

Hidden-charm pentaquark states in a molecular picture

Wei Chen

Sun Yat-Sen University

41st International School of Nuclear Physics, Erice-Sicily, Sep. 16-24, 2019

Exotic hadrons and new pentaquark states

- Method of the QCD sum rules
- Reproduce the masses of several Pc states and

predict their spin-parity quantum numbers

Challenges for hidden-charm pentaquark states

Summary

Quark model and exotic hadrons

- Quark model is established to classify hadrons: mesons $(q\bar{q})$ and baryons (qqq).
- Hadrons with exotic quantum numbers are exotic hadron states.
- **QCD** may allow for hadrons which lie outside the naive quark model. Hadron structures are more complicated in **QCD**: $N_{quarks} \neq 2, 3$.
- $SU(3)_c$ gauge symmetry: $(N_q N_{\bar{q}})$ is divisible by 3, plus any number N_g of valence gluons can form a color singlet.

Exotic hadron configurations

4

Light hadron sector:

- **Dibaryon**: Deuteron, H states, $d^*(2380)$.
- Hybrid candidates: $\pi_1(1400)$, $\pi_1(1600)$ and $\pi_1(2015)$ (dispute).
- **Glueball** candidates: $a_0(980)$ and $f_0(980)$.
- Tetraquark candidates: light scalar mesons.
- Pentaquark: $\Theta^+(1540)$ (S = 1, long story of appeared and disappeared)

Heavy hadron sector: breakthough in multiquarks!

- $P_c(4380), P_c(4312), P_c(4440), P_c(4457)$: hidden-charm pentaquark states.
- Plenty of XYZ states: candidates of molecules, tetraquarks, hybrids...

Y.R.Liu, H.X.Chen, W. Chen, X.Liu, S.L.Zhu, PPNP 107 (2019) 237-320

LHCb's observation in 2015

Two hidden-charm Pc states were observed in $\Lambda_b^0 \rightarrow J/\psi K^- p$ process

LHCb

0.05 0.1 0.15 -0.1 -0.05

0 0.05 0.1 0.15

Re A^{Pc}

0.2 0.25 0.3 0.35

0

-0.1 -0.05

Re APc

-0.3

-0.35 1

-0.35 -0.3 -0.25 -0.2 -0.15

 $P_c(4380)$ and $P_c(4450)$ in $J/\psi p$ structure (PRL115, 072001(2015))

$$egin{aligned} &M_1 = (4380 \pm 8 \pm 29)\,{
m MeV}\,, \ &\Gamma_1 = (205 \pm 18 \pm 86)\,{
m MeV}\,, \ &M_2 = (4449.8 \pm 1.7 \pm 2.5)\,{
m MeV}\,, \ &\Gamma_2 = (39 \pm 5 \pm 19)\,{
m MeV}\,. \end{aligned}$$

Prefer quantum numbers: their parities are opposite and spins are 3/2 for one and 5/2 for another.

Combined Run 2 data in 2019:

PRL 122 (2019) 222001

Theoretical predictions before 2015

There are many theoretical predictions for the existence of $\Sigma_c^+ \overline{D}^0 \ (\Sigma_c^+ \overline{D}^{*0})$ before 2015, some of the predictions are in good agreement with the LHCb's observations.

- Wu, Molina, Oset, Zou, PRL105, 232001 (2010);
- Wang, Huang, Zhang, Zou, PRC84, 015203 (2011);
- Yang, Sun, He, Liu, Zhu, CPC36, 6 (2012);
- Wu, Lee, Zou, PRC85, 044002 (2012);
- Karliner, Rosner, PRL115, 122001 (2015);
- Some others...

