

Structure of three-body hypernuclei

Erice 2018

Fabian Hildenbrand Hans-Werner Hammer

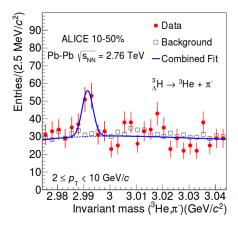
Institute of Nuclear Physics Technische Universität Darmstadt

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

September 22, 2018 | Fabian Hildenbrand | 1

Introduction


- Hypernuclei contain at least one hyperon (H) ($S \neq 0$)
- Consider three-body hypernuclei NNH
- ▶ Restriction to Λ (M_{Λ} = 1115.68 MeV) particle as hyperon leads to the systems S = -1

isospin
$$(I = 1) = \begin{cases} pp\Lambda \\ \frac{1}{\sqrt{2}} (np + pn) \Lambda \\ nn\Lambda \end{cases}$$
 isospin $(I = 0) = \frac{1}{\sqrt{2}} (pn - np) \Lambda$

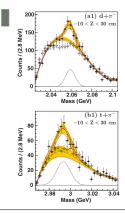
Two examples: nnΛ and hypertriton

The hypertriton

► Hypertriton is bound with a binding energy of $= 2.35 \pm 0.05$ MeV

[M. Juric et al., Nucl. Phys. B52, 1 (1973)]

- Consists of separation energy into a deuteron ($B_d = 2.22$) MeV and a Λ $B_{\Lambda} = 0.13 \pm 0.05$ MeV
- Hypertriton was also produced at ALICE in Pb-Pb reaction recently


[ALICE Collaboration Phys. Lett. B 754 (2016) 360-372]

• mean invariant mass $\mu = 2991 \pm 1 \pm 3$ MeV $\Rightarrow B \approx 2$ MeV

The Ann

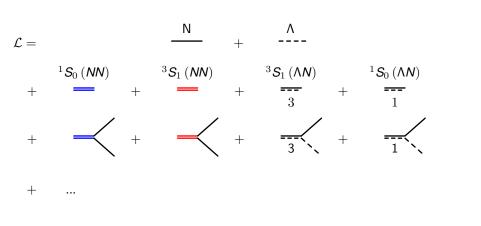
► 2013 the HypHI Collaboration found evidence that the Ann might be bound [HypHI Collaboration C.Rappold et al. Phys.Rev.C.88(041001(R)).2013]

- ▶ d+ π^- and $t + \pi^-$ final states ${}^{6}Li + {}^{12}C$ reactions
- possible explanation of the observed final decay of a bound Λnn
- $\overset{3}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{t}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{n}{} \overset{n}{} \overset{n}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{n}{\underset{\Lambda}{}} \overset{n}{} \overset{n}{} \overset{n}{} \overset{n}{} \overset{n}{}} \overset{n}$
- ▶ mean invariant mass $\mu = 2993.7 \pm 1.3 \pm 0.6$ MeV $(t + \pi^{-}) \Rightarrow B \approx 1$ MeV

September 22, 2018 | Fabian Hildenbrand | 4

Theoretical framework

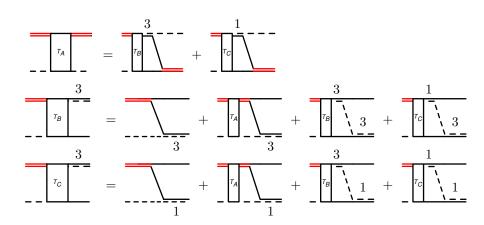
- Use pionless EFT \rightarrow all interactions are contact interactions
- Exploit dibaryon formalism
- NNA interaction channels (only S-wave)

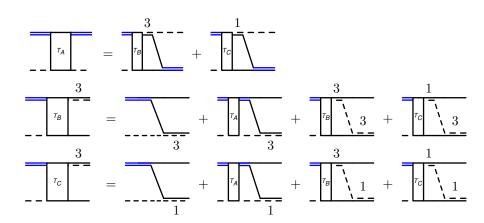

$$\mathsf{NNA} = \begin{cases} {}^{1}\mathcal{S}_{0} \, (\mathsf{NN}) + \mathsf{\Lambda}, & \mathsf{\Lambda nn} \\ {}^{3}\mathcal{S}_{1} \, (\mathsf{NN}) + \mathsf{\Lambda}, & \mathsf{hypertriton} \\ {}^{3}\mathcal{S}_{1} \, (\mathsf{NA}) + \mathit{N}, & \mathsf{hypertriton} \text{ and } \mathsf{\Lambda nn} \\ {}^{1}\mathcal{S}_{0} \, (\mathsf{NA}) + \mathit{N}, & \mathsf{hypertriton} \text{ and } \mathsf{\Lambda nn} \end{cases}$$

