\frac{1}{a}+\frac{1}{2} r|\mathbf{k}|^{2}+P|\mathbf{k}|^{4}+\mathcal{O}\left(|\mathbf{k}|^{6}\right)
$$

EXPERIMENT:

$$
\begin{array}{ll}
a^{\left({ }^{(} S_{0}\right)}=-23.71 \mathrm{fm} & a^{\left(3 S_{1}\right)}=5.43 \mathrm{fm} \\
r^{\left({ }^{(S} S_{0}\right)}=2.73 \mathrm{fm} & r^{\left({ }^{(3} S_{1}\right)}=1.75 \mathrm{fm}
\end{array}
$$

$$
a^{\left({ }^{1} S_{0}\right)} \gg \Lambda_{Q C D}^{-1}
$$

Nontrivial UV fixed point:
"unnatural case"

SCATTERING IN A FINITE VOLUME

$$
q \cot \delta(q)=\frac{1}{\pi L} \lim _{\Lambda \rightarrow \infty} \sum_{\mathbf{j}}^{|\mathbf{j}|<\Lambda} \frac{1}{|\mathbf{j}|^{2}-q^{2}\left(\frac{L}{2 \pi}\right)^{2}}-4 \pi \Lambda
$$

Baryon-Baryon S-wave phase shifts

$$
\begin{array}{ll}
\text { O O O } & \mathbf{d}=(0,0,0) \\
\text { ㅁㅁ } & \mathbf{d}=(0,0,2)
\end{array}
$$

$$
24^{3} \times 48: \text { stat. } 68 \% \text { C.I. }
$$

$$
32^{3} \times 48: \text { stat. } 68 \% \text { C.I. }
$$

$$
48^{3} \times 64: \text { stat. } 68 \% \text { C.I. }
$$

$$
24^{3} \times 48: \text { stat. }+ \text { syst. } 68 \% \text { C.I. }
$$

$$
32^{3} \times 48: \text { stat. }+ \text { syst. } 68 \% \text { C.I. }
$$

$$
48^{3} \times 64: \text { stat. }+ \text { syst. } 68 \% \text { C.I. }
$$

....... $-\sqrt{-k^{* 2}}$

Two-parameter ERE: stat.
Two-parameter ERE: stat.+syst.
Three-parameter ERE: stat.
Three-parameter ERE: stat.+syst.

Alternate method: match to the potential

Effective field theory Hamiltonian in a finite volume with periodic BCs

$$
\begin{aligned}
V(\mathbf{r}) & =V(\mathbf{r}+\mathbf{m} L) \\
\psi(\mathbf{r}) & =\psi(\mathbf{r}+\mathbf{m} L)
\end{aligned}
$$

$$
\begin{aligned}
V(\mathbf{r}) & =\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} e^{i \mathbf{k} \cdot \mathbf{r}} \tilde{V}(\mathbf{k}) \rightarrow V_{L}(\mathbf{r})=\frac{1}{L^{3}} \sum_{\mathbf{n}} e^{i 2 \pi \mathbf{n} \cdot \mathbf{r} / L} \tilde{V}\left(\frac{2 \pi}{L} \mathbf{n}\right) \\
\psi(\mathbf{r}) & =\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} e^{i \mathbf{k} \cdot \mathbf{r}} \tilde{\psi}(\mathbf{k}) \rightarrow \psi_{L}(\mathbf{r})=\frac{1}{L^{3}} \sum_{\mathbf{n}} e^{i 2 \pi \mathbf{n} \cdot \mathbf{r} / L} \tilde{\psi}_{L}\left(\frac{2 \pi}{L} \mathbf{n}\right)
\end{aligned}
$$

3-dimensional Schrödinger equation in finite volume

$$
\frac{-\hbar^{2}}{2 \mu} \nabla^{2} \psi_{L}(\mathbf{r})+V_{L}(\mathbf{r}) \psi_{L}(\mathbf{r})=E \psi_{L}(\mathbf{r})
$$

3-dimensional Schrödinger equation in finite volume

$$
\begin{gathered}
{\left[\frac{\frac{-\hbar^{2}}{2 \mu} \nabla^{2} \psi_{L}(\mathbf{r})+V_{L}(\mathbf{r}) \psi_{L}(\mathbf{r})=E \psi_{L}(\mathbf{r})}{\boldsymbol{\downarrow}}\right.} \\
\frac{\hbar^{2}}{2 \mu}\left(\frac{2 \pi}{L}\right)^{2}|\mathbf{n}|^{2} \tilde{\psi}_{L}\left(\frac{2 \pi}{L} \mathbf{n}\right)+\sum_{\overline{\mathbf{n}}} \tilde{V}\left(\frac{2 \pi}{L}(\mathbf{n}-\overline{\mathbf{n}})\right) \tilde{\psi}_{L}\left(\frac{2 \pi}{L} \overline{\mathbf{n}}\right)=E_{L} \tilde{\psi}_{L}\left(\frac{2 \pi}{L} \mathbf{n}\right)
\end{gathered}
$$

