Introduction	Significance	Results	Conclusions
0000	000	00000	
			·

Nuclear Astrophysics in Relativistic Plasmas Uncertainties at High T, ρ , and B

M.A. Famiano ¹⁻³, A. Baha Balantekin ^{2,4}, M.K. Cheoun⁵, T. Kajino ^{2,3,6}, Y. Luo^{2,3,5}, T. Maruyama⁷, K. Mori ^{2,3,5}, T. Suzuki⁷

¹Western Michigan University, ²National Astronomical Observatory of Japan, ³Beihang University, ⁴University of Wisconsin, ⁵Soongsil University, ⁶University of Tokyo, ⁷Nihon University

17 September 2019

Introduction	Significance	Results	Conclusions
0000	000	00000	0

Relativistic Screening

Outline

- Introduction
- Significance of Relativistic Effects
- Some Results
- Conclusions

NOTE: Will mostly concentrate on reaction rate screening, but mention some other effects.

Goals

- Improved screening in current stellar nucleosynthesis reaction rates.
- Addition of magnetic fields.
- Results from QTFT treatment of screening.

Introduction	Significance	Results	Conclusions
•000	000	00000	0

- Coulomb Barrier
- Astrophysics: WKB Barrier Penetration
- Nuclei in Boltzmann Distribution

Nuclear Potential: Bare Nucleus

Coulomb Potential. Reaction rates determined from WKB Penetrability.

$$\langle \sigma v
angle = rac{1}{\pi m_{12}} \left(rac{2}{T}
ight)^{3/2} \int_0^\infty e^{-E/kT} E\sigma(E) dE$$

 $abla^2 \phi(r) = -4\pi Ze\delta(r^3)$
 $\phi(r) = rac{Ze^2}{r}$

・ロト ・日本・日本・日本・日本・日本

Introduction	Significance	Results	Conclusions
0000	000	00000	

- Coulomb Barrier
- Astrophysics: WKB Barrier Penetration
- Nuclei in Boltzmann Distribution

Nuclear Potential: Bare Nucleus

Coulomb Potential. Reaction rates determined from WKB Penetrability.

$$\begin{aligned} \langle \sigma v \rangle &= \frac{1}{\pi m_{12}} \left(\frac{2}{T}\right)^{3/2} \int_0^\infty e^{-E/kT} E \sigma(E) dE \\ \nabla^2 \phi(r) &= -4\pi Z e \delta(r^3) \\ \phi(r) &= \frac{Z e^2}{r} \end{aligned}$$

But the electrons and other nuclei provide a "background" potential.

Introduction	Significance	Results	Conclusions
0000			
			/

- Nuclear Potential Perturbation
- Electrons in Boltzmann Distribution
- Poisson-Boltzmann
 Equation

Nuclear Potential: Bare Nucleus

Coulomb Potential. Reaction rates determined from WKB Penetrability.

$$\begin{aligned} \langle \sigma v \rangle &= \frac{1}{\pi m_{12}} \left(\frac{2}{T}\right)^{3/2} \int_0^\infty e^{-E/kT} E \sigma(E) dE \\ \nabla^2 \phi(r) &= -4\pi Z e \delta(r^3) \\ \phi(r) &= \frac{Z e^2}{r} \end{aligned}$$

・ロット (空) ・ (回) ・ (回)

э

But the electrons and other nuclei provide a "background" potential.

Introduction	Significance	Results	Conclusions
0000	000	00000	0

- Nuclear Potential
 Perturbation
- Electrons in Boltzmann Distribution
- Poisson-Boltzmann
 Equation

Classical Thermal Nuclear Potential: Electron Background

$$\nabla^{2}\phi(r) = -4\pi Ze\delta(r^{3}) - 4\pi Zn_{z}e\exp\left[\frac{Ze\phi}{kT}\right]$$
$$+ 4\pi Zen_{z}\exp\left[\frac{-e\phi}{kT}\right]$$

 $e\phi \ll kT \rightarrow$ First Order in Potential: Mod. Helm. Eqn.

$$p(r) = rac{Ze^2}{r}e^{-r/\lambda_D}$$
 Smaller $\lambda_D \to$ lower barrier.

$$\Lambda_D \equiv \left(\frac{T}{4\pi e^2 \sum\limits_i (Z_i + Z_i^2) Y_i} \right)^{1/2}$$

