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Relativistic Screening

Outline

1 Introduction
2 Significance of Relativistic Effects
3 Some Results
4 Conclusions

NOTE: Will mostly concentrate on reaction
rate screening, but mention some other
effects.

Goals

Improved screening in current stellar
nucleosynthesis reaction rates.

Addition of magnetic fields.

Results from QTFT treatment of
screening.
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Review: Screening in Nuclear Reactions
A One-Slide Summary
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But the electrons and other nuclei provide a
“background” potential.
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Classical Thermal Nuclear Potential: Electron Background

∇2φ(r) = −4πZeδ(r3)− 4πZnze exp

[
Zeφ
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]
+ 4πZenz exp

[
−eφ
kT

]
eφ� kT → First Order in Potential: Mod. Helm. Eqn.
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e−r/λD Smaller λD → lower barrier.
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Review: Nuclear Screening

Small shift in potential could be big shift
in rtp:
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However, For High Temperature in Plasma....
... Fermi-Dirac Statistics

Screening With FD Statistics: Poisson Equation With Pair Production

∇2φ = −4πZeδ(r3)− 4πZnze exp
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NOTE: At high T, this solves the Schwinger-Dyson equation for the photon
propagator to arbitrary order. [Kapusta (2006), Famiano et al. (2016)]
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Including Magnetic Fields

Magnetic Fields

Hamiltonian for electron results in a 2D harmonic
oscillator.

p2
n = p2

⊥ + p2
‖ = neB + p2

‖

ne =

eB

2π2

∞∑
ν=0

gν

∫ ∞
0

dpz

[exp

(√
p2
z + m2

e + 2νeB − µ− eφ

T

)
+ 1

]−1

−

[
exp

(√
p2
z + m2

e + 2νeB + µ+ eφ

T

)
+ 1

]−1


0

B=4.41 1011G

0.05

0

0.1

0.15

0.2

5

f F
D

0.25

0.3

0.35

Landau level

10

0.4

102

101

p
z
 (MeV)

15

100

20
10-1

Yudong Lou
Individual terms in number density sum.



Introduction Significance Results Conclusions

Including Magnetic Fields

Magnetic Fields

Hamiltonian for electron results in a 2D harmonic
oscillator.

p2
n = p2

⊥ + p2
‖ = neB + p2

‖

ne =

eB

2π2

∞∑
ν=0

gν

∫ ∞
0

dpz

[exp

(√
p2
z + m2

e + 2νeB − µ− eφ

T

)
+ 1

]−1

−

[
exp

(√
p2
z + m2

e + 2νeB + µ+ eφ

T

)
+ 1

]−1


0

B=4.41 1013G

0.05

0

0.1

0.15

0.2

5

f F
D

0.25

0.3

0.35

Landau level

10

0.4

102

101

p
z
 (MeV)

15

100

20
10-1

Yudong Lou
Individual terms in number density sum.



Introduction Significance Results Conclusions

Including Magnetic Fields

Magnetic Fields

Hamiltonian for electron results in a 2D harmonic
oscillator.

p2
n = p2

⊥ + p2
‖ = neB + p2

‖

ne =

eB

2π2

∞∑
ν=0

gν

∫ ∞
0

dpz

[exp

(√
p2
z + m2

e + 2νeB − µ− eφ

T

)
+ 1

]−1

−

[
exp

(√
p2
z + m2

e + 2νeB + µ+ eφ

T

)
+ 1

]−1


0

B=4.41 1014G

0.05

0

0.1

0.15

0.2

5

f F
D

0.25

0.3

0.35

Landau level

10

0.4

102

101

p
z
 (MeV)

15

100

20
10-1

Yudong Lou
Individual terms in number density sum.



Introduction Significance Results Conclusions

Including Magnetic Fields

Magnetic Fields

Hamiltonian for electron results in a 2D harmonic
oscillator.

p2
n = p2

⊥ + p2
‖ = neB + p2

‖

ne =

eB

2π2

∞∑
ν=0

gν

∫ ∞
0

dpz

[exp

(√
p2
z + m2

e + 2νeB − µ− eφ

T

)
+ 1

]−1

−

[
exp

(√
p2
z + m2

e + 2νeB + µ+ eφ

T

)
+ 1

]−1


0

B=4.41 1015G

0.05

0

0.1

0.15

0.2

5

f F
D

0.25

0.3

0.35

Landau level

10

0.4

102

101

p
z
 (MeV)

15

100

20
10-1

Yudong Lou
Individual terms in number density sum.



Introduction Significance Results Conclusions

Are Relativistic Effects Important?
Positron-Electron Ratios and Screening Length Ratios
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Screened Nuclear Potential Comparison
Weak Screening: High T, Low ρ
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Solution Comparison
Gamow Windows
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Preliminary Results
Where Do Thermal and Field Effects Become Important?
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Relativistic Plasma

We are currently examining:

SNeII: High T - shock heated mantle

Massive Stars: High T - core temp

Pair production SNe: High core T -
nucleosynthesis

BBN - Magnetic Fields, High T, EC-
Yudong Luo

SNeIa - High T, EC - Kanji Mori

X-Ray bursts - High B, High T

Neutron Star Cores - “Effective” µ

Dynamic Effects, e.g., Alfven Wave
effects
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Preliminary Results
X-ray Bursts: Maybe B-field is Important? Maybe Not Temperature?
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Rapid Proton Capture

Accretion onto
magnetized
neutron-star surface.

B = 5×109 T.

Increased reaction
rates → increased
heating.

Did not examine
phase-space/Pauli
blocking in electron
captures.
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Preliminary Results
r-Process Nucleosynthesis: No B-Field, But High T
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r-Process in SNeII

Expanding
neutrino-heated
bubble in SNeII.

B = 0, but T9 .2.5

Does not affect
(n,γ), but could
change (α,n) early
on.

Additional screening
from thermal pair
production.
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Preliminary Results
p-Nuclei: Hot Shock Heating in SNe
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VERY
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B = 0, but T9 ∼3

Only charged-particle
(e.g., (p,γ)) affected.

Even small increase
in reaction rates can
dramatically change
low Y nuclei.
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Weak Interactions
Yudong Luo

Electron Captures and Decays in Magnetized Plasmas

λn→pe−ν̄e =
G 2
F B̃me

(
g2
V + 3g2

A

)
2π3T

nm∑
n=0

(2− δn0)

pm∫
0

dpzE
2
ν g(Ee)g(Eν)

λn(ν̄e/e+)→p(e−/ν̄e) =
G 2
F B̃me

(
g2
V + 3g2

A

)
2π3T

∞∑
n=0

(2− δn0)

∞∫
0

dpzE
2
ν g(Ee/ν)fFD(Eν/e)

Momentum terms, FD distribution, Pauli blocking factor changes.
Electron captures and NS matter Lai & Shapiro, ApJ (1991); Gao et al., Astroph. Space Sci. (2011)

Neutronization of proto-neutron star.
Possible effects in BBN fields? Possible effects prior to weak decoupling?
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Conclusions

Conclusions

Effective Screening Length: Potentially dramatic shifts at high B/T.

Screening enhancement factor for relativistic environments changes
Effective reduction in chemical potential.

Possible change in stellar core burning.

Future Work: NS Crust Effects, Pair Production SNe, BBN, NS Cores?,
Experiment?

Extending our TF screening model accurate at lower-T/higher-ρ.

Magnetized plasmas could be dramatically different!

Field evolution in NS merger events?
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