Erice International School on Nuclear Physics - 40th course

Exploring few-nucleon systems and hadronic matter with effective interactions
Varese S. Timóteo
University of Campinas - UNICAMP Limeira - SP, Brasil

Erice, Sicily - Italy
Sempterber 16 to 24, 2018

- Motivation: Nuclear Force
- Framework: Effective Nuclear Forces
- Two-Nucleon System: Pions vs Contacts
- Pairing Gap: Chiral N4LO vs Pionless
- Neutron matter: Unitary Limit
- Final Remarks

E. R. Arriola (UGR)

S. Szpigel (UPM)

T. Frederico (ITA)

L. Tomio (UNESP)

Special thanks to Prof. Machleidt

for the chiral forces

Financial Support

Nuclear Forces

Phenomenological forces (Argonne, Nijmegen, ...)

High precision fits to scattering data, but too many parameters and no relation to QCD

Boson Exchange forces (Bonn, Paris, ...)

Phenomenological short range + meson exchanges, hybrid approach

Chiral forces (LO, NLO, N2LO, N3LO, N4LO, N4LO+, ...)

Chiral expansion, systematic improvement, QCD inspired, Quantum Field Theory

Effective theory principle

Physics at low energy (large distance) scales is insensitive to the details of the physics at high energy (small distance) scales

Effective Interactions Timeline

1991

EFT formulation
Weinberg
$\begin{array}{cc}\text { ED N2LO } & \text { EI N2LO } \\ \text { van Kolck et al. } & \text { Epelbaum et al. }\end{array}$
N3LO
Entem
$\begin{array}{cccc}\text { N3LO (SFR) } & \text { optimized N2LO } & \text { N4LO } & \text { N4LO+ } \\ \text { Epelbaum et al. } & \text { Ekström et al. } \begin{array}{c}\text { Idaho, Salamanca } \\ \text { Bochum, Bonn }\end{array}\end{array}$

Many other important works by:
Kaiser, Robilotta, Ruiz Arriola, Frederico, Friar,
Birse, Kaplan, Savage, Wise, Bedaque, Beane, ...

Chiral Forces with pions \& nucleons as fundamental d.o.f.

Chiral expansion
see works from Machleidt et al. and Epelbaum et al.

Power counting

Nogga, Timmermans, van Kolck, Phys Rev C 72 (2005) 054006

Szpigel \& VST, J Phys G 39 (2012) 105102

N2LO

Similarity Renormalization Group (SRG)

$$
\mathcal{H}|\psi\rangle=E|\psi\rangle
$$

- Pre-diagonalization
- Reduces off-shellness
S. Glazek
K. Wilson
R. Furnstahl
R. Perry
S. Bogner
E. Jurgenson
- Improves convergence in many-body calculations
- Nuclei and Nuclear matter
R. Roth
A. Schwenk
P. Navratil
J. Vary
H. Hammer
K. Hebeler
A. Calci
S. Binder

Similarity Renormalization Group

Similarity Transformation:

S. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993)

Doesn't remove degrees of freedom

But suppresses states with large energy difference (off-diagonal elements):

$$
\left\langle\psi_{L}\right| H\left|\psi_{H}\right\rangle \rightarrow \Lambda_{n} \leq\left(E_{H}-E_{L}\right) \leq \Lambda_{0}
$$

Similarity Renormalization Group

Wegner's formulation:

Flow equation:

$$
\begin{gathered}
H_{s}=U(s) H U^{\dagger}(s)=T+V_{s} \\
\frac{d}{d s} H_{s}=\left[H_{s}, \eta_{s}\right]
\end{gathered}
$$

F. Wegner, Annalen der Physik (Berlin) 3, 77 (1994) Flow parameter: $\quad s=\frac{1}{\lambda^{4}} \quad(0 \leq s \leq \infty)$
\square similarity cutoff λ : dimension of momentum Boundary condition: $\lim _{s \rightarrow s_{0}} H_{s}=H_{s_{0}}$

