2018.9.17 Erice School

Recent results in hypernuclear physics (mainly from J-PARC)

Tohoku University Japan Atomic Energy Agency H. Tamura

J-PARC

<u>Contents</u>

- 1. Introduction
- 2. γ -ray spectroscopy Λ hypernuclei
- 3. Charge symmetry breaking in Λ hypernuclei
- 4. S = -2 systems (Ξ and $\Lambda\Lambda$ hypernuclei) at J-PARC

J-PARC

- 5. Future Plan Challenge to the hyperon puzzle
- 6. Summary

1. Introduction

Motivations of Hypernuclear Physics

BB interactions

Unified understanding of BB forces by u,d ->u, d, s particularly short-range forces by quark pictures Test lattice QCD calculations

Impurity effect

in nuclear structure

Changes of size, deformation, clustering, Appearing new symmetry,

Properties and behavior of baryons

<u>in nuclei</u>

 μ_{Λ}

 μ_{Λ} in a nucleus, Single particle levels of heavy Λ hypernuclei

Clues to understand hadrons and nuclei from quarks Cold and dense nuclear matter with strangeness

"Hyperon puzzle" in neutron stars

Hyperons (Λ at least) should appear at $\rho \sim 2 \rho_0$

MPA1

MS1

PAL1

- EOS's with hyperons or kaons too soft -> cannot support $M > 1.5 M_{sun}$
- Heavy NS's (~2.0 M_{sun}) were observed.

AP3

FNG

FSU

GM3

vperons

11

NS radius (km)

12

13

14

15

SQM3

 11903 ± 0327

PAL6

SQM

Quark matter

9

10

8

909-3744

2.5

2.

1.5

1.0

0.5

0.0**-**7

Ň

NS mass

=> Unknown repulsion at high ρ

Strong repulsion in three-body PSR J1614-2230 (2010) 1.97±0.04 M_{sun} PSR J0348-0432 (2013) 2.01±0.04 M_{sun} force including hyperons, Ignore hyperons

MS0

MS2

Phase transition to quark matter ? (quark star or hybrid star)

We need to know YN, YY, K^{bar}N interactions both in free space and in nuclear medium

HYP2018 June 24 - 29, 2018 @Portsmouth, VA, USA

From summary talk of HYP2018 (June, 2018 @Portsmouth, VA)

Exciting new experimental results since HYP2015

 $p\Xi^-$ correlation -> $p\Xi^-$ attractive (ALICE)

 $\frac{12}{E} Be hypernuclei -> \Xi - nuclear bound states (J-PARC E05)$

K⁻pp spectrum (J-PARC E15)

 Λ hypernuclei CSB p-shell data (JLab, FINUDA) ¹⁹_ΛFγ-rays (J-PARC E13)

K⁻p correlatioan (ALICE) pΩ⁻ correlation (STAR)

4n state (RIBF)

 ${}^{3}{}_{\Lambda}\text{H}$ lifetime and ${}^{B}{}_{\Lambda}$ (ALICE, STAR)

2. Gamma-Ray Spectroscopy of Λ hypernuclei at J-PARC

Energy levels of A=4 mirror hypernuclei

A large Charge Symmetry Breaking effect is confirmed!

$\frac{19}{\Lambda}F$ result: Mass-gated γ -ray spectra

S.B. Yang et al., PRL120 (2018) 132505

Level scheme of ¹⁹ _AF

S.B. Yang et al., PRL120 (2018) 132505

* A. Umeya and T. Motoba, Nucl. Phys. A954 (2016) 242. Shell model calculation with NSC97f interaction

Comparison with theoretical calculations

g.s. doublet (3/2+,1/2+) spacing

 ΛN interaction

Millener	305 keV	Effective spin-spin interaction strength from <u>p-shell hypernuclear data (Δ=0.33 MeV)</u>
Umeya	346 keV	[NSC97e] + [NSC97f], the ratio adjusted to reproduce $^{7}_{\Lambda}$ Li (3/2 ⁺ ,1/2 ⁺) spacing
	419 keV	NSC97f
	245 keV	NSC97e
Exp.	316 keV	

=> The level energy is reproduced very well, suggesting that the theoretical framework and inputs (ΛN interaction strength and range) are good even for heavier hypernuclei. -> Study heavier hypernuclei to see ΛNN force effect?

