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Nuclear Forces
Phenomenological forces (Argonne, Nijmegen, … )

High precision fits to scattering data, but too many parameters and no relation to QCD

Boson Exchange forces (Bonn, Paris, … )

Phenomenological short range + meson exchanges, hybrid approach

Chiral forces (LO, NLO, N2LO, N3LO, N4LO, N4LO+, … )

Chiral expansion, systematic improvement, QCD inspired, Quantum Field Theory



Effective theory principle
Physics at low energy (large distance) scales is insensitive to the 

details of the physics at high energy (small distance) scales
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Effective Interactions Timeline

1991 1994 1998 2003 2005 2013

EFT formulation

Weinberg

ED N2LO

van Kolck et al.

EI N2LO

Epelbaum et al.

N3LO

Entem


Machleidt

N3LO (SFR)

Epelbaum et al.

optimized N2LO

Ekström et al.

Many other important works by: 

Kaiser, Robilotta, Ruiz Arriola, Frederico, Friar, 

Birse, Kaplan, Savage, Wise, Bedaque, Beane, … 

2015 2017

N4LO

Idaho, Salamanca


Bochum, Bonn

N4LO+

Idaho, Salamanca



Chiral Forces with pions & nucleons as fundamental d.o.f. 
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FIG. 1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid
dots, solid squares, triangles, diamonds, and stars denote vertexes of index �i = 0, 1, 2, 3, 4, and 6, respectively. Further
explanations are given in the text.

where the superscript denotes the order ⌫ of the expansion.
Order by order, the long-range NN potential builds up as follows:

VLO ⌘ V (0) = V (0)
1⇡ (2.12)

VNLO ⌘ V (2) = VLO + V (2)
1⇡ + V (2)

2⇡ (2.13)

VNNLO ⌘ V (3) = VNLO + V (3)
1⇡ + V (3)

2⇡ (2.14)

VN3LO ⌘ V (4) = VNNLO + V (4)
1⇡ + V (4)

2⇡ + V (4)
3⇡ (2.15)

VN4LO ⌘ V (5) = VN3LO + V (5)
1⇡ + V (5)

2⇡ + V (5)
3⇡ (2.16)

where LO stands for leading order, NLO for next-to-leading order, etc..
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FIG. 9: Cutoff dependence of phase shifts in attractive triplet channels at laboratory energies of 10 MeV (solid line), 50 MeV
(dashed line), and 100 MeV (dotted line).
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FIG. 10: Fit result for the counterterm c1 as a function of the cutoff, and the resulting cutoff dependence of the 3P0 phase
shift at laboratory energies of 10 MeV (solid line), 50 MeV (dashed line), 100 MeV (dotted line), and 190 MeV (dash-dotted
line).

situation in ordinary ChPT. We can describe this in the
same language used to discuss power counting in ChPT
[5, 7, 8]: we represent typical nucleon momenta by Q and
the characteristic scale of QCD in the hadronic phase by
MQCD. The effect of iterating an interaction in the ker-
nel of the T matrix is twofold. First, one has an extra
three-dimensional momentum integral and an extra NN

Schrödinger propagator. Second, one has an extra factor
of the potential. After the cutoff dependence is removed
by renormalization, the contribution to the NN T ma-
trix from an NN intermediate state is expected to be
O(mNQ/4π). This is a factor mN/Q ≫ 1 larger than
in analogous states in ordinary ChPT, and it is due to
the small energy of intermediate states containing nucle-
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Nogga, Timmermans, van Kolck, Phys Rev C 72 (2005) 054006
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Szpigel & VST, J Phys G 39 (2012) 105102

LO

N2LO

see works from Machleidt et al. and Epelbaum et al.