Generators for the similarity transformation

Free hamiltonian (kinetic energy):
Diagonal part of the running hamiltonian:

$$
\eta_{s}=\left[H_{s}, T\right]
$$

SRG - Wilson Generator

(two-nucleon system)

$$
\eta_{s}=\left[H_{s}, T\right]
$$

$$
\frac{d}{d s} H_{s}=\left[H_{s},\left[H_{s}, T\right]\right]
$$

$$
\frac{d}{d s} V_{s}\left(p, p^{\prime}\right)=-\left(p^{2}-p^{\prime 2}\right) V_{s}\left(p, p^{\prime}\right)+\frac{2}{\pi} \int d q q^{2}\left(p^{2}+p^{\prime 2}-2 q^{2}\right) V_{s}(p, q) V_{s}\left(q, p^{\prime}\right)
$$

S. Szpigel and R. J. Perry, in "Quantum Field Theory, A 20th Century Profile", ed. A. N. Mitra, Hindustan Publishing, New Delhi (2000)
S.K. Bogner, R.J. Furnstahl, and R.J. Perry, Phys. Rev. C 75, 061001(R) (2007)
S.K. Bogner, R.J. Furnstahl, R.J. Perry, and A. Schwenk, Phys. Lett. B 649, 488 (2007)
E.D. Jurgenson, P. Navratil, R.J. Furnstahl, Phys. Rev. Lett. 103 (2009) 082501

$$
V_{s=0} \longrightarrow \text { regular or regularised }
$$

SRG - Wegner Generator
 (two-nucleon system)

$$
\lambda=\frac{1}{\sqrt[4]{s}}
$$

$$
\eta_{s}=\left[H_{s}, \operatorname{diag}\left(H_{s}\right)\right]
$$

$$
\frac{d}{d s} H_{s}=\left[H_{s},\left[H_{S}, \operatorname{diag}\left(H_{s}\right)\right]\right]
$$

$$
T|p\rangle=p^{2}|p\rangle \quad\left[\operatorname{diag}\left(H_{s}\right)\right]|p\rangle=\epsilon_{p}|p\rangle
$$

$$
\frac{d}{d s} V_{s}\left(p, p^{\prime}\right)=\frac{2}{\pi} \int_{0}^{\infty} d q q^{2}\left(\epsilon_{p}+\epsilon_{p^{\prime}}-2 \epsilon_{q}\right) H_{s}(p, q) H_{s}\left(q, p^{\prime}\right)
$$

SRG evolution (Wilson Gen.) - Chiral N3LO - 1S0

for a review on applications of SRG to nuclear physics see
Furnstahl \& Hebeler, Rept Prog Phys 76 (2013) 126301

Finite Nuclei: SRG flow

No three-body force

Binding energies

Tjon line

No universal value for the SRG cutoff

Quantifying offshellness

The Frobenius norm:

$$
\begin{gathered}
\phi=\left\|V_{\lambda}\right\|=\sqrt{\operatorname{Tr} V_{\lambda}^{2}} \\
V_{\lambda}^{2}=\frac{2}{\pi} \int_{0}^{\infty} d q q^{2} V_{\lambda}(p, q) V_{\lambda}\left(q, p^{\prime}\right)
\end{gathered}
$$

Order parameter:

$$
\beta=\frac{d \phi}{d \lambda}
$$

Similarity susceptibility:

$$
\eta=\frac{d \beta}{d \lambda}=\frac{d^{2} \phi}{d \lambda}
$$

The on-shell transition - N3LO

Critical λ

$$
\lambda_{c}=0.9 \mathrm{fm}^{-1}
$$

Szpigel, Ruiz Arriola, VST
Few-Body Syst (2014)
Physics Letters B 728 (2014) 596
Physics Letters B 735 (2014) 149
Annals of Physics 353 (2015) 129
Annals of Physics 371 (2016) 398
Few-Body Syst (2017) 58:62

Peripheral waves: pions

$$
L=4
$$

$$
V_{N 4 L O}^{3 G 4}=1 \pi E+2 \pi E+3 \pi E
$$

No contacts !!!