Theoretical progress on Pc states after 2015

B.S.Zou's slide

Thresholds $\overline{D}\Sigma_c^*$ (4383MeV), $\overline{D}^*\Sigma_c$ (4460MeV), $p\chi_{c1}$ (4449MeV)

1) $\overline{\mathbf{D}}\Sigma_{c}^{*}$, $\overline{\mathbf{D}}^{*}\Sigma_{c}$, $\overline{\mathbf{D}}^{*}\Sigma_{c}^{*}$ molecular states R.Chen, X.Liu, X.Q.Li, S.L.Zhu, PRL115 (2015) 132002; L.Roca, J.Nieves, E.Oset, PRD92 (2015) 094003; J.He, PLB 753 (2016)547 ;H.X.Chen,W.Chen,X.Liu,S.L.Zhu,PRL115(2015),172001;

diquark cu & triquark c(ud) states 2)

L.Maiani, A.D.Polosa, V. Riquer, PLB749 (2015) 289; R.Lebed, PLB749 (2015) 454; G.N.Li, M.He, X.G.He, JHEP 1512 (2015) 128; R.Zhu, C.F.Qiao, PLB756 (2016) 259;

3) Kinematic triangle-singularity

F.K.Guo, Ulf-G.Meißner, W.Wang, Z.Yang, PRD92 (2015) 071502 X.H.Liu, Q.Wang, Q.Zhao, PLB757 (2016) 231

For comprehensive reviews, cf.:

H.X.Chen, W.Chen, X.Liu, S.L.Zhu, Phys.Rept. 639 (2016) 1 F.K.Guo, C.Hanhart, U.Meissner, Q.Wang, Q.Zhao, B.S.Zou, RMP 90 (2018)015004 Y.R.Liu, H.X.Chen, W.Chen, X.Liu, S.L.Zhu, Prog.Part.Nucl.Phys. 107 (2019) 237

Molecular Configurations for Pc states

Two possible **configurations**:

• Combination of J/ψ and $p [\bar{c}_d c_d] [\epsilon^{abc} q_a q_b q_c]$:

• Configuration $[\bar{c}_d q_d] [\epsilon^{abc} c_a q_b q_c]$:

QCD sum rules

 Study two-point correlation function of current J_μ(x) with the same quantum numbers with hadron state:

$$\Pi_{\mu
u}(q^2)=i\int d^4x e^{iq\cdot x} \langle \Omega | \, T[J_\mu(x)J_
u^\dagger(0)] | \Omega
angle$$

- Classify states $|X\rangle$ by coupling to current $\langle \Omega | J_{\mu}(x) | X
 angle
 eq 0$
- Currents are probes of spectrum and might not overlap with state
- Hadron level: described by the dispersion relation

$$\Pi(q^2) = rac{(q^2)^N}{\pi} \int rac{{
m Im}\Pi(s)}{s^N(s-q^2-i\epsilon)} ds + \sum_{n=0}^{N-1} b_n(q^2)^n,$$

QCD sum rules

• Quark-gluon level: evaluated via operator product expansion(OPE)

$$\rho(s) = \rho^{pert}(s) + \rho^{\langle \bar{q}q \rangle}(s) + \rho^{\langle GG \rangle}(s) + \rho^{\langle \bar{q}q \rangle^2}(s) + \rho^{\langle \bar{q}g_s \sigma \cdot Gq \rangle}(s) + ...,$$

- Apply Borel transform to correlation functions
- Quark-hadron duality: Laplace Sum Rules with QCD spectral function

$$\mathcal{L}_{k}\left(s_{0}, M_{B}^{2}\right) = \int_{4m_{Q}^{2}}^{s_{0}} ds e^{-s/M_{B}^{2}} \rho(s) s^{k} = f_{X}^{2} m_{X}^{2k} e^{-m_{X}^{2}/M_{B}^{2}},$$

Predict Hadron mass via:

$$m_X\left(s_0, M_B^2
ight) = \sqrt{rac{\mathcal{L}_1\left(s_0, M_B^2
ight)}{\mathcal{L}_0\left(s_0, M_B^2
ight)}}.$$

Pentaquark Sum Rules

Two possible configurations (PRL115, 172001(2015)):

• Combination of J/ψ and $p [\bar{c}_d c_d] [\epsilon^{abc} q_a q_b q_c]$:

$$\eta_{1\mu}^{c\bar{c}uud} = [\bar{c}_d\gamma_{\mu}c_d][\epsilon_{abc}(u_a^{T}Cd_b)\gamma_5u_c],$$

$$\eta_{2\mu}^{c\bar{c}uud} = [\bar{c}_d\gamma_{\mu}c_d][\epsilon_{abc}(u_a^{T}C\gamma_5d_b)u_c],$$

$$\eta_{3\{\mu\nu\}}^{c\bar{c}uud} = [\bar{c}_d\gamma_{\mu}c_d][\epsilon_{abc}(u_a^{T}C\gamma_{\nu}\gamma_5d_b)u_c] + \{\mu \leftrightarrow \mu\}$$

