

First results from the KATRIN experiment

Susanne Mertens Max Planck Institute for Physics & Technical University Munich Erice, September 2019

Neutrino mass

Neutrino mass

Cosmology

model-dependent potential: $m_v = 15-50 \text{ meV}$ e.g. Planck

 $m_{cosmo} = \sum_{i} m_i$

The basic idea

- Kinematic determination of the neutrino mass
- Non-zero neutrino mass reduces the endpoint and distorts the spectrum

Where do we stand?

 Current limit: Mainz and Troitsk Experiment

V. N. Aseev et al., Phys. Rev. D 84 (2011) 112003 Kraus, C., Bornschein, B., Bornschein, L. et al. Eur. Phys. J. C (2005)

Where do we stand?

Current limit: Mainz and Troitsk Experiment

V. N. Aseev et al., Phys. Rev. D 84 (2011) 112003 Kraus, C., Bornschein, B., Bornschein, L. et al. Eur. Phys. J. C (2005)

 Ongoing experiments: Distinguish between degenerate and hierarchical scenario

Where do we stand?

• Current limit: Mainz and Troitsk Experiment

V. N. Aseev et al., Phys. Rev. D 84 (2011) 112003 Kraus, C., Bornschein, B., Bornschein, L. et al. Eur. Phys. J. C (2005)

- Ongoing experiments: Distinguish between degenerate and hierarchical scenario
- New ideas: Resolve normal vs inverted neutrino mass hierarchy

Karlsruhe Tritium Neutrino Experiment

An-Dostt.

- **Experimental site: Karlsruhe** Institute of Technology (KIT)
- International Collaboration • (150 members)
- Sensitivity $m_v = 0.2 \text{ eV}$ (90%) • CL) after 3 net-years

18-years of KATRIN history

Test of Unique Properties of KATRIN

 $\widehat{}$

• •

00

THURSDAY

inner surface: 650m², volume: 1400m³

NUULUUUUUUU

✓ Effective electric and magnetic shielding against charged particles from the surface KATRIN Collab, JINST 13 T10004 (2018)

μ

✓ Effective electric and magnetic shielding against charged particles from the surface KATRIN Collab, JINST 13 T10004 (2018)

- ✓ Effective electric and magnetic shielding against charged particles from the surface KATRIN Collab, JINST 13 T10004 (2018)
- ✓ Effective reduction of radon-induced background via nitrogen-cooled baffle system

S. Goerhardt, et al., JINST 13 (2018) no.10, T10004
S. M. et al, Astropart. Phys. 41 (2013), 52–62
S. M. et al, JINST 7 (2012) P08025

- ✓ Effective electric and magnetic shielding against charged particles from the surface KATRIN Collab, JINST 13 T10004 (2018)
- ✓ Effective reduction of radon-induced background via nitrogen-cooled baffle system

S. Goerhardt, et al., JINST 13 (2018) no.10, T10004 S. M. et al, Astropart. Phys. 41 (2013), 52–62 S. M. et al, JINST 7 (2012) P08025

✓ Remaining background: Rydberg atoms

- ✓ Effective electric and magnetic shielding against charged particles from the surface KATRIN Collab, JINST 13 T10004 (2018)
- ✓ Effective reduction of radon-induced background via nitrogen-cooled baffle system

S. Goerhardt, et al., JINST 13 (2018) no.10, T10004
S. M. et al, Astropart. Phys. 41 (2013), 52–62
S. M. et al, JINST 7 (2012) P08025

✓ Remaining background: Rydberg atoms

- current: 0.36 cps (design: 0.01 cps)
- background reduction verified:
 - \checkmark by renewing efficiency of baffles
 - ✓ by reducing fiducial volume of fluxtube

- ✓ Effective electric and magnetic shielding against charged particles from the surface KATRIN Collab, JINST 13 T10004 (2018)
- Effective reduction of radon-induced background via nitrogen-cooled baffle system

S. Goerhardt, et al., JINST 13 (2018) no.10, T10004
S. M. et al, Astropart. Phys. 41 (2013), 52–62
S. M. et al, JINST 7 (2012) P08025

✓ Remaining background: Rydberg atoms

- current: 0.36 cps (design: 0.01 cps)
- background reduction verified:
 - \checkmark by renewing efficiency of baffles
 - ✓ by reducing fiducial volume of fluxtube

Test of Unique Properties of KATRIN

Krypton campaign (2017)

Krypton calibration

Krypton Model

Krypton Results

✓ Spectrometer resolution of ~1 eV @ 18 keV (JINST 13 (2018) P04018, arXiv:1903.066452)

✓ HV calibration on the ppm level (EPJ C 78 368 (2018))

