XENON & DARWIN

41st Intn. School on Nuclear Physics Erice, September 20, 2019

erc

marc.schumann@physik.uni-freiburg.de
www.app.uni-freiburg.de

Dark Matter: (indirect) Evidence

The indirect evidence for the existence of dark matter is a clear indication for physics beyond the Standard Model

Planck 2018: arXiv:1807.06209 "We find no compelling evidence for extensions to the base-ΛCDM model."

Take-home message The most sensitive detectors to search for dark matter have a very broad science reach.

THE DM CANDIDATES ZOO

WIMPs

= weakly interacting massive particles

stolen from G. Bertone

Dark Matter WIMP Search

Direct

Indirect Detection Production @Collider

f

Direct WIMP Search

atomic electrons → electronic recoil [in keVee]

Direct WIMP Search

WIMP-Nucleon Interactions

A priori, we do not know how dark matter WIMPs interact with ordinary matter

Parametrization of interactions leading to WIMP-nucleus scattering:

Form factors describe

Direct WIMP Search

Direct Detection:

 $E_{r} < 100 \, \text{keV}$ $R \ll 1 \text{ evt/kg/year}$

How to build a WIMP detector?

- large total mass, high A
- low energy threshold
- ultra low background
- good signal / background discrimination

We are dealing with

- extremely low rates (O(1) Hz)
- very low thresholds (~1 keV)
- extremely low radioactive backgrounds

Background Sources

muons

Electronic Recoils (gamma, beta)

Nuclear Recoils (neutron, WIMPs)

The U and Th Chains

M. Schumann (Freiburg) – XENON & DARWIN

Low-background Screening

10-1

500

- y-spectrometry using HPGe Detectors
- mass spectroscopy: ICP-MS, GDMS
- neutron activation analysis
- ²²²Rn emanation

Energy (keV)

3000

2500

1500

1000

2000

Background Suppression

A Avoid Backgrounds Use of radiopure materials

Shielding

deep underground location large shield (Pb, water, poly) active veto (μ , γ coincidence) self shielding \rightarrow fiducialization

B Use knowledge about expected WIMP signal

WIMPs interact only once
 → single scatter selection
 require some position resolution
 WIMPs interact with target nuclei

→ nuclear recoils exploit different dE/dx from signal and background

The WIMP Parameter Space

Current Status

some results are missing...

Annual Modulation

DAMA/LIBRA: New Results

Annual Modulation Searches

- dark matter—electron scattering
- 2-phase LXe TPCs operated stably over long periods XENON100: 4 years LUX: 2 years
- challenges DAMA/LIBRA
 XENON100: 5.7σ
 LUX: 9.2σ

Current Status

The XENON Collaboration

XENON Instruments

The XENON collaboration develops and operates dark matter detectors of increasing size and sensitivity

Matter Project

Why Xenon?

- + scintillation light in VUV (178nm)
- + high mass number A~131 SI: high WIMP rate @ low theshold
- **+** high Z=54, high ρ~3 kg/l: self shielding, compact detector
- + 50% odd isotopes
- + "easy" cryogenics @ -100°C
- + scalability to larger detectors
- + no long lived Xe isotopes two 2nd order weak decays
- + background discrimination when measuring light and charge
- expensive
- only fair background rejection

Dual Phase TPC

Dolgoshein, Lebedenko, Rodionov, JETP Lett. 11, 513 (1970)

Image from C. Levy

Background Rejection

- 3dim vertex reconstruction
 → fiducialization
- multi-scatter rejection
- energy measurement
- Charge-Light-Ratio (S2/S1): Signal partition in light/charge depends on $dE/dx \rightarrow$ the interaction type
- → ER background rejection
- → significant loss of acceptance

	Edrift [kV/cm]	LY @ 122 keV [PE/keV]	NR acc [%]	ER rej [%]
XENON100	0.53	3.8	40	2.5×10 ⁻³
XENON100	0.53	3.8	30	1×10 ⁻³
LUX	0.18	8.8	50	110×10 ⁻³
XENON1T	0.125	~7.5	50	2.5×10 ⁻³
ZEPLIN-III	3.4	4.2	50	1.3×10 -4
K. Ni APP14	0.2-0.7	10	50	<1×10 ⁻⁴

Figures: XENON100

EPJ C 77, 991 (2017)

largest LXe TPC ever built cylinder: 96 cm active LXe target: 2.0t (3.2t total) 248 PMTs