• Configuration $[\bar{c}_d q_d] [\epsilon^{abc} c_a q_b q_c]$:

$$J_{\mu}^{\bar{D}^{*}\Sigma_{c}} = [\bar{c}_{d}\gamma_{\mu}d_{d}][\epsilon_{abc}(u_{a}^{T}C\gamma_{\nu}u_{b})\gamma^{\nu}\gamma_{5}c_{c}], \qquad u \stackrel{u}{c}$$

$$J_{\mu}^{\bar{D}\Sigma_{c}^{*}} = [\bar{c}_{d}\gamma_{5}d_{d}][\epsilon_{abc}(u_{a}^{T}C\gamma_{\mu}u_{b})c_{c}], \qquad u \stackrel{v}{c}$$

$$J_{\{\mu\nu\}}^{\bar{D}^{*}\Sigma_{c}^{*}} = [\bar{c}_{d}\gamma_{\mu}d_{d}][\epsilon_{abc}(u_{a}^{T}C\gamma_{\nu}u_{b})\gamma_{5}c_{c}] + \{\mu \leftrightarrow \nu\}, \qquad J_{\{\mu\nu\}}^{\bar{D}\Sigma_{c}^{*}} = [\bar{c}_{d}\gamma_{\mu}\gamma_{5}d_{d}][\epsilon_{abc}(u_{a}^{T}C\gamma_{\nu}u_{b})c_{c}] + \{\mu \leftrightarrow \nu\}, \qquad J_{\{\mu\nu\}}^{\bar{D}^{*}\Lambda_{c}} = [\bar{c}_{d}\gamma_{\mu}u_{d}][\epsilon_{abc}(u_{a}^{T}C\gamma_{\nu}\gamma_{5}d_{b})c_{c}] + \{\mu \leftrightarrow \nu\}.$$

U

 ν $\}$.

These two color configurations are related via Fierz transformation and color rearrangement:

$$\begin{split} \delta^{de} \epsilon^{abc} &= \delta^{da} \epsilon^{ebc} + \delta^{db} \epsilon^{aec} + \delta^{dc} \epsilon^{abe} \,. \\ \eta_{12\mu}^{c\bar{c}uud} & \xrightarrow{f.t.\&c.r.} & \frac{1}{8} J_{\mu}^{\bar{D}^*\Sigma_c} + \frac{1}{8} J_{\mu}^{\bar{D}\Sigma_c^*} + \cdots \,, \\ \eta_{3\{\mu\nu\}}^{c\bar{c}uud} & \xrightarrow{f.t.\&c.r.} & -\frac{1}{8} J_{\{\mu\nu\}}^{\bar{D}^*\Sigma_c^*} - \frac{1}{8} J_{\{\mu\nu\}}^{\bar{D}\Sigma_c^*} - \frac{3}{8} J_{\{\mu\nu\}}^{\bar{D}^*\Lambda_c} + \cdots \,. \end{split}$$

ada aha ada aha adh ana ada aha

These relations suggest that these structures coupled by the currents, if exist, would naturally decay into J/ψ and proton final states.

The first configurations (PRL115, 172001(2015)):

• Combination of J/ψ and $p [\bar{c}_d c_d] [\epsilon^{abc} q_a q_b q_c]$:

$$\begin{split} \eta_{1\mu}^{c\bar{c}uud} &= [\bar{c}_d\gamma_{\mu}c_d][\epsilon_{abc}(u_a^T C d_b)\gamma_5 u_c], \\ \eta_{2\mu}^{c\bar{c}uud} &= [\bar{c}_d\gamma_{\mu}c_d][\epsilon_{abc}(u_a^T C \gamma_5 d_b)u_c], \\ \eta_{3\{\mu\nu\}}^{c\bar{c}uud} &= [\bar{c}_d\gamma_{\mu}c_d][\epsilon_{abc}(u_a^T C \gamma_{\nu}\gamma_5 d_b)u_c] + \{\mu \leftrightarrow \nu\}. \end{split}$$

OPE is too simple to give reliable mass predictions!