• Explicit $\Lambda \Leftrightarrow \Sigma$ conversions are not included (implicit in the 3-body force)

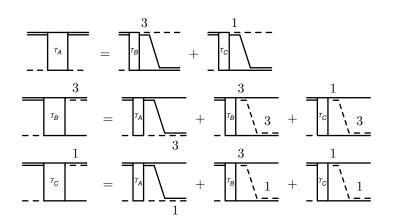
$$\gamma_3^{\Lambda} \sim 2\sqrt{MB_3^{\Lambda}/3} \approx 1.2\gamma_d \approx 54 \text{ MeV}$$

 $\ll \sqrt{M_{\Lambda} (M_{\Sigma} - M_{\Lambda})} \approx 300 \text{ MeV}$

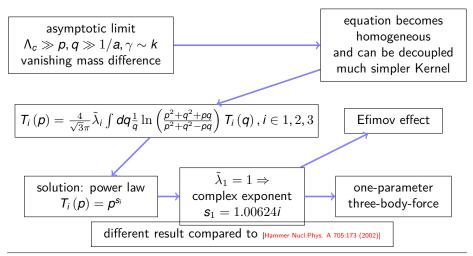

Lagrangian for the hypertriton and Λnn system

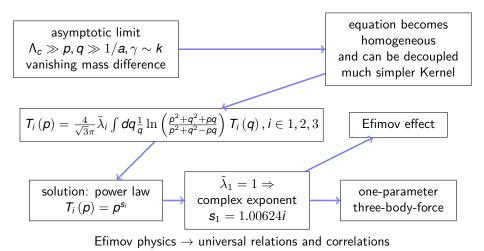

Integral equations for the hypertriton

Integral equations the Λnn system


Asymptotic Analysis of the hypertriton and Ann system

asymptotic limit $\Lambda_c \gg p, q \gg 1/a, \gamma \sim k$ vanishing mass difference

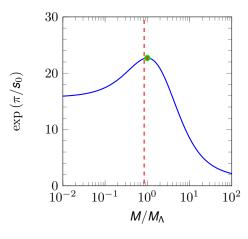

equation becomes homogeneous and can be decoupled much simpler Kernel Integral equations for the hypertriton and the Ann system in the asymptotic limit


Asymptotic Analysis of the hypertriton and Ann system

Asymptotic Analysis of the hypertriton and Ann system

September 22, 2018 | Fabian Hildenbrand | 12

Asymptotic Analysis of the hypertriton and Ann system-with different masses


- Physical mass of Λ and nucleons are different
- Therefore asymptotic equations do not decouple
- Since the result of a power law should be reproduced for the case of y = 0 we choose as an ansatz

$$T_{j}(\boldsymbol{p}) = \alpha_{j}\boldsymbol{p}^{\boldsymbol{s}_{1}} + \beta_{j}\boldsymbol{p}^{\boldsymbol{s}_{2}} + \gamma_{j}\boldsymbol{p}^{\boldsymbol{s}_{3}}, j \in \{\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}\}$$

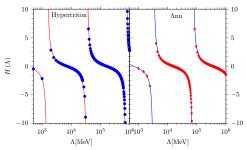
• Since kernel is more complex now \Rightarrow integrate term by term

Scaling factor as a function of the mass ratio

- Ansatz reproduces the $M = M_{\Lambda}$ result
- ► $s_0 = 1.00760 (M/M_{\Lambda} = 0.84)$
- Results are consistent with Braaten and Hammer [Braaten, Hammer Phys. Rept. 428, 259–390 (2006)]

► Used chiral EFT prediction for A-N scattering lengths $(a_3 = -1.45 - 1.70 \text{ fm}, a_1 = -2.90 - 2.91 \text{ fm})$ [Haidenbauer et al Nucl. Phys. A 915 (2013) 24-58]

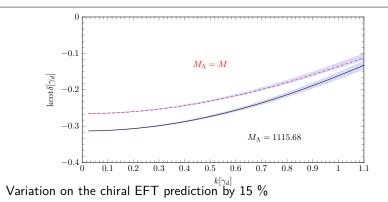
• considered to be large since ΛN range is given by the 2π exchange $\sim \frac{1}{2m_{\pi}} \approx 0.7 \text{fm}$


introduce threetransform back to body force term original amplitudes $H(\Lambda)$ in T_1 T_A, T_B, T_C includes $\Lambda \Leftrightarrow \Sigma$ conversions $T_{1}(\boldsymbol{p}) = \frac{4}{\sqrt{3}\pi} \int^{\Lambda} d\boldsymbol{q} \frac{1}{q} \left[\ln \left(\frac{\boldsymbol{p}^{2} + \boldsymbol{q}^{2} + \boldsymbol{p}\boldsymbol{q}}{\boldsymbol{p}^{2} + \boldsymbol{q}^{2} - \boldsymbol{p}\boldsymbol{q}} \right) + 2 \frac{H(\Lambda)}{\Lambda^{2}} \boldsymbol{p} \boldsymbol{q} \right] T_{1}(\boldsymbol{q})$ solve numerical theoretical expected form compare $H(\Lambda) = -\frac{\sin\left(s\log\left(\frac{\Lambda}{\Lambda_*}\right) - \arctan\left(\frac{1}{s}\right)\right)}{\sin\left(s\log\left(\frac{\Lambda}{\Lambda_*}\right) + \arctan\left(\frac{1}{s}\right)\right)}$ use B as input to fix H