Test of Unique Properties of KATRIN

First tritium campaign (2018)

- Commissioning of system with tritium (1% of nominal activity = ~500 MBq!)
- 14 days of operation (without interruption)
- ✓ Demonstrate global system stability
- ✓ Test analysis strategies

[arXiv:1909.06069]

First tritium injection: Friday 18 May 7:48 am UTC

Tritium loop system

Relevant control parameters:

- Temperature
- Pressure
- Isotopic composition

Stability of source parameters

Blue arrow: systematic uncertainty

Red dashed line: ± 0.1 % reference

> ✓ Source parameters are stable and within the specifications

First tritium spectra

- ✓ Excellent agreement of model with data over wide energy range
- \checkmark Stability of fitted endpoint over 12 days

18-years of KATRIN history

KATRIN neutrino mass campaign #1 (KNM-1)

- First ever high-activity tritium operation of KATRIN
- April 10 May 13 2019: 780 h (~4 weeks)
- high-quality data collected **2 million electrons**
- ✓ First neutrino mass result ☺

KATRIN neutrino mass campaign #1 (KNM-1)

- First ever high-activity tritium operation of KATRIN
- April 10 May 13 2019: 780 h (~4 weeks)
- high-quality data collected **2 million electrons**
 - First neutrino mass result ③ What does it take to acquire high-quality data

 \checkmark

Tritium operation of KATRIN

- tritium gas density:
- high isotopic tritium purity:
- high source activity:

97.5% 2.45 · 10¹⁰ Bq (24.5 GBq)

22% of nominal (burn-in period)

Tritium operation of KATRIN

- tritium gas density:
- high isotopic tritium purity:

4.9 g/day

• high source activity:

Monitoring and characterization of source

expectation

Source Potential

- Gold-plated rear wall
- Optimization of homogeneity and coupling of plasma potential

Source density

• High-intensity electron gun

1.0

Source composition

Laser Raman system

• High purity and stability established (97.5 %)

Susanne Mertens

 T_2

DT

ΗT

Source activity

Scanning Strategy

- Idea: count electron as a function of retarding potential
- ... but at which retarding potentials and how long at each potential?

Scanning Strategy

Optimized to maximize v-mass sensitivity

 $E_0 - 40 \text{ eV}$, $E_0 + 50 \text{ eV}$ • interval:

274

- # HV set points: 27
- scanning time: 2 hours
- Number of scans:
- Sequence of scans:
- alternating up/down

Measurement time distribution

18620

endpoint

background

18600

region

 β -decay

spectrum

 10^{1}

Scanning Strategy

Rate (cps) **Optimized to maximize v-mass sensitivity** 10^{0} $E_0 - 40 \text{ eV}$, $E_0 + 50 \text{ eV}$ • interval: • # HV set points: 27 • scanning time: 2 hours Measuring time (h) 40 • Number of scans: 274 20 • Sequence of scans: alternating up/down 18580 18540 18560 Retarding energy (eV) \succ One β -decay spectrum for each scan

High voltage stability

- Short term (seconds) HV stability: < 20 mV
- Long-term (days) HV stability: < 20 mV/day

Monitor Spectrometer

Background characterization

- 25% of measurement time above the endpoint
- Precise determination of background rate distribution
- Limit background retarding-potential dependence (background slope)

Focal plane detector

- 117/148 (79%) of all pixels used
- high detection efficiency (> 90%)
- negligible retarding-potential dependence of efficiency

\triangleright One β -decay spectrum for each pixel

... and finally: the tritium spectrum

32058 β -decay spectra

- for each detector pixel
- for each scan

Task of "fitting" teams

- combine spectra in a smart way
- infer physics parameters

Tritium spectrum calculation

Fit of a single 2-h beta-scan

$$\Gamma(qU) \propto \boldsymbol{A} \cdot \int_{qU}^{\boldsymbol{E_0}} D(E; \boldsymbol{m_v^2}, \boldsymbol{E_0}) \cdot R(qU, E) \, dE + \boldsymbol{B}$$

- 3 parameter fit stat. only
- neutrino mass fixed to zero
- Check for stability of fits before combining data

Stability over 274 scans

- All detector pixels combined
- Stability of fitted endpoint in time

Stability over 117 pixels

- All scans combined
- Spatial homogeneity over detector wafer

Data combination

Pixel combination

- sum the counts of all pixels
- use average response function

Scan combination

- sum the counts of all sub-scans
- use average HV (σ_{HV} < 34 mV) + slow control

3-fold bias free analysis

Two independent analysis approaches

Covariance matrix

•
$$\chi^2 = \left(\vec{m} - \vec{d}\right)^T V_{tot}^{-1} \left(\vec{m} - \vec{d}\right)$$

• Systematic: Spectrum computed 10⁵ times

MC propagation

•
$$-2\log \mathcal{L} = 2\sum_i [m_i - d_i + d_i \log(d_i/m_i)]$$

• Systematics: Fit performed 10⁵ times

Budget of uncertainties

What do we expect to measure?

