v-nucleus reactions and scatterings for v detection

Toshio Suzuki Nihon University, NAOJ, Tokyo

EMFCSC, Erice Sep. 23, 2019 v-detection

Scintillator (CH, ...), H₂O, Liquid-Ar, Fe $v^{-12}C$, $v^{-13}C$, $v^{-16}O$, $v^{-56}Fe$, $v^{-40}Ar$

detection of SNv

v-oscillation effects: dependence of charged-current reaction cross sections on v mass hierarchy MSW oscillations in SNe

v- ¹³C reactions Suzuki, Balantekin, Kajino, and Chiba J. Phys. G 46, 075103 (2019)

v- ¹⁶O reactions Suzuki, Chiba, Yoshida, Takahashi, and Umeda, Phys. Rev. C98, 034613 (2018)

Neutrino oscillations in v- ¹⁶O reactions Nakazato, Suzuki, and Sakuda, PTEP 2018, 123E02 (2018) v-nucleus reactions with new shell-model Hamiltonians

- 1. $v^{-12}C$, $v^{-13}C$: SFO (p-shell; space p-sd)
- 2. v-¹⁶O: SFO-tls, YSOX (p +p-sd shell)
- 3. v-⁵⁶Fe, v-⁵⁶Ni: GXPF1J (pf-shell)
- 4. v-⁴⁰Ar: VMU (monopole-based universal interaction) +SDPF-M +GXPF1J (sd-pf)
 - Suzuki, Fujimoto, Otsuka, PR C69, (2003), Suzuki and Otsuka, PRC878 (2008)
 - Honma, Otsuka, Mizusaki, Brown, PR C65 (2002); C69 (2004)
 - Suzuki, Honma et al., PR C79, (2009)
 - Otsuka, Suzuki, Honma, Utsuno et al., PRL 104 (2010) 012501
 - Suzuki and Honma, PR C87, 014607 (2013)
 - Yuan, Suzuki, Otsuka et al., PR C85, 064324 (2012)
- * important roles of tensor force \rightarrow proper shell evolutions and change of magic numbers toward drip-lines

Otsuka, Suzuki, Fujimoto, Grawe, Akaishi, PRL 69 (2005)

• Spin responses of nuclei are quite well described. Gt strength in ¹²C, ¹⁴C; $O = g_A \sigma t_-$ Mag. mom. of p-shell nuclei; $\mu = g_s s + g_f \ell$

v-¹²**C**

Spin-dipole transitions $O^{J} = [\sigma \times r]^{J} J=0^{-}, 1^{-}, 2^{-}$

HT: Hayes-Towner, PR C62, 015501 (2000) CRPA: Kolb-Langanke-Vogel, NP A652, 91 (1999)

$$\begin{split} \text{Spin-dipole sum} \\ B(SD\lambda)_{\mp} &= \frac{1}{2J_i + 1} \sum_{f} | < f \parallel S^{\lambda}_{\mp} \parallel i > |^2 \\ S^{\lambda}_{\mp,\mu} &= r[Y^1 \times \vec{\sigma}]^{\lambda}_{\mu} t_{\mp} \end{split}$$

NEWS-rule: $S_{-}^{\lambda} - S_{+}^{\lambda} = \langle 0 \mid [\hat{S}_{-}^{\lambda}, \hat{S}_{+}^{\lambda}] \mid 0 \rangle = \frac{2\lambda + 1}{4\pi} (N \langle r^{2} \rangle_{n} - Z \langle r^{2} \rangle_{p})$

For ¹²C; N=Z

$$S_{\lambda}(SD) = \sum_{\mu} |\langle \lambda, \mu | S_{-,\mu}^{\lambda} | 0 \rangle|^{2} = \frac{1}{2} \begin{cases} \frac{3}{4\pi} \frac{20}{3} b^{2} = 4.28 \text{ fm}^{2}, & \lambda^{\pi} = 0^{-}, & \frac{3}{4\pi} \frac{34}{12} b^{2} \\ \frac{3}{4\pi} 18b^{2} = 11.56 \text{ fm}^{2}, & \lambda^{\pi} = 1^{-}, & \frac{3}{4\pi} \frac{99}{12} b^{2} \\ \frac{3}{4\pi} \frac{70}{3} b^{2} = 14.98 \text{ fm}^{2}, & \lambda^{\pi} = 2^{-}, & \frac{3}{4\pi} \frac{155}{12} b^{2} \end{cases}$$