3. Charge symmetry breaking in Λ hypernuclei

Energy levels of A=4 mirror hypernuclei

 $\Delta E(_{\Lambda}^{4}He)-\Delta E(_{\Lambda}^{4}H) = 320 \text{ keV} >> B(^{3}H)-B(^{3}He) \sim 70 \text{ keV}$

A large CSB has been confirmed only from γ -ray data!

Two-body decay at rest \Rightarrow mono-energetic pions

=> precise mass of the hypernucleus

Slide by P. Achenbach

Decay-pion spectrum

Combined Results

B_A [${}^{4}_{\Lambda}$ H(0⁺)] is confirmed, suggesting the emulsion ${}^{4}_{\Lambda}$ He(0⁺) data also reliable.

Large <u>spin dependence</u> in CSB found.

Recent theories: This CSB effect is sensitive to $\Lambda N-\Sigma N$ coupling.

A. Gal, PLB 744 (2015) 352 D. Gazda and A. Gal, PRL 116 (2016) 122501

<u>High resolution (e,e'K+)</u> <u>Spectroscopy at JLab</u>

Accuracy of absolute energy in (e,e'K⁺) ~ 100 keV

(π⁺,K⁺), (K⁻,π⁻) ~ 1 MeV

CSB in p-shell hypernuclei

-> A key to understand the origin

A=12, 16

FINUDA (K⁻_{stop},π⁻) – JLab (e,e'K⁺) Nucl.Phys. A960 (2017) 165.

 \Rightarrow Suggesting rather small (~100 keV) CSB in p-shell hypernuclei \Rightarrow Need more precise data

4. S=-2 Systems at J-PARC

Ξ and $\Lambda\Lambda$ hypernuclei Ξ atomic X-rays

Emulsion Results (KEK E373)

H. Takahashi et al., PRL 87 (2001) 212502

Λ - Λ is weakly attractive

K. Nakazawa et al. PTEP 2015, 033D02

E-N is attractive !

More S=-2 events with emulsion

J-PARC E07 K. Nakazawa et al.

Collect ~10² $\Lambda\Lambda$ hypernuclear events from ~10⁴ Ξ_{stop}^{-}

Emulsion

Ge array

- Confirm $\Lambda\Lambda$ int. and extract $\Lambda\Lambda-\Xi N$ effect
- More Ξ-nuclear events -> Ξ-N interaction

• Measure Ξ^- -atomic X-rays for the first time

- Shift and width of X-rays -> Ξ-nuclear potential Data-taking (beam irradiation) finished.
 - Emulsion analysis under way.

K-

(-rav

K-

 Ξ^{-} atomic X rays

TOF wall

<u>E-Hypernuclear Spectroscopy via (K⁻,K⁺) Reaction</u></u>

If U $_{\Xi}$ is as deep as U $_{\Lambda}$, $\,\Xi^{-}\,$ should appear first at ρ ~2 ρ_{0}

-> "Hyperon puzzle" more difficult to solve?

5. Future Plan Challenge to the hyperon puzzle

Isospin dependence of Λ B.E. in matter (Λ nn force)

D. Lonardoni et al.

Density dependence of ΛN int. in matter

Ab-initio calc. of nuclear binding energies => NNN repulsion necessary Similar YNN (YYN, YYY) repulsive forces?

Extension Plans of J-PARC Hadron Hall

6. Summary

- γ -ray data for ${}^{4}_{\Lambda}$ He(0⁺->1⁺) and precise ${}^{4}_{\Lambda}$ H-> ${}^{4}_{\Lambda}$ He π^{-} data confirmed large CSB effects in A=4 hypernuclei.
- γ-ray data of ¹⁹_ΛF provided its level scheme, which is well reproduced by theoretical calc's with our knowledge of ΛN interaction.
- Ξ−nucleus bound system (Ξ⁻¹⁴N) was observed in emulsion.
 ¹²C(K⁻,K⁺) spectrum at J-PARC suggests bound Ξ hypernuclear states.
- A new emulsion experiment for more $\Lambda\Lambda$ and Ξ hypernuclei + Ξ -atomic X-rays has been performed.
- In future, we will challenge the "hyperon puzzle" at JLab and at the extended Hadron Hall at J-PARC.