Final fit result (neutrino mass)

- 2 million events
- 4 free parameters: background, signal normalization, E_0 , m_{ν}^2
- excellent goodness-of-fit: p-value = 0.56
- Neutrino mass best fit

$$m_{
u}^2 = ig(-1.0^{+0.9}_{-1.1}ig) {
m eV^2}$$

Final fit result (neutrino mass)

- 2 million events
- 4 free parameters: background, signal normalization, E_0 , m_{ν}^2
- excellent goodness-of-fit: p-value = 0.56
- Neutrino mass best fit

$$m_{
u}^2 = ig(-1.\,0^{+0.9}_{-1.1}ig)$$
eV²

• very clean data set !

Final fit result (endpoint)

 $E_0^{fit} = E_0 + \phi_{source} - \phi_{WF,MS}$

- fitted $E_0 = (18573.7 \pm 0.1) \text{ eV}$
- Q-value (KATRIN): (18575.2 ± 0.5) eV
- Q-value (literature): (18575.72 ± 0.07) eV
- ✓ excellent agreement
- ✓ confidence in overall energy scale ☺

New KATRIN limit

Lokhov and Tkachov (LT)

- m_v < 1.1 eV (90% CL) = sensitivity
- official KATRIN limit

Feldman and Cousins (FC)

- m_v < 0.8 eV (90% CL)
- $m_v < 0.9 \text{ eV}$ (95% CL)

Historical context

Improvements in statistics

Squared neutrino mass Uncertainties obtained from tritium β -decay in the period 1990-2019

Improvements in systematics

Squared neutrino mass Uncertainties obtained from tritium β -decay in the period 1990-2019

a glance into the future

Energy

Neutrino mass

Physics beyond the Standard Model: e.g. sterile neutrinos

W. Rodejohann, Phys.Lett.B 737, 81 (2014) Barry, J. et al High Energ. Phys. (2014) 2014: 81 S.M. et. al. Phys.Rev. D91 (2015) 4, 042005 S.M. et al. JCAP 1502 (2015) 02, 020 Ludl, P.O. et al High Energ. Phys. (2016) 2016: 40 R. Adhikari et al. JCAP 1701 (2017) 01, 025 G. Arcadi et.al., JHEP 01(2019) 206

Physics beyond the Standard Model: e.g. sterile neutrinos Kink of keVscale sterile v nergy

Neutrino mass

W. Rodejohann, Phys.Lett.B 737, 81 (2014) Barry, J. et al High Energ. Phys. (2014) 2014: 81 S.M. et. al. Phys.Rev. D91 (2015) 4, 042005 S.M. et al. JCAP 1502 (2015) 02, 020 Ludl, P.O. et al High Energ. Phys. (2016) 2016: 40 R. Adhikari et al. JCAP 1701 (2017) 01, 025 G. Arcadi et.al., JHEP 01(2019) 206

Physics beyond the Standard Model: e.g. sterile neutrinos

Neutrino mass

nergy

cns

10¹⁰

cps

W. Rodejohann, Phys.Lett.B 737, 81 (2014)
Barry, J. et al High Energ. Phys. (2014) 2014: 81
S.M. et. al. Phys.Rev. D91 (2015) 4, 042005
S.M. et al. JCAP 1502 (2015) 02, 020
Ludl, P.O. et al High Energ. Phys. (2016) 2016: 40
R. Adhikari et al. JCAP 1701 (2017) 01, 025
G. Arcadi et.al., JHEP 01(2019) 206

TRISTAN Project

- 3500-pixel Silicon Drift Detector (SDD) focal plane array
- Significant improvement of laboratory limits on keV-scale sterile neutrinos expected

Conclusion

- High-quality data collected over 780 hours @25 GBq = 5 days of nominal KATRIN @100GBq
 - World Best Direct Neutrino Mass Measurement: $m_{\nu} < 1.1 \text{ eV}$ (90% C.L.)
 - more information: http://arxiv.org/abs/1909.06048

- Background improvement experimentally verified
- Promising perspectives to search for eV to keV sterile neutrinos

Thank you for your attention

Special Thanks to Guido Drexlin Thierry Lasserre David Radford my group at MPP

Susanne Mertens

Max Planck Institute for Physics & Technical University Munich