Introduction of the 3-body force

$H(\Lambda)$ for the hypertriton

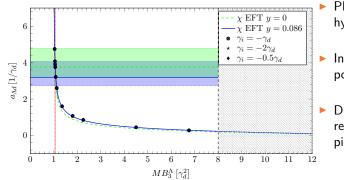
• $(a_3 = -1.64 \text{ fm}, a_1 = -2.91 \text{ fm})$


- 3-body force shows the expected limit cycle behavior
- It is not possible to fix the Ann 3-body force with the hypertriton one due to different isospin channels (I = 1 and I = 0)

• extract the three-body parameter $\Lambda_* \approx (0.1395 + 0.002)\gamma_d$ (hypertriton) $\Lambda_* \approx 0.3053\gamma_d$ (Ann)

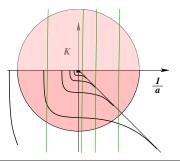
for all further calculation absorbed into the cutoff

Scattering phase shift for deuteron Λ scattering



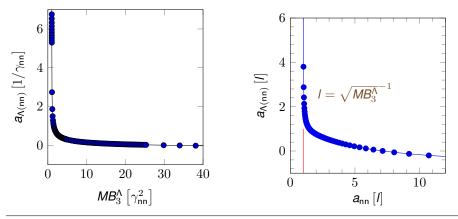
Scattering phase shift is insensitive towards exact values of the ΛN scattering lengths

Universal relation for the hypertriton



- Phillips line for the hypertriton
- Independent of the AN pole-position
- Differs for unphysical regions, defined by the pion mass

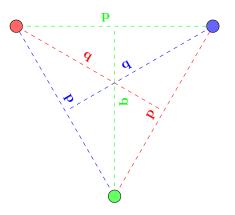
\wedge nn theory exspectations


- Ann is always bound in this theory by construction system shows the effimov effect
- ▶ BUT! Ann may not be within range of applicability

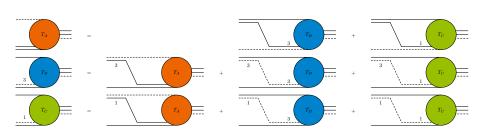
Universal relations for the Λnn system

Use hypothetical positive scattering lengths for the n-n scattering lengths

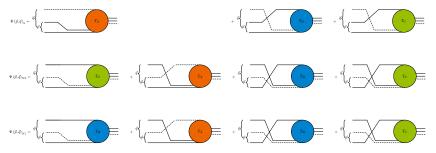
September 22, 2018 | Fabian Hildenbrand | 20


Wavefunction for the hypertriton

- ➤ 3 particle system ⇒ Introduce Jacobi-koordinates in momentum space presecribtion
- Use the same prescription used for 2-n Halo Systems.


[Canham, Hammer Eur.Phys.J.A37:367-380,2008]

[Hammer, Ji, Phillips J. Phys. G44, 103002,2017]


boundststate equation for the hypertriton

wavefunctions for the hypertriton

Calculate Formfactors out of the wavefunctions for different observer particles

• Extract Observables like the matter nucleus (Expectation ≈ 10 fm)

Conclusion and Outlook

- ▶ Presented an EFT approach to strangeness S = -1 three-body hypernuclei
- Showed you universal relations for the Λnn system and the hypertriton
- Study Ann system dependence on input parameters
- Include explicit $\Lambda \Leftrightarrow \Sigma$ Conversions to check estimate

$$\begin{split} \gamma_3^{\wedge} &\sim 2\sqrt{\textit{MB}_3^{\wedge}/3} pprox 1.2 \gamma_{\textit{d}} pprox 54 \,\, {
m MeV} \\ &\ll \sqrt{\textit{M}_{\wedge} \left(\textit{M}_{\Sigma} - \textit{M}_{\wedge}
ight)} pprox 300 \,\, {
m MeV} \end{split}$$

Conclusion and Outlook

- Calculate wave-function of the hypertriton
- Use this to calculate observable like matter-radius
- ▶ Test Sensitivity on $B_{np\Lambda} B_d$