 \mathcal{U}

The second configurations (PRL115, 172001(2015)):

• Configuration $[\bar{c}_d q_d] [\epsilon^{abc} c_a q_b q_c]$:

Good behaviors of the mass sum rule predictions!

 \mathcal{U}

Pc(4380) and Pc(4450)

PRL115 (2015), 172001

$$M_{[\bar{D}^*\Sigma_c],3/2^-} = 4.37^{+0.19}_{-0.12} \text{ GeV},$$

$$M_{[\bar{D}\Sigma_c^*\&\bar{D}^*\Lambda_c],5/2^+} = 4.47^{+0.20}_{-0.13} \text{ GeV},$$

0 10

which supports $P_c(4380)$ as a $[\bar{D}^*\Sigma_c]$ hidden-charm pentaquark with $J^P = 3/2^-$ while $P_c(4450)$ as an admixture of $[\bar{D}^*\Lambda_c]$ and $[\bar{D}\Sigma_c^*]$ with $J^P = 5/2^+$ and the mixing angle is fine-tuned to be $\theta = -51 \pm 5^\circ$.

We also predict their hidden-bottom partners

$$\begin{split} M_{[\bar{B}^*\Sigma_b],3/2^-} &= 11.55^{+0.23}_{-0.14} \,\, \mathrm{GeV}\,, \\ M_{[\bar{B}\Sigma_b^*\&\bar{B}^*\Lambda_b],5/2^+} &= 11.66^{+0.28}_{-0.27} \,\, \mathrm{GeV}\,. \end{split}$$

Pc(4312), Pc(4440) and Pc(4457)

We compose the following interpolating currents:

$$\begin{split} \xi_{14} &= \left[\epsilon^{abc}(u_a^T C \gamma_\mu d_b) \gamma_\mu \gamma_5 c_c\right] \left[\bar{c}_d \gamma_5 u_d\right], \\ \psi_2 &= \left[\epsilon^{abc}(u_a^T C \gamma_\mu u_b) \gamma_\mu \gamma_5 c_c\right] \left[\bar{c}_d \gamma_5 d_d\right], \\ \xi_{33\mu} &= \left[\epsilon^{abc}(u_a^T C \gamma_\nu d_b) \gamma_\nu \gamma_5 c_c\right] \left[\bar{c}_d \gamma_\mu u_d\right], \\ \psi_{2\mu} &= \left[\epsilon^{abc}(u_a^T C \gamma_\mu u_b) c_c\right] \left[\bar{c}_d \gamma_5 d_d\right], \\ \psi_{9\mu} &= \left[\epsilon^{abc}(u_a^T C \gamma_\nu u_b) \gamma_\nu \gamma_5 c_c\right] \left[\bar{c}_d \gamma_\mu d_d\right], \\ \xi_{13\mu\nu} &= \left[\epsilon^{abc}(u_a^T C \gamma_\mu d_b) c_c\right] \left[\bar{c}_d \gamma_\nu u_d\right] + \left\{\mu \leftrightarrow \nu\right\}, \end{split}$$

Pc(4312), Pc(4440) and Pc(4457)

EPJC76, 572 (2016); PRD100 (2019), 051501(R)

Current	Defined in	Structure	$s_0 \; [\mathrm{GeV}^2]$	Borel Mass $[GeV^2]$	$Mass \ [GeV]$	(J, P)
ξ_{14}	Eq. (2)	$[\Sigma_c^+ \bar{D}^0]$	20 - 24	4.12 - 4.52	$4.45\substack{+0.17 \\ -0.13}$	(1/2, -)
ψ_2	Eq. (3)	$\left[\Sigma_c^{++}\bar{D}^{-}\right]$	19 - 23	3.95 - 4.47	$4.33\substack{+0.17 \\ -0.13}$	(1/2, -)
$\xi_{33\mu}$	Eq. (4)	$[\Sigma_c^+ \bar{D}^{*0}]$	20 - 24	3.97 - 4.41	$4.46\substack{+0.18 \\ -0.13}$	(3/2, -)
$\psi_{2\mu}$	Eq. (5)	$[\Sigma_c^{*++}\bar{D}^-]$	20 - 24	3.88 - 4.41	$4.45_{-0.13}^{+0.16}$	(3/2, -)
$\psi_{9\mu}$	Eq. (6)	$[\Sigma_c^{++}\bar{D}^{*-}]$	19 - 23	3.94 - 4.27	$4.37_{-0.13}^{+0.18}$	(3/2, -)
$\xi_{13\mu u}$	Eq. (7)	$[\Sigma_c^{*+}\bar{D}^{*0}]$	20 - 24	3.51 - 4.00	$4.50_{-0.12}^{+0.18}$	(5/2, -)