Chiral expansion Power counting



• Pre-diagonalization


• Reduces off-shellness


• Improves convergence in many-body calculations 


• Nuclei and Nuclear matter R. Roth

A. Schwenk

P. Navratil

J. Vary


R. Furnstahl

R. Perry

S. Bogner


E. Jurgenson

H. Hammer

K. Hebeler

A. Calci

S. Binder

S. Glazek

K. Wilson

H | i = E | i

Similarity Renormalization Group (SRG)



Similarity Renormalization Group

Doesn’t remove degrees of freedom

But suppresses states with large energy difference (off-diagonal elements):

⌅�L|H|�H⇧ ⇤ �n ⇥ (EH � EL) ⇥ �0

Hn [�n] = T (n)
Sim. {H0 [�0]}

Unitary transformation: doesn't affect the spectrum T †T = 1

Similarity Transformation:

S. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993)

off-shellness



Similarity Renormalization Group
Wegner's formulation:

Flow equation:

Hs = U(s) H U†(s) = T + Vs

d

ds
Hs = [Hs, �s]

�s = [Hs, HD]

�s = [Hs, T ]

s =
1
�4

(0 � s � ⇥)

lim
s�s0

Hs = Hs0

Diagonal part of the running hamiltonian:

Free hamiltonian (kinetic energy):

Boundary condition:

F. Wegner, Annalen der Physik (Berlin) 3, 77 (1994)

Flow parameter:

similarity cutoff λ: dimension of momentum

Generators for the similarity transformation



�s = [Hs, T ] d

ds
Hs = [Hs, [Hs, T ]]

(two-nucleon system)

S.K. Bogner, R.J. Furnstahl, and R.J. Perry, Phys. Rev. C 75, 061001(R) (2007)

S.K. Bogner, R.J. Furnstahl, R.J. Perry, and A. Schwenk, Phys. Lett. B 649, 488 (2007)

S. Szpigel and R. J. Perry, in “Quantum Field Theory, A 20th Century Profile”, 

ed. A. N. Mitra, Hindustan Publishing, New Delhi (2000)

E.D. Jurgenson, P. Navratil, R.J. Furnstahl, Phys. Rev. Lett. 103 (2009) 082501

V       ——>    regular or regularised

d

ds
Vs(p, p�) = �(p2 � p�2) V (p, p�) +

2
�

�
dq q2 (p2 + p�2 � 2q2) Vs(p, q) Vs(q, p�)s

SRG - Wilson Generator

s = 0

http://xxx.lanl.gov/find/nucl-th/1/au:+Jurgenson_E/0/1/0/all/0/1
http://xxx.lanl.gov/find/nucl-th/1/au:+Navratil_P/0/1/0/all/0/1
http://xxx.lanl.gov/find/nucl-th/1/au:+Furnstahl_R/0/1/0/all/0/1


(two-nucleon system)

⌘s = [ Hs , diag(Hs) ]

d

ds
Hs = [ Hs , [ HS , diag(Hs) ] ]

d

ds
Vs(p, p

0) =
2

⇡

Z 1

0
dq q2 (✏p + ✏p0 � 2✏q) Hs(p, q) Hs(q, p

0)

[diag(Hs)]|pi = ✏p|piT |pi = p2 |pi

� =
1
4
p
s λ

SRG

Wegner

V

SRG - Wegner Generator



SRG evolution (Wilson Gen.) - Chiral N3LO - 1S0

� = 1 � = 3.0 fm�1 � = 2.5 fm�1 � = 2.0 fm�1

� = 1.5 fm�1 � = 1.0 fm�1 � = 0.5 fm�1 � = 0.1 fm�1

for a review on applications of SRG to nuclear physics see 

Furnstahl & Hebeler, Rept Prog Phys 76 (2013) 126301



Tjon line
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No universal value for the SRG cutoff

No three-body force



Quantifying offshellness

� = ||V�|| =
q

Tr V 2
�

The Frobenius norm:

V 2
� =

2

⇡

Z 1

0
dq q2 V�(p, q) V�(q, p

0)

� =
d�

d�

Order parameter:

Similarity susceptibility:

⌘ =
d�

d�
=

d2�

d�



The on-shell transition - N3LO
Order parameter

Similarity susceptibility

Frobenius norm
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Physics Letters B 728 (2014) 596 
Physics Letters B 735 (2014) 149 

Annals of Physics 353 (2015) 129
Annals of Physics 371 (2016) 398 

Szpigel, Ruiz Arriola, VST



Peripheral waves: pions
L = 4
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N4LO

0 20 40 60 80 100
0

2

4

6

8

10

Elab (MeV)

δ
(d
eg
re
es

)
3G4

V 3G4
N4LO = 1⇡E + 2⇡E + 3⇡E

No contacts !!! 



