

A study of neutron pairing correlations using $^{138,136}Ba(p,t)$ reactions

Jespere Nzobadila Ondze Department of Physics and Astronomy, University of the Western Cape, South Africa

Erice School of Nuclear Physics, 41st Course, 16-24 September 2019

イロト・イラト 美国 美国 シーン 2/1 Erice School of Nuclear Physics, 41st Course Frice School of Nuclear Physics, 41st Course Jespere Nzobadila Ondze

Neutrino Physics and Motivations

・ロト・(アト・モート・モート モークへで 2/1 Erice School of Nuclear Physics, 41st Cours $0\nu\beta\beta \& 2\nu\beta\beta$ decays

$0\nu\beta\beta$ & $2\nu\beta\beta$ decays

What is the nature of neutrinos?

 $0\nu\beta\beta$ decay only possible if the neutrino is the same as the antineutrino

 $0\nu\beta\beta$ NMEs

$0\nu\beta\beta$ NMEs

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu}(Q,z) |M^{0\nu}|^2 \left(\frac{\langle m_{\beta\beta}\rangle}{m_e}\right)^2$$

Where, $M^{0\nu}$ is the nuclear matrix element for the decay, $G^{0\nu}(Q,z)$ is the phase-space factor, $m_{\beta\beta}$ is the effective Majorana neutrino mass and m_e is the electron mass.

Jespere Nzobadila Ondze

 136 Xe \longrightarrow 136 Ba $0\nu\beta\beta$ features

 136 Xe $\longrightarrow {}^{136}$ Ba $0\nu\beta\beta$ features

Figure : Schematic of EXO-200 (left), KamLAND-Zen (middle)

- ¹³⁶Xe is relatively abundant, affordable and easy to purify.
- One can attain maximal background rejection via Barium ion-tagging.
- Most importantly, $2\nu 2\beta$ decay background is highly suppresed. Frice School of Nuclear Physics, 41st Course

Pairing and BCS approximation

Many of the NME calculations use the BCS approximation to describe ground state of even-even parent and daughter nuclei. If BCS approximation were true we would see strong population of ground states in (p, t), (t, p), (³He,n) two nucleon transfer reactions.
Large shell gap or differences in deformation between the parent and daughter nuclei will indicate a breakdown in BCS approximation.

Experimental setup

- Facility : High resolution Q3D Magnetic Spectrograph at Maier-Leibnitz Laboratorium (MLL), Garching (Germany)
- Reaction : ¹³⁶Ba(p,t)¹³⁴Ba, ¹³⁸Ba(p,t)¹³⁶Ba.
- Solution Targets : 40 $\mu g/cm^2$ ^{136,138}BaO on 30 $\mu g/cm^2$ of ¹²C backing

Focal plane detector

- three components: two proportional counters, one plastic scintillator
 -) particle identification: $\Delta E_1 \Delta E$ and $\Delta E E$
- opsition measurement: cathode-strip foil.
 - strip multiciplity: three to five for valid event.

(日)

Particle identification

Erice School of Nuclear Physics, 41st Course

DWBA Analysis for the cross section angular distributions

We collected data at different Q3D angles, varying from $5^{\circ}-50^{\circ}$ with increment of 5 in order to get cross section angular distribution and identify 0^+ states in 136 Ba and 134 Ba.

- Natural parity states are preferably selected in (p,t) reactions, J = L, $\pi = (-1)^L$.
- L transfer obtained by comparing experimental cross-sections with Distorted-Wave Born approximation (DWBA) predictions.
- OWBA done using DWUCK4 code. DWUCK4 calculates cross-section amplitudes using the Optical Model Potential (OMP).
- R. L. Varner OMP for proton, and X. Li, C. Liang & C.Cai OMP for triton have been used for the present calculations.

・ロト・イラト・イミト・イミト ヨークへで 10/1 Erice School of Nuclear Physics, 41st Cours

(p, t) angular distribution

Figure : 12 0^+ states have been identified in ¹³⁶Ba. 8 new 0^+ states were observed.

Figure : $6 0^+$ states have been identified in ¹³⁴Ba. We resolved the ambiguity for spin/parity of 2 of these states. L = 0 strength calculations of 0⁺ states in ¹³⁴Ba from the ¹³⁶Ba(p,t) reaction.

$$\left(\frac{d\sigma}{d\Omega}\right)_{rel} = \left(\frac{\left(\frac{d\sigma}{d\Omega}\right)_{0_{ex}}^{lab}}{\left(\frac{d\sigma}{d\Omega}\right)_{0_{ex}}^{dwba}}\right) \left(\frac{\left(\frac{d\sigma}{d\Omega}\right)_{0_{gs}}^{lab}}{\left(\frac{d\sigma}{d\Omega}\right)_{0_{gs}}^{dwba}}\right)^{-1}$$

Ex (keV)	σ (mb/sr)	$\epsilon (\theta_{CM} \sim 5^{\circ})$
0	3.038(23)	100
1760.3(2)	0.161(3)	10.72(25)
2159.64(9)	0.196(4)	16.76(35)
2371.5(4)	0.0063(9)	0.63(8)
2488.4(3)	0.066(2)	7.16(27)
2729.0(3)	0.024(1)	3.23(18)
Σ		38.5(1)

Table : Relative strength calculations of all the 0⁺ states excited in ¹³⁴Ba. Erice School of Nuclear Physics, 41st Course

Jespere Nzobadila Ondze

/ 1

Our ${}^{136}Ba(p, t)$ results disagree with the results reported in [Phys. Rev. C81, 014304 (2010)]

Figure : Experimental angular distributions and DWBA calculations for L = 0, 2, 3, 4, 5 and 7 in the ¹³⁶Ba(p, t)¹³⁴Ba reaction at 25 MeV.

Erice School of Nuclear Physics, 41st Cours

L = 0 strength calculations of 0⁺ states in ¹³⁶Ba from the ¹³⁸Ba(p, t) reaction.

Ex (keV)	σ (mb/sr)	$\epsilon (\theta_{CM} \sim 5^{\circ})$
0.0	1.90()	100
1579.7(6)	0.063(1)	4.42(8)
2315.5(6)	0.149(2)	16.0(2)
2783.4(7)	0.130(1)	17.5(2)
2977.1(7)	0.0040(3)	0.61(5)
3278.6(7)	0.0355(8)	6.4(1)
3426.7(8)	0.0072(4)	1.44(9)
3921(1)	0.0084(4)	2.5(1)
4147(1)	0.0160(7)	5.8(3)
4344(1)	0.0048(3)	2.1(1)
4444(1)	0.0066(4)	3.2(2)
4534(2)		
Σ		59.(5)

Jespere Nzobadila Ondze

Erice School of Nuclear Physics, 41st Course

Erice School of Nuclear Physics, 41st Cours

Summary and Conclusion

- The results showed significant strength to excited states relative to the ground state in ¹³⁶Ba and ¹³⁴Ba.
- 2 This is an implication of breakdown in neutron BCS approximation in these nuclei.

THANK YOU FOR YOUR ATTENTION

Jespere Nzobadila Ondze

イロトイラトイラトイラト ション クへへ 16/1 Erice School of Nuclear Physics, 41st Cours Erice School of Nuclear Physics, 41st Cours