

DETERMINATION OF THE COLUMN DENSITY FOR THE KATRIN NEUTRINO MASS MEASUREMENT

INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS

Christoph Köhler

Technical University of Munich Max Planck Institute for Physics

September 18, 2019

Christoph Köhler

September 18, 2019 1

Outline

- 1 Column density as systematic parameter
- 2 Monitoring devices
- 3 First neutrino mass measurement
- 4 Outlook

Windowless, Gaseous T_2 Source

- T₂ purity > 95 %
- Throughput: 40 g/day (nominal)
- High activity: $10^{11} B_q$ (nominal)

Column density

• T_2 retention before spectrometers $> 10^{14}$

Source scattering depending on:

- Electron path
- Column density
- Cross section

Integral β-spectrum

Response function: column density

- Response function:
 - Probability of transmission of an electron with initial energy E
 - Depends on:
 - Transmission function
 - Energy loss function (ToF method used)
 - Scattering probability in the source
- $\rightarrow\,$ Precise determination of the column density needed

M. Aker et al., arXiv: 1909.06048

Outline

- 1 Column density as systematic parameter
- 2 Monitoring devices
- 3 First neutrino mass measurement
- 4 Outlook

Tritium source monitoring: Overview

- Column density determination:
 - Photo-electrons traverse the whole beamline
 - Gas throughput sensor

Activity detectors:

- Fluctuations of the WGTS activity
- High precision on a timescale of minutes

Photo-electron source

- Most precise measurement of absolute column density value
- Measures $\rho d\sigma$ (column density \times cross section)
- High rate of 18.6 keV monoenergetic electrons
- Small angular spread

Column density scan

- Measure electron rate at different retarding potentials
- 30 min measurement
- Fit model response function to the data
- Two parameter fit:
 - Electron rate, ρdσ
- Retrieve ρdσ with small uncertainty

•
$$\sigma = 3.64 \times 10^{-18} \mathrm{cm}^2$$

Uncertainty of $\rho d\sigma$ scan

 Error propagation via Covariance Matrix, V

$$\blacktriangleright \chi^2 = (\overrightarrow{\mu} - \overrightarrow{N})^T V_{tot}^{-1} (\overrightarrow{\mu} - \overrightarrow{N})$$

$$\blacktriangleright V_{tot} = V_1 + V_2 + \dots$$

- Dominant systematic contributions:
 - Detector pileup correction
 - Non-Poisson photo-electron rate

Outline

- 1 Column density as systematic parameter
- 2 Monitoring devices
- 3 First neutrino mass measurement
- 4 Outlook

Measurement overview

Tritium β-decay:

- April 10 May, 13 2019
- ▶ High source activity: 2.45 · 10¹⁰ B_q
- High Tritium purity: $\varepsilon_T = 97.5 \%$

Column density:

- Photo-electron source: 10 Measurements (each \approx 30 min)
- Continuous data taking with other monitoring devices

Gas throughput sensor

- Estimation of column density with gas model
- Model parameter uncertainty
- Simultaneous measurement during tritium scans
- Idea: Combination of ρdσ result from photo-electron source with throughput sensor value
- → Precise continuous determination of the column density

Throughput sensor stability

- Comparison of:
 - Electron rate from tritium β-decay
 - Gas throughput value
- Strong correlation
- No time dependence

Calibration of throughput to $\rho d\sigma$

- Precise column density scans with photo-electron source
- Simultaneous values from throughput sensor
- Calibration of throughput to $\rho d\sigma$ with linear model

Column density distribution

- Uncertainty of $ho d\sigma < 0.85 \%$
- Uncertainty of ho d < 1.03~%
- Goal for final KATRIN sensitivity: $ho d\sigma < 0.2~\%$

Effect on neutrino mass sensitivity

Small impact of column density uncertainty

Summary and outlook

Column density determination for the first neutrino mass measurement

- Continuous monitoring
- Relative uncertainty $\rho d\sigma < 0.85 \%$
- Relative uncertainty $\rho d < 1.03~\%$
- Monitoring devices with enhanced precision in commissioning
- Upgrade of the existing photo-electron source