C

Introduction	Significance	Results	Conclusions
⊙●○○	000	00000	0

Review: Nuclear Screening

Small shift in potential could be big shift in r_{tp} :

Introduction	Significance	Results	Conclusions
○●○○	000	00000	0

Review: Nuclear Screening

Small shift in potential could be big shift in r_{tp} :

Introduction	Significance	Results	Conclusions
oo●o	000	00000	0

However, For High Temperature in Plasma.... ... Fermi-Dirac Statistics

Screening With FD Statistics: Poisson Equation With Pair Production

$$\nabla^2 \phi = -4\pi Z e \delta(r^3) - 4\pi Z n_z e \exp\left[\frac{Z e \phi}{kT}\right]$$
$$+ Z e \int_0^\infty d^3 p \left[\frac{1}{e^{(E-\mu-e\phi)/T}+1} - \frac{1}{e^{(E+\mu+e\phi)/T}+1}\right]$$
$$\frac{\pi^2}{\lambda^2} = e \frac{\partial n}{\partial \phi} = \frac{\partial n}{\partial \mu} = e^2 \frac{\partial}{\partial \mu} \int_0^\infty dp p^2 \left[\frac{1}{e^{(E-\mu-e\phi)/T}+1} - \frac{1}{e^{(E+\mu+e\phi)/T}+1}\right]$$

NOTE: At high T, this solves the Schwinger-Dyson equation for the photon propagator to arbitrary order. [Kapusta (2006), Famiano et al. (2016)]

Introduction	Significance	Results	Conclusions
0000			

Magnetic Fields

Hamiltonian for electron results in a 2D harmonic oscillator.

 $p_n^2 = p_\perp^2 + p_{\parallel}^2 = neB + p_{\parallel}^2$ $n_e =$ ${eB\over 2\pi^2}\sum_{
u=0}^\infty g_
u$ $\int_{0}^{\infty} dp_{z} \left(\left[\exp\left(\frac{\sqrt{p_{z}^{2} + m_{e}^{2} + 2\nu eB} - \mu - e\phi}{T}\right) + 1 \right]^{-1} \right)$ $-\left[\exp\left(\frac{\sqrt{p_z^2+m_e^2+2\nu eB}+\mu+e\phi}{T}\right)+1\right]^{-1}\right)$

Yudong Lou

Individual terms in number density sum.

Introduction	Significance	Results	Conclusions
0000	000	00000	0

Magnetic Fields

Hamiltonian for electron results in a 2D harmonic oscillator.

 $p_n^2 = p_\perp^2 + p_{\parallel}^2 = neB + p_{\parallel}^2$ $n_e =$ ${eB\over 2\pi^2}\sum_{
u=0}^\infty g_
u$ $\int_{0}^{\infty} dp_{z} \left(\left[\exp\left(\frac{\sqrt{p_{z}^{2} + m_{e}^{2} + 2\nu eB} - \mu - e\phi}{T}\right) + 1 \right]^{-1} \right)$ $-\left[\exp\left(\frac{\sqrt{p_z^2+m_e^2+2\nu eB}+\mu+e\phi}{\tau}\right)+1\right]^{-1}\right)$

Yudong Lou

Individual terms in number density sum.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Significance	Results	Conclusions
000	000	00000	0

Magnetic Fields

Hamiltonian for electron results in a 2D harmonic oscillator.

 $p_n^2 = p_\perp^2 + p_{\parallel}^2 = neB + p_{\parallel}^2$ $n_e =$ ${eB\over 2\pi^2}\sum_{
u=0}^\infty g_
u$ $\int_{0}^{\infty} dp_{z} \left(\left[\exp\left(\frac{\sqrt{p_{z}^{2} + m_{e}^{2} + 2\nu eB} - \mu - e\phi}{T}\right) + 1 \right]^{-1} \right)$ $-\left[\exp\left(\frac{\sqrt{p_z^2+m_e^2+2\nu eB}+\mu+e\phi}{T}\right)+1\right]^{-1}\right)$

Yudong Lou

Individual terms in number density sum.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Significance	Results	Conclusions
000	000	00000	0

Magnetic Fields

Hamiltonian for electron results in a 2D harmonic oscillator.