- $P_c(4312)$: molecular state $[\Sigma_c^{++}D^{-}]$ with $J^P = \frac{1}{2}^{-}$;
- $P_c(4440)$: molecular state $[\Sigma_c^{*++}D^-]$ with $J^P = \frac{3}{2}^-$;
- $P_c(4457)$: molecular state $[\Sigma_c^+ \overline{D}^{*0}]$ with $J^P = \frac{3}{2}^-$;
- There is still a place for $P_c(4380)$: molecular state $[\Sigma_c^{++}D^{*-}]$ with $J^P = \frac{3}{2}^{-}$.

Mass splitting between Pc(4440) and Pc(4457)

$$\Pi_{\mu\nu}^{\xi_{33\mu}\psi_{2\mu}}(q^2) \equiv i \int d^4x e^{iqx} \langle 0|T\xi_{33\mu}(x)\psi_{2\nu}^{\dagger}(0)|0\rangle$$
$$= \left(\frac{q_{\mu}q_{\nu}}{q^2} - g_{\mu\nu}\right)(\not q + M^*)\Pi^{\xi_{33\mu}\psi_{2\mu}}(q^2)$$

Off-diagonal correlator vanishes, implying that this two currents should couple to different states!

 $\Delta M = M_{\xi_{33\mu}} - M_{\psi_{2\mu}} = 8.1^{+30.9}_{-18.9} \text{ MeV}$

Some other pentaquark predictions

Current	Defined in	Structure	$ s_0 [\text{GeV}^2]$	Borel Mass $[\text{GeV}^2]$	Mass [GeV]	(J, P)
$\eta_2 - \eta_4$	Eq. (8)	$[p\eta_c]$	-	_	_	—
$\eta_5 - \eta_7$	Eq. (9)	$[pJ/\psi]$	_	_	_	—
η_{13}	Eq. (10)	$[N^*J/\psi]$	_	_	_	_
$\xi_2 - \xi_4$	Eq. (13)	$[\Lambda_c ar{D}]$	_	_	_	_
$\xi_5 - \xi_7$	Eq. (14)	$[\Lambda_c ar{D}^*]$	-	_	_	_
ξ_{14}	Eq. (15)	$[\Sigma_c \bar{D}]$	20 - 24	4.12 - 4.52	$4.45_{-0.13}^{+0.17}$	(1/2, -)
ξ_{16}	Eq. (16)	$[\Lambda_c^*ar{D}]$	25 - 29	4.40 - 4.76	$4.86_{-0.19}^{+0.16}$	(1/2, +)
ξ_{17}	Eq. (17)	$[\Sigma_c^* \bar{D}^*]$	22 - 26	3.64 - 4.25	$4.73_{-0.12}^{+0.19}$	(1/2, -)
ξ_{19}	Eq. (18)	$[\Lambda_c^*\bar{D}^*]$	23 - 27	3.70 - 4.22	$4.67^{+0.16}_{-0.20}$	(1/2, +)
ψ_2	Eq. (21)	$[\Sigma_c^* \bar{D}]$	19 - 23	3.95 - 4.47	$4.33_{-0.13}^{+0.17}$	(1/2, -)
ψ_3	Eq. (22)	$[\Sigma_c^* \bar{D}^*]$	21 - 25	3.50 - 4.11	$4.59_{-0.12}^{+0.17}$	(1/2, -)

H.X.Chen,W.Chen,X.Liu,T.G.Steele,S.L.Zhu, EPJC76, 572 (2016)