Granada
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Scale dependence

4 Advances in High Energy Physics
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Figure 1: (Color on-line) phase shifts in 1!3 and 3!3 uncoupled channels calculated from the solution of the subtracted LS equation for the"-matrix with five subtractions for the N3LO-EM potential for several values of the renormalization scale compared to the Nijmegen partial
wave analysis.
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E. F. Batista, S. Szpigel and VST, AHEP (2017) 2316247
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E. F. Batista, S. Szpigel and VST, in preparation

for details on the subtractive renormalization, see: 

Frederico, VST, Delfino, Nucl. Phys. A 653 (1999) 209
VST, Frederico, Delfino, Tomio, Phys. Lett. B 621 (2005) 109

VST, Frederico, Delfino, Tomio, Phys.. Rev. C 83 (2011) 064005



Central channel: pion vs contacts
L = 0

full

pions

1S0

contacts

Interaction in this channel is dominated by the contacts !!!

1S0 1S0
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BCS pairing gap with different interactions
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Fig. 1. AFMC lattice calculations of the unitary Fermi gas ξ parameter, updated from Ref. [23]. Symbols are
for different kinetic terms as a function of particle number and lattice size. The lattice spacing is denoted as
α. Simulations have been performed with L3 lattices, for different values of lattice length L in each direction;
open symbols are for even L = 16, 20, 24; closed are for odd L (see text). All extrapolations are consistent
with ξ = 0.372(5).

dispersion relation, which has a negative effective range of −0.306 α. The k2 + k4 results show a set
of simulations with even L as open symbols, while simulations at odd L are shown as filled symbols.
The two sets of results are slightly displaced; similar displacements have been found with limited
statistics for the other dispersions. All extrapolate to the same value of ξ within statistical errors; we
return to the dependence on effective range below. A new lattice calculation in Ref. [28] reports a
higher value of ξ , above the upper bound found in DMC calculations.

There have also been a large number of experimental determinations of ξ : the original measure-
ments [40–42] have found qualitative agreement with the DMC calculations listed above. More
precise recent experiments have found ξ = 0.39(2) [43] and ξ = 0.41(1) [44] with a smaller value
of ξ = 0.375(5) found most recently [45]. This experimental value is quite precise and overlaps our
lattice results.

3.2. Equation of state: Cold atoms and neutron matter
Of course the full equation of state (E/EFG) as a function of kF a is required to compare with neutron
matter, which has a fixed, large effective range and must be studied by varying the density. The most
recent DMC results for the full equation of state are presented in Fig. 2, and compared to the lattice
results and the most recent experimental result. These results are quite smooth as a function of kF a
and extrapolate correctly in both the BCS and BEC regimes.

Because the cold-atom interaction is short-ranged, the derivative of the energy with respect to
kF a is given completely by short-range physics, as originally written down by Tan in a series of
papers [46–48]. The derivative of the energy per particle with respect to kF a is given, using the
Hellman–Feynman theorem, by:

d E
da−1 = N

2

∫
d3rg↑↓(r)

dV (r)

da−1 (8)
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Fig. 2. Equation of state of cold atoms versus 1/(kF a). Blue circles are DMC calculations, the red square and
green diamond are lattice and experimental values at unitarity 1/(kF a) = 0. The inset shows the corrections
from the finite effective range near unitarity (see text).