 $p_{p}^{2} = p_{\perp}^{2} + p_{\parallel}^{2} = neB + p_{\parallel}^{2}$ $n_e =$ ${eB\over 2\pi^2}\sum_{
u=0}^\infty g_
u$ $\int_{0}^{\infty} dp_{z} \left(\left[\exp\left(\frac{\sqrt{p_{z}^{2} + m_{e}^{2} + 2\nu eB} - \mu - e\phi}{T}\right) + 1 \right]^{-1} \right)$ $-\left[\exp\left(\frac{\sqrt{p_z^2+m_e^2+2\nu eB}+\mu+e\phi}{\tau}\right)+1\right]^{-1}\right)$

Yudong Lou

Individual terms in number density sum.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Significance	Results	Conclusions
0000	●00	00000	0

Are Relativistic Effects Important?

Positron-Electron Ratios and Screening Length Ratios

Positron/electron ratio vs. T_9 and B. $\rho = 10^6 \text{ g cm}^3$, $Y_e = 0.5$. Effects from chemical potential and low T.

Screening

Introduction	Significance	Results	Conclusions
	000		

Screened Nuclear Potential Comparison

Weak Screening: High T, Low ρ

Introduction	Significance	Results	Conclusions
0000	00●	00000	0

Solution Comparison

Gamow Windows: C-C Plasma

- Exact solution for intermediate SEF.
- Shift to lower energy.

Introduction	Significance	Results	Conclusions
0000	000	●0000	0

Preliminary Results Where Do Thermal and Field Effects Become Important?

We are currently examining:

- SNell: High T shock heated mantle
- Massive Stars: High T core temp
- Pair production SNe: High core T nucleosynthesis
- BBN Magnetic Fields, High T, EC-Yudong Luo
- SNela High T, EC Kanji Mori
- X-Ray bursts High B, High T
- Neutron Star Cores "Effective" μ
- Dynamic Effects, e.g., Alfven Wave effects

Introduction	Significance	Results	Conclusions
0000	000	00000	O

Preliminary Results r-Process Nucleosynthesis: No B-Field, But High T

r-Process in SNell

- Expanding neutrino-heated bubble in SNell.
- $\bullet~B=0,$ but $T_9\lesssim\!\!2.5$
- Does not affect (n,γ), but could change (α,n) early on.
- Additional screening from thermal pair production.

Introduction	Significance	Results	Conclusions
0000	000	0000●	0
Weak Interactions			

Yudong Luo

Electron Captures and Decays in Magnetized Plasmas

$$\lambda_{n \to p e^- \bar{\nu}_e} = \frac{G_F^2 \tilde{B} m_e \left(g_V^2 + 3g_A^2\right)}{2\pi^3 T} \sum_{n=0}^{n_m} (2 - \delta_{n0}) \int_0^{p_m} dp_z E_\nu^2 g(E_e) g(E_\nu)$$

$$\lambda_{n(\bar{\nu}_e/e^+) \to p(e^-/\bar{\nu}_e)} = \frac{G_F^2 \tilde{B} m_e \left(g_V^2 + 3g_A^2\right)}{2\pi^3 T} \sum_{n=0}^{\infty} (2 - \delta_{n0}) \int_0^\infty dp_z E_\nu^2 g(E_{e/\nu}) f_{FD}(E_{\nu/e})$$

Momentum terms, FD distribution, Pauli blocking factor changes. Electron captures and NS matter Lai & Shapiro, ApJ (1991); Gao et al., Astroph. Space Sci. (2011) Neutronization of proto-neutron star. Possible effects in BBN fields? Possible effects prior to weak decoupling?

Introduction	Significance	Results	Conclusions
			•

Conclusions

Conclusions

- $\bullet\,$ Effective Screening Length: Potentially dramatic shifts at high B/T.
 - Screening enhancement factor for relativistic environments changes
 - Effective reduction in chemical potential.
- Possible change in stellar core burning.
- Future Work: NS Crust Effects, Pair Production SNe, BBN, NS Cores?, Experiment?
- Extending our TF screening model accurate at lower-T/higher- ρ .
- Magnetized plasmas could be dramatically different!
 - Field evolution in NS merger events?

Work supported by NSF PHY-1204486 and PHY-1712832, an NAOJ Visiting Professorship, and the Fulbright Program

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00