

T. Stirner

MSW-like effects

Fast conversion

Summary

Neutrino flavor conversion

Tobias Stirner

Max Planck Institute for Physics

Erice, 20th September 2019

T. Stirner

2 MSW-like effects

3 Fast flavor conversion

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

T. Stirner

Motivation

- MSW-like effects
- Fast conversion
- Summary

- flavor conversion changes measurements
- neutrino oscillation influenced by surrounding medium \rightarrow MSW effect

- high neutrino density leads to collective effects
- might affect SN mechanism and nucleosynthesis

MSW effect

Neutrino flavor conversion

T. Stirner

Motivation

MSW-like effects

Fast conversior

Summary

resonance phenomenon for slowly changing densities

mixing maximized from vacuum and matter

vector length related to electron density

Slow flavor conversion

Neutrino flavor conversion

T. Stirner

Motivation

MSW-like effects

Fast conversio

Summary

caused by $\nu\nu\text{-interaction}$

same mechanism as the MSW effect can occur in supernovae

important: coupling > energy spread

can lead to a spectral swap in the energy distribution of $\nu_{\rm e}$ and ν_{μ}

Fast flavor conversion

Neutrino flavor conversion

T. Stirner

Motivation MSW-like

Fast

conversion

Summary

fast conversions based on completely different principle fast because $\lambda_{\rm fast} \sim m$ whereas $\lambda_{\rm vac} \sim {\rm km}$

consider supernova environment with a high density of neutrinos

common oscillation suppressed conversion possible, when correlation function blows up \rightarrow instability

Correlation function

Neutrino flavor conversion

T. Stirner

Motivation

MSW-like effects

Fast conversion

Summary

correlation function $\hat{=}$ mixing of neutrino states

Wigner transformed correlation function $S(\mathbf{x}, \mathbf{k}, t) = \int d^3 y \, e^{-i\mathbf{k}\cdot\mathbf{y}} \nu_e \left(\mathbf{x} - \frac{\mathbf{y}}{2}\right) \nu_{\mu}^{\dagger} \left(\mathbf{x} + \frac{\mathbf{y}}{2}\right)$

linearized equation of motion $\hat{=}$ first order wave equation $i (\partial_t + \mathbf{v} \cdot \partial_{\mathbf{x}}) S_{\mathbf{v}} = \frac{\mu}{4\pi} \int d\mathbf{v}' (1 - \mathbf{v} \cdot \mathbf{v}') G_{\mathbf{v}'} S_{\mathbf{v}'}$ with $G_{\mathbf{v}} \sim$ lepton number distribution

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Izzaguirre et al. arXiv:1610.01312

Dispersion relation

Neutrino flavor conversion

T. Stirner

Motivation MSW-like effects

Fast conversion

Summary

plane wave ansatz $S \sim \exp\left[-i\left(\omega t - \mathbf{k} \cdot \mathbf{x}\right)\right]$ derive dispersion relation $\omega(\mathbf{k})$

instable branch if $\omega(\mathbf{k}) \in \mathbb{C}$

 \rightarrow correlation function blows up

 $ightarrow
u_{e}$ and u_{μ} become strongly mixed

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

looking for instability criterion

Examples

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Duan et al. arXiv:1001.2799

Instability criterion

Neutrino flavor conversion

T. Stirner

Motivation

MSW-like effects

Fast conversion

Summary

$\textit{G}_{\boldsymbol{v}}$ axially symmetric around \boldsymbol{k}

 \bullet sign change in G_{v} necessary, but not sufficient

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- single crossing \Leftrightarrow instability
- several crossings: no simple rule

Capozzi et al. arXiv:1906.08794

non symmetric configuration:

• instabilities directional dependent

T. Stirner

Motivation

MSW-like effects

Fast conversion

Summary

several effects influence neutrino behaviour

fast conversions arise on the shortest scales

criteria for occurence and importance for e.g. supernova explosion mechanism still unclear