0 0.1 0.2 0.3 0.4 0.5
kF [fm

-1
]

0.4

0.5

0.6

0.7

0.8

0.9

1

E
 / 

E
FG

QMC s-wave
QMC AV4
Cold Atoms

0 2 4 6 8 10
- kF a

0.4

0.5

0.6

0.7

0.8

0.9

1

E
 / 

E
FG

Lee-Yang

Fig. 3. Comparison of the equation of state of cold atoms and neutron matter at low density. Neutron matter
calculations are from Ref. [14]. Differences at low density are primarily due to the effective range of the
neutron–neutron interaction. The solid line is a fit to the cold atom results, the dashed line includes an estimate
of effective range effects (see text).

The pair distribution g↑↓(r) → 0 goes like A2/r2 at unitarity for small r , with g↑↓(r) → 1/2 at
large r. The change in energy with respect to a−1 is

d E
da−1 = −!22πρ A2

m
→ C = 8π2ρ2 A2, (9)

where C is Tan’s contact parameter. Near unitarity the EOS is conventionally parametrized as

E
EFG

= ξ − ζ

kF a
+ · · · , (10)

with ζ = (5π/2)C/k4
F . We return to the contact parameter in the discussion of short-range

physics below.
In Fig. 3 these cold atom results are compared to the QMC for neutron matter [14], and to the

analytic expression available at small kF a. At low densities, the neutron matter and cold atom results
agree; they also agree with a simple extrapolation of the analytic results near kF a = 0. At higher
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lattice and continuum results are both in agreement with Eq. 13.
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Fig. 5. Dependence of the unitary Fermi Gas equation of state on Fermi momentum vs. e↵ective
range (kF re). Shaded bands are fits to the lattice results, and dashed lines give DMC results.

In DMC calculations the slope parameter S is not too sensitive to k
F

a near
unitarity. Fig. 2 shows, in the inset, the slope parameter S evaluated from DMC
calculations near unitarity. It is positive and approximately 0.1 near unitarity, but
changes significantly in the BCS and BEC regimes. The di↵erence between the cold
atom EOS and neutron matter at su�ciently small densities should be approximately
⇠
neutrons

� ⇠
atoms

⇡ Sk
F

r
e

, or approximately 0.05 at �k
F

a = 5 since the neutron-
neutron e↵ective range is expected to be approximately 2.7 fm. Fig. 3 shows a fit
to the cold atom results at zero e↵ective range as a solid line. The dashed line adds
an e↵ective range correction with S = 0.1. This should be the dominant correction
at k

F

 0.25 fm�1 , near k
F

⇡ 0.5 fm�1 one would have k
F

r
e

⇡ 1 and higher order
corrections in s� and p�wave interactions could be important.

§4. Pairing Gap

Both low-density neutron matter and cold atoms are strongly paired Fermi sys-
tems, they exhibit some of the largest pairing gaps of any systems known when
measured in terms of the Fermi energy. We define the pairing gap at T=0 as the
di↵erence between the energy of an odd particle system and the average of the two
nearby even particle systems in periodic boundary conditions:

� = E(N + 1)� (E(N) + E(N + 2))/2, (14)

with the universal parameter � defined as the pairing gap divided by the Fermi energy
E

F

= ~2k2
F

/2m. For simulations of a large enough number of particles this should



2. On-shell interactions from the SRG and the Bertsch parameter
In this work we want to study neutron matter at the unitary limit with on-shell interactions
obtained by evolving the nuclear force with the similarity renormalization group (SRG) towards
the infrared region of the similarity cuto↵ �. The SRG has been widely applied to nuclear
structure calculations and the nuclear many-body problem [10, 11]. The technique is based on
a flow equation which for the nucleon-nucleon interaction and the Wilson generator reads

dVs(p, p0)

ds
= �(p2 � p02)2 Vs(p, p

0) +
Z 1

0
dq q2(p2 + p02 � 2q2)Vs(p, q) Vs(q, p

0) , (6)

where the flow parameter s is usually written in terms of the so-called similarity cuto↵ � (which
has dimension of momentum) as s = ��4. The potential before evolution (initial) corresponds
to s = 0 or � = 1 and the matrix elements of the evolved potential are denoted as V�(p, p0).
The unitarity of the transformation ensures that all observables computed with V�(p, p0) are
exactly the same as the observables computed with the non-evolved initial potential V1(p, p0).
This applies in particular to phase-shifts, which do not depend on �.

