Searching for Ονββ decay with cryogenic calorimeters

Giovanni Benato, UC Berkeley

41st International School of Nuclear Physics, Erice (TP), Sep. 16-24, 2019

Sources

- <u>M. Agostini, Discovery potential of next-generation double-β decay experiments, talk at TAUP'19</u>
- <u>S. Pozzi, CUORE talk at TAUP'19, J. Ouellet, CUORE talk at Neutrino'18</u>
- B. Schmidt, CUPID-Mo talk at TAUP'19, CUPID-Mo instrument paper
- <u>CROSS experiment</u>
- N. Casali, CUPID-0 talk at TAUP'19, CUPID-0 final results, CUPID-0 2vββ paper, CUPID-0 background model paper
- <u>M. Pavan, CUPID talk at TAUP'19, CUPID Pre-CDR</u>
- K. Seo, AMoRE talk at TAUP'19, AMoRE-pilot results, AMoRE TDR
- K. Tetsuno, CANDLES talk at TAUP'19

G. Benato

Erice, Sep. 20, 2019

The bolometric technique

Simplified thermal model

- Crystal heat capacity: C
- Conductivity of coupling to thermal bath: G
- Signal amplitude $\propto \Delta T = E_{dep} / C$
- Decay constant: $\tau = G / C$

Background suppression via Particle IDentification (PID)

- Main background: surface α events
- Couple main crystal with secondary bolometer reading the scintillation (or Cherenkov) light
- Exploit different light yield (LY) of α vs β/γ to actively suppress background
- Typical light detector: thin Ge wafer coupled to thermometer (NTD, TES, KID, MMC)

Isotope choice for bolometric experiment

- High isotopic abundance
- Enrichment possible at reasonable cost?
- $Q_{_{RB}}$ above end point of β or γ radiation?
- Scintillating crystal available?
- Large scale crystal production possible?

Advantages of bolometric approach

- Detectors and infrastructure are decoupled.
 Same cryogenic infrastructure re-usable with different isotopes and/or crystals
- Perfect for test of discovery or precision measurements

The present: CUORE

CUORE: the Cryogenic Underground Observatory for Rare Events

- 988 TeO₂ crystals with natural Te composition
 742 kg total mass, 206 kg ¹³⁰Te mass
- $Q_{\beta\beta}^{(130}\text{Te}) = 2527.5 \text{ keV} \rightarrow \text{Above most natural } \gamma \text{ background}$
- Located in Hall A of the Gran Sasso National Lab
- Background goal: 10^{-2} counts/keV/kg/yr at Q_{BB}
- Sensitivity goal on $T_{1/2}^{0v} = 9.10^{25}$ yr with 5 yr of live time

CUORE infrastructure

The coldest cubic meter in the known Universe

- Multistage cryogen-free cryostat: nested vessels at decreasing temperature
- Cooling systems: fast cooling system, Pulse Tubes (PTs), and Dilution Unit (DU)
- ~15 tons @ < 4 K
- ~ 3 tons @ < 50 mK
- Mechanical vibration isolation
- Active noise cancelling

CUORE (passive) shielding

- Roman Pb shielding in cryostat
- External Pb shielding
- H₃BO₃ panels
- Polyethylene

CUORE background

CUORE background

- Full background reconstruction with a Bayesian fit
- Fit components: 60 contaminations spread across the cryostat + muons
- Each component is simulated with a detailed Geant4 MC simulation
- Split the data according to event multiplicity
- Split the detector outer layer (sensitive to cryostat contaminants) and inner layer (sensitive to crystal and frame contaminants)

• T^{2v}_{1/2} = (8.2±0.1(stat))·10²¹ yr (Preliminary)

New CUORE results on 0vßß decay

CUORE Preliminary

— Best fit

Exposure: 369.9 kg yı

— 90% limit on Γ₀,

2560

Reconstructed Energy [keV]

2570

• Fit range: [2490, 2575] keV

• Marginalized limit computed on physical range: $\Gamma_{0v} < 3.0 \cdot 10^{-26}$ yr⁻¹

ents [counts/2.5keV

20

2490

2500

2510

2520

2530

2540

2550

$T_{1/2}$ > 2.3.10²⁵ yr at 90% C.I.