3-dimensional Schrödinger equation in finite volume

$$
\frac{-\hbar^{2}}{2 \mu} \nabla^{2} \psi_{L}(\mathbf{r})+V_{L}(\mathbf{r}) \psi_{L}(\mathbf{r})=E \psi_{L}(\mathbf{r})
$$

$$
\frac{\hbar^{2}}{2 \mu}\left(\frac{2 \pi}{L}\right)^{2}|\mathbf{n}|^{2} \tilde{\psi}_{L}\left(\frac{2 \pi}{L} \mathbf{n}\right)+\sum_{\overline{\mathbf{n}}} \tilde{V}\left(\frac{2 \pi}{L}(\mathbf{n}-\overline{\mathbf{n}})\right) \tilde{\psi}_{L}\left(\frac{2 \pi}{L} \overline{\mathbf{n}}\right)=E_{L} \tilde{\psi}_{L}\left(\frac{2 \pi}{L} \mathbf{n}\right)
$$

$$
\hat{H}_{\mathbf{n}, \mathbf{n}^{\prime}}=\frac{2 \pi^{2} \hbar^{2}}{\mu L^{2}}|\mathbf{n}|^{2} \delta_{\mathbf{n}, \mathbf{n}^{\prime}}+\tilde{V}\left(\frac{2 \pi}{L}\left(\mathbf{n}-\mathbf{n}^{\prime}\right)\right)
$$

Diagonalize large symmetric matrix

Nuclear Effective Field Theory

2 baryon force $\gg 3$ baryon force >4 baryon force ...

Match to Effective Field Theory!

LO potential:

Fit coupling to match energy levels

Now we have LO potential at ALL pion masses!

$S U(6)$ from large- N_{c}

$$
\begin{array}{ll}
{\left[-\frac{1}{a^{(27)}}+\mu\right]^{-1}=\frac{M_{B}}{2 \pi}\left(a-\frac{b}{27}\right)+\mathcal{O}\left(\frac{1}{N_{c}^{2}}\right),} & {\left[-\frac{1}{a^{(\overline{10)}}}+\mu\right]^{-1}=\frac{M_{B}}{2 \pi}\left(a-\frac{b}{27}\right)+\mathcal{O}\left(\frac{1}{N_{c}^{2}}\right),} \\
{\left[-\frac{1}{a^{(10)}}+\mu\right]^{-1}=\frac{M_{B}}{2 \pi}\left(a+\frac{7 b}{27}\right)+\mathcal{O}\left(\frac{1}{N_{c}}\right),} & {\left[-\frac{1}{a^{\left(8_{A}\right)}}+\mu\right]^{-1}=\frac{M_{B}}{2 \pi}\left(a+\frac{b}{27}\right)+\mathcal{O}\left(\frac{1}{N_{c}}\right),} \\
{\left[-\frac{1}{a^{\left(8_{S}\right)}}+\mu\right]^{-1}=\frac{M_{B}}{2 \pi}\left(a+\frac{b}{3}\right)+\mathcal{O}\left(\frac{1}{N_{c}}\right),} & {\left[-\frac{1}{a^{(1)}}+\mu\right]^{-1}=\frac{M_{B}}{2 \pi}\left(a-\frac{b}{3}\right)+\mathcal{O}\left(\frac{1}{N_{c}}\right),}
\end{array}
$$

NN P-wave phase shifts

CalLat Collaboration (using NPLQCD resources)

$$
m_{\pi} \sim 800 \mathrm{MeV}
$$

Nuclear structure: magnetic moments

$U_{Q}(1)$ phase

$$
U_{\mu}(x)=e^{i \frac{6 \pi Q_{q} \tilde{n}}{L^{2}} x_{1} \delta_{\mu, 2}} \times e^{-i \frac{6 \pi Q_{q} \tilde{n}}{L} x_{2} \delta_{\mu, 1} \delta_{x_{1}, L-1}}
$$

- Hadronic and nuclear correlation functions are modified in the presence of a background magnetic field:

$$
E_{h ; j_{z}}(\mathbf{B})=\sqrt{M_{h}^{2}+P_{\|}^{2}+\left(2 n_{L}+1\right)\left|Q_{h} e \mathbf{B}\right|}-\boldsymbol{\mu}_{h} \cdot \mathbf{B}-2 \pi \beta_{h}^{(M 0)}|\mathbf{B}|^{2}-2 \pi \beta_{h}^{(M 2)}\left\langle\hat{T}_{i j} B_{i} B_{j}\right\rangle+\ldots
$$

Landau level

+ Can extract magnetic moments, polarizabilities, ...
- Extendable to external electric fields, etc.