Recently, we have developed techniques in nuclear physics in order to study the infrared
fixed-point of the SRG by pushing the evolution towards the on-shell limit � ! 0 [6, 7, 8] and
have found an elegant an simple way to determine phase shifts from fully diagonal interactions
in momentum space complying with isospectrality and Levinson’s theorem [9].

A simple S-wave gaussian separable potential toy model allows to carry studies with a
moderate numerical e↵ort

V (p, p0) = C exp

� 1

L2

⇣
p2 + p02

⌘�
, (7)

where the parameters C and L are obtained by fitting the scattering length and the e↵ective
range. The nn interaction cannot be measured directly, but since the nn and np interaction in
the 1S0 channel have similar (and large) scattering lengths, ↵nn

0 = �18.5 fm and ↵np
0 = �23.7 fm,

we use the np phase-shifts to access how well the toy model describes the nuclear force in the
S-waves. This gives C = �1.916 fm and L = 1.2 fm�1.

At similarity cuto↵s close to � ⇠ 1 fm�1 the flow equation becomes extremely sti↵ so that it
is nearly impossible to study the infrared limit of the similarity cuto↵, � ! 0, if the potential has
a long tail in momentum space, which is the case for high precision nucleon-nucleon potentials.
This is the reason why we have constructed the toy model since it gives good qualitative results
for the nucleon-nucleon S-waves but has a short tail in momentum space, allowing the SRG
evolution towards the infrared region of the similarity cuto↵ with a moderate numerical e↵ort.
The fully diagonal on-shell interaction at � = 0 is obtained by using the energy shift prescription
of Ref. [9].

3. Bertsch parameter
Here we apply the toy model to compute the Bertsch parameter in the infrared region of the
similarity cuto↵ with di↵erent grid sizes. We also compute the Bertsch parameter with high
precision nucleon-nucleon potentials to compare them to the results from the toy potential.

The Bertsch parameter is the ratio between the total energy of a system of interacting fermions
in the unitary limit and the energy of a free Fermi gas:

⇠�(kF ) =
T (kF ) + V�(kF )

T (kF )
= 1 +

V�(kF )

T (kF )
. (8)

The kinetic energy in neutron matter is given by

T (kF ) =
3k2F
10mn

, (9)

3
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3

The low energy contants are given by moments of the pseu-
dopotential VL(r)

C0(L) =
Z •

0
dr r2VL(r) , (13)

C2(L) =�1
6

Z •

0
dr r4VL(r) , (14)

C4(L) =
3
10

C0
4(L) =

1
120

Z •

0
dr r6VL(r) . (15)

Note that we are not concerned with the shape of VL(r) as
long as we can carry out the calculaiton with the LEC. This
corresponds to an Effective Field Theory (EFT) with contact
interactions only. We expect Eq. (11) to hold up to p, p0 
LERE. Using the potential of Eq. (11) the LS Eq. (7) reduces
to a system of algebraic equations which can be readily solved
at leading order (LO) and next-to-leading order (NLO) which
solution is well known (see e.g. Ref. [16, 17]). Then to any
order we match the resulting expressions to the effective range
expansion, Eq. (10).

At leading order (LO) we just keep the leading term C0 and
get

C0(L) =
a0

1� 2La0
p

, (16)

showing that limL!0 VL(0,0) = a0. Going to next-to-leading
order (NLO) we obtain

� 1
a0L

=
4
�
�2c2

2 +90p

4 +15(3c0 +2c2)p2�

9p

�
c2

2 �10c0p

2
� , (17)

r0L =
16

�
c2

2 +12p

2c2 +9p

4�

p (c2 +6p

2)2 �
12c2

�
c2 +12p

2�

(c2 +6p

2)2
1

a0L

+
3c2p

�
c2 +12p

2�

(c2 +6p

2)2
1

a

2
0 L2 ,

where c0 = 4pLC0, c2 = 4pL3C2. In the second equation we
have eliminated C0 in terms of a0. This leads for any cut-off
L to the mapping (a0,r0)! (C0,C2). At this level of approx-
imation there are two branches and we choose the one consis-
tent with the LO one for L ! 0, see Eq. (16).1 For the NNLO
cases the expressions are rather large and are not quoted here.