Signal / Background Calibration

ark Matter Proiec

Blinded Data

Blinded Data

Background Prediction

M. Schumann (Freiburg) – XENON & DARWIN

Dark Matter Proiect
Unblinding

200 GeV/c²

X [cm]

M. Schumann (Freiburg) – XENON & DARWIN

Mass

ER

AC

BG

Data

 R^2 [cm²]

Ν

Dark Matter Proiect

No Signal → Exclusion Limit

XE

Ν

Dark Matter Project

ΟΝ

WIMP-proton 10^{-36}

WIMP-neutron 10^{-36} 10^{-37} 10^{-37} SuperCDMS CDMS-II χ -p Cross Section [cm²] χ-n Cross Section [cm²] 10^{-38} SuperK (bb) IceCube (bb KENON100 10^{-39} -39 SuperK $(\tau^+\tau^-)$ PandaX 1CO-60 (C,I 10^{-40} 10^{-40}

IceCube $(\tau^+\tau^-)$

500

100

 10^{-41}

 10^{-42}

2

3

5

10

20 30 50

WIMP Mass [GeV/c²]

100

200

coupling of WIMP to unpaired nucleon spins

- traditionally separated in proton-only and neutron-only
- same parameter space explored by indirect and collider searches

10

20 30

WIMP Mass $[GeV/c^2]$

50

100

200

 10^{-41}

 10^{-42}

2 3 5

500

100

Spin-Dependent Couplings XENON PRL 122, 141301 (2019) **Dark Matter Project**

Standard Analysis

M. Schumann (Freiburg) – XENON & DARWIN

Charge-Only Analysis

Migdal Effect, Bremsstrahlung

- exploit expected effects after nuclear recoil
- → very low threshold
- caveat: effect not yet observed in calibration

Double Electron Capture of 124Xe XENON **Dark Matter Project**

- 2nd order weak process with very long T_{1/2}
- so far only seen in ⁷⁸Kr, ¹³⁰Ba
- test of nuclear structure models e.g., PLB 797, 134885 (2019)

^{nat}Xe contains ~1 kg ¹²⁴Xe per tonne

DEC of ¹²⁴Xe: ¹²⁵I Background

DEC of ¹²⁴Xe

Nature 568, 532 (2019)

Dec 2018: XENON1T Stopped XENON Dark Matter Project

10.Dec 2018, 15:06:04 h

BURG

INNI

From XENON1T

ΟΝ

EN

Dark Matter Project

- 3x larger than XENON1T

5.9t active LXe target ~8.5t total mass

- 3x larger than XENON1T

5.9t active LXe target ~8.5t total mass

JCAP 04, 027 (2016)

- 3x larger than XENON1T

5.9t active LXe target ~8.5t total mass

- 3x larger than XENON1T

5.9t active LXe target ~8.5t total mass

From XENON1T to XENONNT JCAP 04, 027 (2016)

- 3x larger than XENON1T

5.9t active LXe target ~8.5t total mass

From XENON1T to XENONNT JCAP 04, 027 (2016)

XENONnT: Busy Times....

XENONnT Sensitivity Goal

spin-independent WIMP-nucleon interactions

FREIBURG

some results are missing...

The ultimate Limit

BURG

BURG

URG

DARWIN

Start Data

DARWIN

2021 2022 2023 2024 2025 2026 2027 2028 2029

Start

Commissioning

Taking

First

Result

www.darwin-observatory.org

LOI to LNGS submitted

Data Taking, Analysis

international agencies

Timescale: start after XENONnT

endorsed by several national and

60

• aim at sensitivity of a few 10⁻⁴⁹ cm², limited by irreducible v-backgrounds

DARWIN

- - international collaboration, 26 groups, ~160 scientists

→ continuously growing

DARWIN Backgrounds

n

Xe-intrinsic bg: ²²²Rn, ⁸⁵Kr, 2νββ

neutrons from

 (α,n) and sf

→ CNNS bg

pp+⁷Be neutrinos \rightarrow ER signature

high-E neutrinos Remaining background sources: Neutrinos (\rightarrow ERs and NRs) NR signature Detector materials (\rightarrow n) Xe-intrinsic isotopes (→ e⁻) (assume 100% effective shield against µ-induced background)

JCAP 10, 016 (2015)

Electronic Recoils (gamma, beta)

