

Background in the KATRIN experiment

Anna Pollithy for the KATRIN Collaboration

International School of Nuclear Physics 41st Course Erice - 18.09.2019

Focal Plane

Detector

The KATRIN Experiment

- **goal:** sensitivity of $m(v_e) = 0.2 \text{ eV} (90 \% \text{ C.L.})$. after 3 years of data taking
- high-luminosity, ultra-stable tritium source •
- high-resolution spectrometers .

spectrometer section: pre- and

main spectrometer

High-resolution spectrometers: MAC-E filter

Magnetic Adiabatic Collimation with Electrostatic filter

- High pass filter: all electrons with E₁₁ > qU pass the analyzing plane
- Energy resolution:

$$E_{\rm res} = E_{\rm ret} \frac{B_{\rm min}}{B_{\rm max}}$$

 $\rightarrow E_{\rm res}$ < 1 eV at 18.6 keV

- electrons generated in the flux volume that have
 - high energies are trapped
 - low energies are transmitted

First neutrino mass measurement 2019

- 33 days of data taking (Apr May 2019) at 25% of nominal tritium activity
- 274 "golden" tritium scans, each spends ~25% in the background region

Background during the first neutrino mass frequences for the second seco

- elevated, but stable background rate over whole measurement period
- events are not Poisson distributed
- distribution can be described by Poisson broadened with Gaussian

Background – dependency on retarding potential

- 50 eV measurement point above endpoint to constrain the slope
- additional dedicated measurement to constrain retarding voltage dependence
- no indication for a significant slope, uncertainty of 5 mcps/keV

 $a = (5 \pm 5) \text{ mcps/keV}$

Impact of background on first neutrino mass

elevated background in KATRIN

- limits the neutrino mass sensitivity •
- is by far the dominant systematic •
 - slope
 - non-Poisson

Background in KATRIN

Radon induced background

- origin: residual radon from NEG pumps
- non-Poisson distributed

F. Fränkle et al, Astrop. Physics, V 35, Oct. 2011, P. 128-134, S. Mertens et al, Astrop. Physics, V 41, Apr. 2012, P. 52-62, N. Wandkowsky et al, 2013 J. Phys. G: Nucl. Part. Phys. 40 085102, N. Wandkowsky et al, New Journal of Physics 15 (2013) 083040, Görhardth et al., JINST 13 (2018), T10004

Rydberg induced background

- origin: α decays in the walls
- IE voltage dependence (field ionization)
- Poisson distributed

9

Characterizing the Rydberg background

- **goal**: Confirm α -decay in walls as origin
- **methodology**: generate artificial background and investigate IE dependence (idea: Ernst Otten)
- realization: introduce ²²³Ra source to spectrometer
 → only short-lived isotopes
 - \rightarrow 4 α -decays \rightarrow large Rydberg background expected

Technical implementation

- ²²³Ra source produced at ISOLDE at CERN (thanks to K. Blaum)
- source activity of ~7 kBq during measurement
- source mounted to steel arm which is magnetically steered to MS surface level (thanks to K. Schlösser, H. Frenzel, K. Blaum)

photo by D. Hinz

Artificial Rydberg background - results

- ²²³Ra-induced background shows the same IE dependence as the main spectrometer background
- \bullet confirms α -decays in the walls as the origin of the main spectrometer background
- consistent with previous results:
 - F. Harms, PhD thesis
 - F. Harms, DPG Spring meeting, Münster 2017
 - N. Trost, PhD thesis

Background in KATRIN - countermeasures

Radon induced background

- retention by cold baffles in front of NEG pumps
- efficiency depends on baffle temperature and surface conditions (e.g. adsorbed water ice)
- baking of baffles prior to next measurements

Rydberg induced background

- background proportional to volume
- decrease "visible" volume

Mitigating the Rydberg background

Mitigating the Rydberg background

Shifted analyzing plane - challenges

- Large inhomogeneity of magnetic field and potential
- needs to be taken into account in the analysis
- fields need to be determined precisely

averaged transmission function

Field determination in KATRIN - ΔU

- each pixel detects a rate corresponding to a different retarding potential
- → Tritium: shift of endpoint
- → ^{83m}Kr: shift of line position

Field determination in KATRIN - ΔU

- good agreement
- dominated by statistics

Conclusion

- Background during first neutrino mass measurement:
 - stable but not Poisson distributed
 - dominating systematic because of elevated background and low statistics
- origin of the KATRIN background: Radon & Rydberg induced background
 - non-Poisson
 - retention by improving baffle performance

- Poisson & proportional to volume
- mitigation by shifted analyzing plane

- shifted analyzing plane:
 - background reduction successfully demonstrated
 - first results towards a full field characterization were obtained
- Stay tuned for future results!