Energy-weighted sum

$$\begin{split} EWS_{\pm}^{\lambda} &= \sum_{\cdot \cdot} | < \lambda, \mu \mid S_{\pm,\mu}^{\lambda} \mid 0 > |^{2} (E_{\lambda} - E_{0}), \\ EWS^{\lambda} &= EWS_{-}^{\lambda} + EWS_{+}^{\lambda} \\ &= \frac{1}{2} < 0 \mid [S_{-}^{\lambda^{\dagger}}, [H, S_{-}^{\lambda}]] + [[S_{+}^{\lambda^{\dagger}}, H], S_{+}^{\lambda}] \mid 0 > . \end{split}$$

kinetic energy term (K) for $H = \frac{p^2}{2m}$ $EWS_K^{\lambda} = \frac{3}{4\pi} (2\lambda + 1) \frac{\hbar^2}{2m} A [1 + \frac{f_{\lambda}}{3A} < 0 \mid \sum_i \vec{\sigma}_i \cdot \vec{\ell}_i \mid 0 >]$ $f_{\lambda} = 2, 1 \text{ and } -1 \text{ for } \lambda^{\pi} = 0^{-}, 1^{-} \text{ and } 2^{-}, \text{ respectively.}$ One-body spin-orbit potential term $V_{LS} = -\xi \sum_i \vec{\ell}_i \cdot \vec{\sigma}_i$. $EWS_{LS}^{\lambda} = \frac{3}{4\pi} (2\lambda + 1) \frac{f_{\lambda}}{3} \xi < 0 \mid \sum_{i} (r_i^2 + g_{\lambda} r_i^2 \vec{\ell}_i \cdot \vec{\sigma}_i) \mid 0 > 0$ $g_{\lambda} = 1$ for $\lambda^{\pi} = 0^-$, 1^- and $g_{\lambda} = -7/5$ for $\lambda^{\pi} = 2^-$. For N=Z, EWS^{λ} = EWS^{λ}, and EWS²/5 < EWS¹/3 < EWS⁰ EWS-0- 1-2-48.0 116.6 117.2 MeV \cdot fm² [n(p_{3/2})=6, n(p_{1/2})=2] K+LS SFO 45.61 108.48 154.49 $[n(p_{3/2})=6.42, n(p_{1/2})=1.44]$ (/3 = 36.16) (/5 = 30.90) $E_{av} = EWS_{S}$

K+LS	26.39	22.01	14.13	MeV
SFO	25.71	25.22	21.50	

Hauser-Feshbach statistical model

Branching ratios for γ and particle emission channels (with multi-particle emission channels): γ , n, p, np (d), nn, pp, ³H (nnp), ³He (npp), α , α p, α n, α nn, α np, α pp, ... Isospin conservation is taken into account (S. Chiba)

¹²C Neutral current reactions ¹²C

Reen et al., PRC 100, 024615 (2019); Measurement of γ rays from giant resonances excited by the 12C(*p*, *p*) reaction at 392 MeV and 0°

Table I. Average energy, $\langle E_v \rangle$, and total energy, E_v^{tot} , of the SN neutrino spectrum for one of neutrinos and antineutrinos (v_e , \bar{v}_e and v_x ($x = \mu$ and τ)). The neutrino spectra of the ordinary SN (NK1) and the case of a blackhole formation (NK2) are taken from Ref. [14, 26].

	Present work				JUNO Collab. [11]
Reaction	FD	mMB	NK1	NK2	mMB
$p(\bar{v}_e, e^+)n$	5378	3959	2194	11681	4300
NC ${}^{12}C(v, v'){}^{12}C^*(15.1 \text{ MeV})$	426	147	169	824	150
NC ${}^{12}C(\nu,\nu'){}^{12}C^*(E_x > 16 \text{ MeV})$	180	5	21	222	-

Sakuda

Table II. Expected number of neutrino events from a core-collapse supernova at 10 kpc to be detected at JUNO(20 kton). For mMB spectra, $\langle E_{\nu} \rangle = 12$ MeV is used for all neutrino flavors.