Nuclear Recoils (neutron, WIMPs)

only single scatters

Water Shield Studies

Various water shield geometries were studied for LNGS depth

→ the more shielding the better, but 12m appears sufficient

BURG

DARWIN

LXe: Radon Background

Strategy XENONnT → DARWIN

- avoid Rn by material selection + treatment
- avoid Rn by detector design
- NEW: active Rn removal
- cryogenic distillation
 - distillation column installed @ XENON100
 - → demonstrated reduction factor >27 (@ 95% CL)
 - → dedicated column under development

DARWIN

DARWIN WIMP Sensitivity

JCAP 10, 016 (2015)

- exposure: 200 t \times y; all backgrounds included
- likelihood analysis
- 99.98% ER rejection @ 30% NR acceptance, S1+S2 combined energy scale, LY=8 PE/keV, 5-35 keVnr energy window

WIMP Detection

WIMP Spectroscopy

Reconstruction: 2×10⁻⁴⁷ cm² 10^{-44} 200 t×y 10-45 Cross Section [cm²] 10-47 10 10^{-49} 10^{2} 10^{3} 10 WIMP mass [GeV/c²]

Capability to reconstruct WIMP parameters

- m_x=20, 100, 500 GeV/c²
- $1\sigma/2\sigma$ CI, marginalized over astrophysical parameters
- due to flat WIMP spectra, no target can reconstruct masses >500 GeV/c²

JCAP 11, 017 (2016)

M. Schumann (Freiburg) – XENON & DARWIN

JCAP 11, 017 (2016)

DARWIN

Interactions in LXe Detectors

Interactions in LXe Detectors

→ Many science channels are accessible

DARWIN = A low background, low threshold **astroparticle physics observatory**

Solar Axions, Dark Matter ALPs

JCAP 11, 017 (2016)

Axions and ALPs couple to xenon via axio-electric-effect $\sigma_{Ae}(E_A) = \sigma_{pe}(E_A) \frac{g_{Ae}^2}{\beta_A} \frac{3E_A^2}{16\pi \alpha m_e^2} \left(1 - \frac{\beta_A}{3}\right)$ $\rightarrow \text{ axion ionizes a Xe atom}$

Axion

arises naturally in the Peccei-Quinn solution of the strong CP-problem → well-motivated dark matter candidate

Axion-like particle (ALP) generalization of the axion concept, but without addressing strong CP problem (ALPs = Nambu-Goldstone bosons from breaking of some global symmetry)

M. Schumann (Freiburg) – XENON & DARWIN

pp-Neutrinos in DARWIN

a background for the WIMP search

JCAP 11, 017 (2016)

- neutrinos interact with Xe electrons
 → electronic recoil signature
- continuous recoil spectrum
 - \rightarrow largest rate at low E

Neutrino interactions

• ER rejection efficiencies ~99.98% at 30% NR efficiency are required to reduce to sub-dominant level

pp-Neutrinos in DARWIN

a new physics channel!

>-

JCAP 11, 017 (2016)

- neutrinos interact with Xe electrons
 → electronic recoil signature
- continuous recoil spectrum
 - \rightarrow largest rate at low E

~0.26 v evts/t/d in low-E region (2-30 keV)

Neutrino interactions

- 30t target mass, 2-30 keV window
 - → 2850 neutrinos per year (89% pp)
 - → achieve 1% statistical precision on pp-flux (\rightarrow Pee) with 100 t x y

• 40t DARWIN LXe target contains 3.5t of ¹³⁶Xe without any enrichment!

M. Schumann (Freiburg) – XENON & DARWIN

• $0\nu\beta\beta$ candidate with $Q_{\beta\beta}$ =2.46 MeV

• 40t DARWIN LXe target contains 3.5t of ¹³⁶Xe without any enrichment!

Background Study is ongoing

- Material background depends on contamination and self-shielding

 → optimize sensitivity
- Important background from decays of neutron-activated ¹³⁷Xe
- Aim for few × 10²⁷ y sensitivity

Supernova Neutrinos

Chakraborty et al., PRD 89, 013011 (2014) Lang et al., PRD 94, 103009 (2016)

- $\bullet\,\nu$ from supernovae could be detected via CNNS as well
- signal fom accretion phase of a ~18 Msun supernova
 @ 10 kpc is visible in a 10t-LXe detector (=DARWIN)
- signal: NRs plus precise time information
- challenge: theshold

M. Schumann (Freiburg) – XENON & DARWIN

DARWIN: A low-background, low threshold astroparticle observatory