- Systematics affect the limit by ~1%
- Probability of getting a stronger limit: 13%
- Assuming light neutrino exchange: m_{ββ} < 0.09-0.42 eV at 90% C.I.

Preparing the future: CUPID-0

Preparing the future: CUPID-0

- Background at Q_{ββ}: **3.5·10⁻³ counts/keV/kg/yr**
- 44% muons muon veto installed in early 2019
- 33% ZnSe crystals → removed reflector foils
- 17% cryostat → new, cleaner copper shield
- 6% reflector foils → removed

- $T^{2v}_{1/2} = [8.6 \pm 0.03(\text{stat})^{+0.17}_{-0.10}(\text{syst})] \cdot 10^{19} \text{ yr}$
- Tested SSD vs HSD for ⁸²Se → HSD excluded

$0\nu\beta\beta$ results

• Fit in [2800,3200] keV

$T^{0v}_{1/2} > 3.5 \cdot 10^{24} \text{ yr} @ 90\% \text{ C.I.}$

Preparing the future: CUPID-Mo

- 20 x 210g Li_2MoO_4 crystals 97% enr. in ¹⁰⁰Mo
- Ge wafer with SiO anti-reflective coating + NTD as light detector
- Cu frames + reflector foil
- Collecting physics data in Edelweiss cryostat since spring 2019

Goal is to evaluate:

- Energy resolution
- PID performance
- $2\nu\beta\beta$ pileup rate (short half-life for ¹⁰⁰Mo)
- Crystal bulk and surface purity
- Reproducibility/homogeneity of crystal and light detector performance

Preparing the future: CUPID-Mo

- Exposure: 0.5 kg·yr (~2 months)
- Energy resolution in calibration data: 7.7 \pm 0.4 keV FWHM @ Q_{BB} (3034 keV)
- Energy resolution in physics data: 6.6±1.1 keV → Dominated by suboptimal environment
- Contamination for Th and U chains < μ Bq/kg level \rightarrow 10 times better than expected
- Detector performance compatible with 99.9% α vs β/γ Gaussian separation
- $T_{1/2}^{0v} > 3.3 \cdot 10^{23} \text{ yr} @ 90\% \text{ C.L.}$
- Data collection ongoing. Will reach a sensitivity comparable with NEMO-3 limit in ~0.5 yr.

Erice, Sep. 20, 2019

Preparing the future: CROSS

Conceptual design

- Use signal pulse-shape to discriminate between bulk and surface events in Al-coated crystals
- Room to reject also surface β
- Less channels, less material

Results

- Measured α from coated vs non-coated sides
- $\geq 5 \sigma$ bulk/surface separation proven in few cm³ TeO₂ and Li₂MoO₄ crystals
- 1 μm Al film thickness sufficient (TeO₂ tested)
- Indications for possible measurement of energy deposition depth

Prospects

- New, 150 L dilution refrigerator under installation/commissioning at Canfranc
- 32 enriched cubic $45x45 \text{ mm Li}_2\text{MoO}_4$ crystals available and ready for installation
- Eventual TeO₂ phase considered

The near future: CUPID

CUPID: CUORE Upgrade with Particle Identification

- Li₂MoO₄ scintillating crystals
- Enrichment > 95%
- Ø 50 mm, h 50 mm → 308 g
- ~1534 crystals + ~250 kg of ¹⁰⁰Mo
- Goal FWHM: 5 keV at Q_{BB}
- α rejection via PID
- Goal background: 10⁻⁴ counts/keV/kg/yr
- Discovery sensitivity: $T_{1/2}^{0v} = 10^{27}$ yr
 - → m_{ββ} = 12-20 meV