 v-induced reactions on ¹³C ¹³C: attractive target for very low energy v $E_v \leq 10 \text{MeV} \quad E_v^{\text{th}}(^{12}\text{C}) \approx 13 \text{MeV}$ reactor anti-v Natural isotope abundance =1.07%**Detector for solar v (E<15MeV)** $^{13}C(\overline{v}_{e}, \overline{v}_{e}')^{13}C$ and reactor anti-v (E<8 MeV) 10-41 $^{13}C(v_{e}, e)^{13}N$ Cross section (cm²) $3/2^{-}(3.50 \text{ MeV})$ 10-42 $1/2_{g.s.}GT+IAS$ SFO Cross section (cm²) 10-41 3/2⁻ (3.50 MeV) 10-43 SFO GT YSOX 10-42 10-44 CK YSOX 10-43 2 4 6 8 10 12 14 16 18 CK E_{v} (MeV) 2 8 12 14 16 18 4 6 10 $g_{A}^{eff}/g_{A} = 0.95(SFO), 0.85(YSOX)$ E_{v} (MeV) 0.69 (CK)

Suzuki, Balantekin, Kajino, PR C86, 015502 (2012)

Charged-current cross sections at SN v energies

Neutral-current neutron-emission cross sections

 $E_{th} = 4.95, 18.72 \text{ MeV}, 22.28, 32.38 \text{ MeV}$

¹³C $(\bar{\nu}, \bar{\nu}'n)$ ¹²C $(2^+, 4.44 \text{ MeV})$ \rightarrow ¹²C $(g.s.) + \gamma$ $E_{th} = 9.4 \text{ MeV}$ Reactor $\bar{\nu}$ with E \sim 16 MeV Fallot et al, PRL 109 (2012) Coherent (elastic) scattering on light target Neutral current $A^{s}_{\mu} = V^{s}_{\mu} = 0$ $J^{(0)}_{\mu} = A^{3}_{\mu} + V^{3}_{\mu} - 2\sin^{2}\theta_{W}J^{\gamma}_{\mu}$ Vector part: $V^{(0)}_{\mu} = V^{3}_{\mu} - 2\sin^{2}\theta_{W}J^{\gamma}_{\mu}$ C0: $(G^{IV}_{E} - 2\sin^{2}\theta_{W}G_{E}) < g.s. | j_{0}(qr)Y^{(0)} | g.s. >$ $<=>\frac{1}{2}G^{p}_{E}(1-4\sin^{2}\theta_{W})\rho_{p}(r) - \frac{1}{2}G^{p}_{E}\rho_{n}(r)$ $(G^{n}_{E} \approx 0)$ $=-\frac{1}{2}G^{p}_{E}\{\rho_{n}(r) - 0.08\rho_{p}(r)\}$ $(\sin^{2}\theta_{W} = 0.23)$

Probe of neutron density distribution

Patton, Engel, MacLaghlin, Schunck, PRC 86, 024612 (2012)

$$\frac{d\sigma}{dT}(E,T) = \frac{G_F^2}{2\pi} M \{2 - \frac{2T}{T_{\text{max}}} + \frac{T^2}{E^2}\} \frac{Q_W^2}{4} F^2(Q^2), \quad T_{\text{max}} = 2E^2 / (2E + M)$$

$$T = recoil \ energy$$

$$Q_W = N - (1 - 4\sin^2\theta_W)Z$$

$$F(Q^2) = \{NF_n(Q^2) - (1 - 4\sin^2\theta_W)ZF_p(Q^2)\}/Q_W$$

$$Q^2 = 2MT + T^2$$

$$F_{n,p}(Q^2) = \int r^2 j_0(Qr)\rho_{n,p}(r)dr$$
$$\sigma(E) = \int_0^{T_{\text{max}}} dT \frac{d\sigma}{dT}(E,T)$$