Pions+Contacts vs Granada PWA

Peripheral, but sensitive to contacts

for details on the subtractive renormalization, see:
Frederico, VST, Delfino, Nucl. Phys. A 653 (1999) 209
VST, Frederico, Delfino, Tomio, Phys. Lett. B 621 (2005) 109 VST, Frederico, Delfino, Tomio, Phys.. Rev. C 83 (2011) 064005

Central channel: pion vs contacts

$L=0$

Interaction in this channel is dominated by the contacts!!!

Central channel: pion vs contacts

$$
L=0
$$

BCS pairing gap with different interactions

$$
\Delta(k)=-\frac{1}{m \pi} \int_{0}^{\infty} d p p^{2} V(k, p) \underbrace{\frac{\Delta(p)}{\sqrt{\left[\left(p^{2}-p_{F}^{2}\right) /(2 m)\right]^{2}+\Delta(p)}}}_{E(p)}
$$

Pairing gap without pions

pions + contacts $=$ full

Incorporating pions into contacts

contacts \sim contacts \sim full

Neutron matter \& Cold Atoms

Monte Carlo simulations

J. Carlson, S. Gandolfi and A. Gezerlis, Prog. Theor. Exp. Phys., 01A209 (2012).
"We report quantum Monte Carlo calculations of superfluid Fermi gases with short-range two-body attractive interactions with infinite scattering length. The energy of such gases is estimated to be (0.44 ± 0.01) times that of the noninteracting gas, and their pairing gap is approximately twice the energy per particle."

Neutron matter with only contact interactions

 (in the Unitarity Limit)$$
\begin{gathered}
\xi\left(K_{F}\right)=\frac{T\left(k_{F}\right)+U\left(k_{F}\right)}{T\left(k_{F}\right)}=1+\frac{U\left(k_{F}\right)}{T\left(k_{F}\right)} \\
T\left(k_{F}\right)=\frac{3 k_{F}^{2}}{10 m_{n}} \\
U\left(k_{F}\right)=\frac{4}{m_{n}} \frac{2}{\pi} \int_{0}^{k_{F}} d k k^{2}\left(1-\frac{3 k}{2 k_{F}}+\frac{k^{3}}{2 k_{F}^{3}}\right) V_{N N}(k, k) \\
V\left(p, p^{\prime}\right)=\underset{\text { Lо }}{C_{0}}+C_{2}\left(p^{2}+p^{\prime 2}\right)+C_{4}\left(p^{4}+p^{\prime 4}\right)+C_{4}^{\prime} p^{2} p^{\prime 2}+\cdots \\
\text { NL० }
\end{gathered}
$$

Constraining LECs to unitarity condition

$$
V\left(p, p^{\prime}\right)=C_{0}+C_{2}\left(p^{2}+p^{\prime 2}\right)+C_{4}\left(p^{4}+p^{\prime 4}\right)+C_{4}^{\prime} p^{2} p^{\prime 2}+\cdots
$$

Compute two-body T-matrix with $V\left(p, p^{\prime}\right)$
Match to Effective Range Expansion
Impose unitarity condition $-1 / a=0$ and $r=0$
$\xi_{\mathrm{LO}}(x)=\frac{4}{9}=0.444 \ldots$
$\xi_{\mathrm{NLO}}(x)=\frac{(3 \pi x-6 \sqrt{48-3 \pi x}-64)}{3 \pi x-48}$

$$
x=k_{F} r
$$

Neutron matter (unitary limit)

Final Remarks

- Peripheral waves displays pure pionic effect
- S-wave completely dominated by the "unknown" part of the nuclear force, which is fitted to 2 N observables
- Neutron matter in the unitary limit can be reasonably described by lower order contact interactions
- N2LO (N3LO) results are close but indicate that N3LO (N5LO) high order terms seems to be required