 10^{-5}

10-

 10^{-3}

Counts/keV/ka/v

ROI - External sources

 10^{-6}

The near future: CUPID

- CUPID pre-CDR: very conservative
 - Exactly what we could start building today. No improvement assumed!
- CUPID reach: assume improvement at reach before construction
 - Improved signal timing with TES on LD
 - Improved radiopurity
 - Zero-bkg condition: 2·10⁻⁵ counts/keV/kg/yr
- CUPID 1 ton: new 4x larger cryostat
 - 1 ton of ¹⁰⁰Mo, plus possibly other isotopes
 - BI: 5.10⁻⁶ counts/keV/kg/yr

Parameter	CUPID Baseline	CUPID-reach	CUPID-1T
Crystal	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$
Detector mass (kg)	472	472	1871
100 Mo mass (kg)	253	253	1000
Energy resolution FWHM (keV)	5	5	5
Background index (counts/(keV·kg·yr))	10^{-4}	2×10^{-5}	$5 imes 10^{-6}$
Containment efficiency	79%	79%	79%
Selection efficiency	90%	90%	90%
Livetime (years)	10	10	10
Half-life exclusion sensitivity (90% C.L.)	$1.5 \times 10^{27} \text{ y}$	$2.3 \times 10^{27} \text{ y}$	$9.2 \times 10^{27} \text{ y}$
Half-life discovery sensitivity (3σ)	$1.1 \times 10^{27} { m y}$	$2 \times 10^{27} \text{ y}$	$8 \times 10^{27} \text{ y}$
$m_{\beta\beta}$ exclusion sensitivity (90% C.L.)	$1017~\mathrm{meV}$	8.214 meV	$4.1-6.8~{ m MeV}$
$m_{\beta\beta}$ discovery sensitivity (3 σ)	12-20 meV	$8.815~\mathrm{meV}$	4.4– $7.3 meV$

Preparing the future: AMoRE pilot

- AMoRE: Advanced Mo-based Rare process Experiment
- $^{48depl}Ca^{100}MoO_4$ scintillating crystals
 - → < 0.001% ⁴⁸Ca; >95% ¹⁰⁰Mo
- Readout with Metallic Magnetic Calorimeter (MMC): temperature-dependent magnetization read with SQUID
- PID via rise-time and scintillation light
 - Rejection of ²¹²Bi/²⁰⁸Tl delayed coincidences
 - Low-background Pb shield + neutron shield
 - Active muon veto

Energy [MeV]

Towards the ton-scale AMoRE

AMoRE-pilot results

- BI: 0.14±0.09 counts/keV/kg/yr
- FWHM ~ 15 keV
- $T_{1/2}^{0v} > 9.5 \cdot 10^{22}$ yr @ 90% C.L.
- m_{ββ}² < 1.2-2.1 eV

AMoRE-I

- 13 CaMoO + 8 LiMoO crystals
- 6.1 kg total mass
- DAQ upgrade

AMoRE-II

- ¹⁰⁰Mo-based crystals (LiMoO?)
- Net ¹⁰⁰Mo mass: 100 kg
- Goal BI: 10⁻⁴ counts/keV/kg/yr
- Goal FWHM: 5 keV

High-yield long-term investment: bolometric ⁴⁸Ca experiment

- Candles III: nat. CaF₂ crystals + liquid scintillator + PMTs
- Intrinsic backgrounds: 2vββ, ²³⁸U α decay
 → develop CaF₂ scintillating bolometer to improve energy resolution
 0.18% FWHM and 5 σ separation demonstrated with 300 g crystal
- Enrichment under investigation:
 - → Crown ether resin + chromatography
 - → Crown ether resin + micro reactor
 - → Laser separation (up to 90%)
 - → Multi-channel counter current electrophoresis
- If scalable enrichment method is developed, this could be the ultimate bolometric 0vββ experiment!

Summary