Nuclear effects and Isotope dependence in coherent scattering

Spin-dipole sum $S_{\lambda}(SD) = \sum_{\mu} <\lambda, $	$\mu \mid S^{\lambda}_{-,\mu} \mid 0 > \mid^2 =$	$ \left\{\begin{array}{c} \frac{3}{4\pi}4\\ \frac{3}{4\pi}12\\ \frac{3}{4\pi}201 \end{array}\right. $	$4b^2 = 2.99 \text{fm}^2$) $2b^2 = 8.98 \text{fm}^2$) $b^2 = 14.96 \text{fm}^2$)	$\lambda^{\pi} = 0^{-}$ $\lambda^{\pi} = 1^{-}$ $\lambda^{\pi} = 2^{-}$	$p \rightarrow sd$ $\propto 2\lambda + 1$
EWS ^λ K+LS SFO-tls (/(K+LS) SFO (/(K+LS)	0 ⁻ 56.4 73.0 (1.29) 76.1 (1.35)	14 17 17	1 ⁻ 4.1 3.2 (1.20) 5.0 (1.21)	2- 155.9 246.5 258.2	0 MeV∙fm ² 5 (1.58) 2 (1.66)
$ar{E_{\lambda}} = EWS^{\lambda}_{-}/\text{NEW}$ SFO-tls SFO Tensor interaction: a	$S^{\lambda}_{-}, 0^{-}$ 24.5 25.8 attractive for	1 ⁻ 25.1 25.2 0⁻ ,2⁻, &	2- 20.1 MeV 21.0 repulsive for	Spli stren fron 1- term	tting of the ngth comes n one-body LS n and two-body or interaction

$$\begin{split} V_{T}(\mathbf{r}) &= F(r) \{ [\boldsymbol{\sigma}_{1} \times \boldsymbol{\sigma}_{2}]^{(2)} \times [r^{2} Y_{2}(\hat{r})]^{(2)} \}^{(0)} .\\ V_{T}(\mathbf{r}) &= F(r) \sum_{\lambda} \frac{\sqrt{4\pi}}{6} \left(\frac{10}{3} \right)^{1/2} \begin{cases} -2\sqrt{5} \\ \sqrt{15} \\ -1 \end{cases} \right\} \times \{ r_{1} [\boldsymbol{\sigma}_{1} \times Y_{1}(\hat{r}_{1})]^{(\lambda)} \\ \times r_{2} [\boldsymbol{\sigma}_{2} \times Y_{1}(\hat{r}_{2})]^{(\lambda)} \}^{(0)} , \quad \text{for } \lambda = \begin{cases} 0^{-} \\ 1^{-} \\ 2^{-} \end{cases} . \end{split}$$

\bullet µ-capture rate on ¹⁶O and the quenching factor

The muon capture rate for ¹⁶O (μ , ν_{μ}) ¹⁶N from the 1s Bohr atomic orbit

$$\omega_{\mu} = \frac{2G^2}{1 + \nu/M_T} \mid \phi_{1s} \mid^2 \frac{1}{2J_i + 1} (\sum_{J=0}^{\infty} \mid < J_f \parallel M_J - L_J \parallel J_i > \mid^2 + \mid < J_f \parallel T_J^{el} - T_J^{mag} \parallel J_i > \mid^2),$$

$$|\phi_{1s}|^2 = \frac{R}{\pi} (\frac{m_{\mu} M_T}{m_{\mu} + M_T} Z \alpha)^3 \qquad R = 0.79$$

Induced pseudo-scalar current $F_P(q_\mu^2) = \frac{2M_N}{q_\mu^2 + m_\pi^2} F_A(q_\mu^2)$ Goldberger-Treiman

$$-2M_{\rm N}F_{\rm A} = \sqrt{2}g_{\pi}F_{\pi}$$

f =
$$g_A^{eff}/g_A$$
 =0.95
SFO 10.21×10⁴ s⁻¹ (SFO/exp =0.995)
SFO-tls, 11.20×10⁴ s⁻¹ (SFO-tls/exp=1.092)
Exp. 10.26×10⁴ s⁻¹

Case1: previous branches used in 16 O (γ , n, p, α -emissions) and HW92 cross sections Case2: previous branches, and new cross sections Case3: multi-particle branches and new cross sections

Production yields of ¹¹B and ¹¹C (10- $^{7}M_{\odot}$)

vields	$15 M_{\odot}$ モデル			$20 M_{\odot}$ モデル		
核種生成量	${\rm Case}\ 1$	${\rm Case}\ 2$	Case 3	${\rm Case}\ 1$	${\rm Case}\ 2$	Case 3
$M(^{11}{\rm B})$	2.94	2.92	3.13	6.77	6.58	7.66
$M(^{11}C)$	2.80	2.71	3.20	9.33	8.91	9.64
$M(^{11}B+^{11}C)$	5.74	5.62	6.33	16.10	15.49	17.29
	T. Yoshida					

Expected γ -emission neutrino event number from a core-collapse SN at 10 kpc to be detected at Super-K are evaluated for neutral-current reactions on ¹⁶O as in the case of ¹²C.