$\xi_{5\mu}-\xi_{7\mu}$	Eq. (45)	$[\Lambda_c \bar{D}^*]$	-			
$\xi_{18\mu}$	Eq. (46)	$[\Sigma_c^* \bar{D}]$	21 - 25	3.93 - 4.51	$4.56_{-0.13}^{+0.16}$	(3/2, -)
$\xi_{20\mu}$	Eq. (47)	$[\Lambda_c^*ar{D}]$	23 - 27	4.12 - 4.63	$4.56_{-0.22}^{+0.18}$	(3/2, +)
$\xi_{25\mu}$	Eq. (48)	$[\Sigma_c^* \bar{D}^*]$	21 - 25	3.85 - 4.30	$4.67_{-0.12}^{+0.21}$	(3/2, -)
$\xi_{27\mu}$	Eq. (49)	$[\Lambda_c^*\bar{D}^*]$	23 - 27	4.07 - 4.50	$4.68_{-0.18}^{+0.15}$	(3/2, +)
$\xi_{33\mu}$	Eq. (50)	$[\Sigma_c \bar{D}^*]$	20 - 24	3.97 - 4.41	$4.46_{-0.13}^{+0.18}$	(3/2, -)
$\xi_{35\mu}$	Eq. (51)	$[\Lambda_c ar{D}^*]$	27 - 31	4.32 - 5.11	$5.18^{+0.16}_{-0.12}$	(3/2, +)
$\psi_{2\mu}$	Eq. (52)	$[\Sigma_c^*\bar{D}]$	20 - 24	3.88 - 4.41	$4.45_{-0.13}^{+0.16}$	(3/2, -)
$\psi_{5\mu}$	Eq. (53)	$[\Sigma_c^* \bar{D}^*]$	21 - 25	3.86 - 4.46	$4.61_{-0.12}^{+0.18}$	(3/2, -)
$\psi_{9\mu}$	Eq. (54)	$[\Sigma_c \bar{D}^*]$	19 - 23	3.94 - 4.27	$4.37_{-0.13}^{+0.18}$	(3/2, -)
$\xi_{13\mu u}$	Eq. (56)	$[\Sigma_c^* \bar{D}^*]$	20 - 24	3.51 - 4.00	$4.50^{+0.18}_{-0.12}$	(5/2, -)
$\xi_{15\mu u}$	Eq. (57)	$[\Lambda_c^* \bar{D}^*]$	24 - 28	4.09 - 4.59	$4.76_{-0.19}^{+0.15}$	(5/2, +)
$\psi_{3\mu u}$	Eq. (58)	$[\Sigma_c^* \bar{D}^*]$	21 - 25	3.88 - 4.40	$4.59_{-0.12}^{+0.17}$	(5/2, -)
$\psi_{4\mu u}$	Eq. (59)	P -wave $[\Sigma_c^* \bar{D}]$	25 - 29	4.30 - 4.73	$4.82_{-0.14}^{+0.15}$	(5/2, +)
$J^{ m mix}_{\mu u}$	Eq. (40)	$P\text{-wave } \left[\Lambda_c \bar{D}^* \& \Sigma_c^*\right]$	\overline{D} 20 - 24	3.22 - 3.50	$4.47^{+0.18}_{-0.13}$	(5/2, +)

H.X.Chen,W.Chen,X.Liu,T.G.Steele,S.L.Zhu, EPJC76, 572 (2016)

- These Pc states have been only reported by LHCb, they should be confirmed in other experiments and processes, GlueX, BelleII, JPARC.
- Many isospin and spin partner states were predicted by various theoretical approaches. Where and how can them be observed?
- Experimental identification of the parities for these Pc states is crucial for the discrimination of various models.
- Identifying the dominant decay modes of the Pc states.
- Are there hidden-bottom pentaquarks?
- More open questions.....

- LHCb reported three hidden-charm pentaquark states in 2019: Pc(4312), Pc(4440) and Pc(4457).
- Studied the Pcs in two possible molecular configurations:
 J/psi+proton and charmed-baryon+charmed-meson.
- Using charmed-baryon+charmed-meson configuration, we reproduced the masses of these Pc states and predicted their spin-parity quantum numbers.
- Remain many theoretical and experimental challenges!