Following the conventional strategy once our effective in-
teraction has been tuned to the Bertsch renormalization con-
dition, we turn now to the many body problem. We will work
at the mean field level, since this already provides an upper
variational estimate for any L. The energy is given by

E = Â
~k,s

nk
k2

2M
+

1
V Â

~k

nk,N

h
h~k|v|~ki�h~�k|v|~ki

i
, (18)

1 The Next-to-next-to-leading order (NNLO) has a peculiar feature, since
once has two constants C4 and C0

4 and just one renormalization condition
at this order. Quite generally, this property can be solved if we assume
that our effective dynamics is governed by a local potential. This locality
condition has its counterpart at all orders.

where N = 2Â~k 1. For a two-fermion species we have the
Hartree-Fock result for just S-wave interactions,

B
A
=

3k2
F

10M
+

2
p

2
M

Z kF

0
k2dk

✓
1� 3k

2kF
+

k3

2k3
F

◆
VL(k,k)

+ O(V 2) . (19)

According to the standard perturbative argument, first order
perturbation theory provides an an upper bound for the true
ground state. If we have H = H0 +V and H0y

(0)
n = E(0)

n y

(0)
n ,

then for any normalized state j we have E0  hj|H0+V |ji=
E(0)

n + hy(0)
n |V |y(0)

n i. However, if we take L = kF the mean
field result accounts for the full contribution since we cannot
have transitions above the Fermi level. Quite generally we
may then write

x = 1+
10kFC0(L)

9p

+
2k3

FC2(L)
3p

+
k5

F(C
0
4(L)+2C4(L))

7p

+O(k7
F ,V

2) . (20)

Of course, this is an approximation for any finite L which
becomes increasingly accurate for L ! 0. On the other hand
we do not expect L > kF to provide relevant contributions to
the many body problem. Thus, in the limit of small densities
we have

x = 1+
10kFC0(kF)

9p

+
2k3

FC2(kF)

3p

+
k5

F(C
0
4(kF)+2C4(kF))

7p

+O(k7
F) (21)

This discussion holds for finite values of a0 where the LEC
can be re-expanded in kF . When the limit a0 !�• is taken
one gets C0(kF) ! �p/(2kF), etc. Analytical results can be
obtained for LO and NLO, namely

xLO(x) =
4
9
= 0.444 . . . , (22)

xNLO(x) =
�
3p x�6

p
48�3p x�64

�

3p x�48
, (23)

where x = kF r. The LO result coincides with [18, 19]. The
NLO result is to our knowledge new.

For kF r0 ⌧ 1 we have

xNLO =
1
6

⇣
8�3

p
3
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1
192
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4�3

p
3
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p x (24)

+

�
16�9

p
3
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p

2 x2

12288
+

�
32�15

p
3
�

p

3 x3

393216
+ O

�
x4� , (25)

which numerically yields

xNLO = 0.467308�0.019572 x+0.0003 x2 + · · · . (26)

Our numerical results for LO, NLO, and NNLO are pre-
sented in Fig. 1 where we consider the local conditions
Eq. (15) leading to xNNLO = 0.42 and compare it with tak-
ing e.g. C4 = 0 while maintaining the same renormalization
conditions, Eq. (12), showing the result depends on the way
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Final Remarks

• Peripheral waves displays pure pionic effect


• S-wave completely dominated by the “unknown" part of 
the nuclear force, which is fitted to 2N observables


• Neutron matter in the unitary limit can be reasonably 
described by lower order contact interactions


• N2LO (N3LO) results are close but indicate that N3LO 
(N5LO) high order terms seems to be required