Sakuda et al., OMEG15 Proceedings, and to be published.

ν oscillation effects $\rightarrow \nu$ mass hierarchy

Charged current scattering off ¹⁶O nucleus as a detection channel of supernova neutrinos

(M, Z) =(20M_{\odot}, 0.02) Z = metalicity <E_v_e> = 9.32 MeV, <E_v_e> = 11.1 MeV, <E_v_x> =11.9 MeV

1.

Expected event numbers

	ordinary supernova				
reaction	no osc.	normal	inverted		
$^{16}\mathrm{O}(\nu_e, e^-)\mathrm{X}$	41	178	134		
${}^{16}\mathrm{O}(\bar{\nu}_e, e^+)\mathrm{X}$	36	58	103		
electron scattering	140	157	156		
inverse β -decay	3199	3534	4242		
total	3416	3927	4635		

10 kpc, Super-K (32.8 kton)

Nakazato et al., ApJ. Suppl. 205, 2 (2013)

Table 6Expected event numbers with a threshold energy of $E_e = 5$ MeV for the modelsin Table 5.

	black hole formation		
reaction	no osc.	normal	inverted
$^{16}O(\nu_e, e^-)X$	2482	2352	2393
${}^{16}\mathrm{O}(\bar{\nu}_e, e^+)\mathrm{X}$	1349	1255	1055
electron scattering	514	320	351
inverse β -decay	17525	14879	9255
total	21870	18806	13054

Fig. 5 Same as Fig. 4 but for the model with $(M, Z) = (30M_{\odot}, 0.004)$, which corresponds to a black-hole-forming collapse.

Effects of collective v oscillation

Splitting (swapping) of v spectrum occurs for inverted (normal) hierarchy for v,
and for normal (inverted) hierarchy for anti-v.
Bimodial instability: Raffelt et al., PPNP 64 (2010)

ν:	Collective	MSW	Collect.+MSW
normal	×	0	0
invertee	d O	×	0

•MAA: Multi-azimuthal-angle instability Splitting also occurs for normal (inverted) hierarchy for v (anti-v); $N(v_e) > N(v_e)$ Raffelt et al., PRL111, 091101 (2011) Chakraborty and Mirizzi, PRD 90, 033004 (2014)

ν:	Collective	MSW	Collect.+MSW
normal	0	0	×
inverted	i O	×	0

First Detection of $^{7}Li/^{11}B$ in SN-
grains in Murchison MeteoriteBayesian analysis:
Mathews, Kajino, Aoki and Fujiya,
Phys. Rev. D85,105023 (2012).•W. Fujiya, P. Hoppe, & U. Ott, ApJPhys. Rev. D85,105023 (2012).730, L7 (2011).For MAA instability case:
 $^{7}Li/^{11}B \rightarrow$ normal hierarchy (?)

Summary

- 1. $v^{-12}C$ GT + SD shell-model with SFO Neutral-current reactions with γ emissions Coherent scattering
 - $v^{-13}C$ GT + SD, n-emission channel, coherent scatt.
 - $v^{-16}O$ SD shell-model with SFO-tls
 - Partial cross sections for particle and γ emission channels with Hauser-Feshbach statistical model
 - Synthesis of ¹¹B: ¹²C (v, v'p) ¹¹B, ¹⁶O (v, v'αp) ¹¹B
 ¹¹C: ¹²C(v, e⁻p) ¹¹C, ¹⁶O (v, e⁻αp) ¹¹C
- 2. MSW v oscillation effects
 Mass hierarchy dependence:
 Cross sections of ¹⁶O (v, e⁻) X and ¹⁶O (v

 v
 - (MSW+collective oscillations)

Collaborators

S. Chiba^a, T. Yoshida^b, K. Nakazato^c, M. Sakuda^d, A. B. Balantekin^h, T. Kajino ^{b,e}, T. Otsuka^f, M. Honma^g, K. Takahashiⁱ, H. Umeda^b

^aTokyo Institute of Technology
^bThe University of Tokyo
^cKyushu Univ.
^dOkayama Univ.
^eNational Astronomical Observatory of Japan
^fRIKEN
^gUniversity of Aizu
^hUniv. of Wisconsin
ⁱMax-Planck Institute (Potsdam)