- Almost no quark mass dependence in units of

$$
\frac{e}{2 M\left(m_{\pi}\right)}
$$

Nucleon isovector magnetic moment

Nucleon isovector magnetic moment

Nucleon isovector magnetic moment

Nuclei as groupings of nucleons: shell model!

$$
\begin{aligned}
\mu_{3} \mathrm{H} & =\mu_{p} \\
\mu_{3^{3} \mathrm{He}} & =\mu_{n} \\
\mu_{d} & =\mu_{p}+\mu_{n}
\end{aligned}
$$

Difference between nuclear magnetic moments and shell model predictions

QCD @ $\mathrm{m}_{\pi}=800 \mathrm{MeV}$
Experiment

Nuclear structure: polarizabilities

Nuclear reaction: $n p \rightarrow d \gamma$

$$
\Delta E_{3 S_{1}, S_{0}}=\mp Z_{d}^{2}\left(\kappa_{1}+\gamma_{0} l_{1}\right) \frac{|e \mathbf{B}|}{M}+\ldots=\mp\left(\kappa_{1}+\bar{L}_{1}\right) \frac{|e \mathbf{B}|}{M}+\ldots
$$

Nuclear reaction: $n p \rightarrow d \gamma$

$$
\Delta E_{3 S_{1}, S_{0}}=\mp Z_{d}^{2}\left(\kappa_{1}+\gamma_{0} l_{1}\right) \frac{|e \mathbf{B}|}{M}+\ldots=\mp\left(\kappa_{1}+\bar{L}_{1}\right) \frac{|e \mathbf{B}|}{M}+\ldots
$$

$n p \rightarrow d \gamma$

$n p \rightarrow d \gamma$ cross section from lattice QCD

$$
\sigma^{\text {expt }}(n p \rightarrow d \wedge)=334.2(0.5) \quad n \mathrm{n} \rightarrow \mathrm{~m}
$$

Nuclear structure: axial transitions

- Axial coupling to the NN system
+ $\mu^{-} d \rightarrow n n \nu_{\mu}$: MuSun @ PSI
+ $\nu d \rightarrow e^{+} n n: \mathrm{SNO}$
- "calibrating the sun" $p p \rightarrow d e^{+} \nu_{e}$

Nuclear structure: axial transitions

- Axial coupling to the NN system
- $\mu^{-} d \rightarrow n n \nu_{\mu}:$ MuSun @ PSI
- $\nu d \rightarrow e^{+} n n: \mathrm{SNO}$

- "calibrating the sun" $p p \rightarrow d e^{+} \nu_{e}$

$$
\begin{aligned}
\Lambda(0) & =\frac{1}{\sqrt{1-\gamma \rho}}\left\{e^{\chi}-\gamma a_{p p}\left[1-\chi e^{\chi} E_{1}(\chi)\right]\right. \\
& \left.+\frac{1}{2} \gamma^{2} a_{p p} \sqrt{r_{1} \rho}\right\}-\frac{1}{2 g_{A}} \gamma a_{p p} \sqrt{1-\gamma \rho} L_{1, A}^{s d-2 b}
\end{aligned}
$$

$$
\frac{L_{1, A}^{s d, 2 b}}{Z_{A}}=\frac{\left\langle{ }^{3} S_{1} ; J_{z}=0\right| A_{3}^{3}\left|{ }^{1} S_{0} ; I_{z}=0\right\rangle-2 g_{A}}{2 Z_{A}}=-0.0107(12)(48)
$$

$\Lambda(0)_{l q c d}=2.6585(6)(71)(25)$
$\Lambda(0)_{\text {exp }}=2.652(2)$

- Progress has been made in benchmarking lattice QCD calculations of nucleon-nucleon interactions.
- The goal of lattice QCD is to calculate unknown observables with fully-controlled uncertainties.
- Background field method is proving remarkably successful. Scalar MEs have also been computed: large deviations in some cases from sum of single nucleon MEs.
- Prospect of a quantitative connection to QCD makes this an exciting time for nuclear physics.

US Lattice Quantum Chromodynamics

