Hyperon-anti-hyperon polarization asymmetry in relativistic heavy-ion collisions as an interplay between chiral and helical vortical effects

Victor E. Ambruș
Institut für Theoretische Physik, Goethe Universität, Frankfurt am Main

TECHNISCHE UNIVERSITÄT
DARMSTADT

Outline

(1) Introduction
(2) Polarisation: Helicity and Chirality
(3) Helical vortical effects
(4) Hyperon/anti-hyperon polarisation ratio
(5) Conclusion

Quark-gluon plasma: hydrodynamic phase

[B. V. Jacak, B. Muller, Science 337 (2012) 310.

A. Monnai, PhD Thesis (Tokyo, 2014).

- The QGP produced at RHIC is...
- the hottest ($k_{B} T \gtrsim 0.2 \mathrm{GeV} \Leftrightarrow T \gtrsim 2.3 \times 10^{12} \mathrm{~K}$),
- densest ($p \gtrsim 10 \mathrm{GeV} / \mathrm{fm}^{3} \simeq 1.6 \times 10^{36} \mathrm{~Pa}$)
- and most vortical ($\omega \simeq 10^{22} \mathrm{~s}^{-1}$) \ldots
... fluid produced in the laboratory.

QGP: Polarisation of Λ-hyperons

- $|\omega| \approx \frac{k_{B} T}{\hbar}\left(\overline{\mathcal{P}}_{\Lambda^{\prime}}+\overline{\mathcal{P}}_{\bar{\Lambda}^{\prime}}\right)$.
- $\frac{d N_{H}}{d \cos \theta^{*}}=\frac{1}{2}\left(1+\alpha_{H}\left|\mathcal{P}_{H}\right| \cos \theta^{*}\right)$

Quark-gluon plasma

Beam-beam counter
[STAR Collaboration, Nature 548 (2017) 62]

- $\overline{\mathcal{P}}_{H} \equiv$ average projection of polarization on $\hat{J}_{\text {sys }}$.
- $\Lambda \equiv$ "self-analysing:" proton emitted preferentially along spin.

Beam-beam

Known mechanism: Chiral vortical effect (CVE)

$$
\begin{aligned}
\boldsymbol{J}_{V} & =\sigma_{V} \boldsymbol{\omega} \\
\sigma_{V} & =\frac{\mu_{V} \mu_{A}}{\pi^{2}}
\end{aligned}
$$

$\boldsymbol{J}_{A}=\sigma_{A} \boldsymbol{\omega}$,
$\sigma_{A}=\frac{T^{2}}{6}+\frac{\mu_{V}^{2}+\mu_{A}^{2}}{2 \pi^{2}}$.
$\boldsymbol{J}_{A} \neq 0$ even when $\mu_{A}=0$!
[D. E. Kharzeev et al., Nucl. Phys. 88 (2016) 1]

New mechanism: Helical vortical effect (HVE)

- Split particles into four groups:
right-handed chirality (\boldsymbol{R})
■ μ_{\uparrow}^{R} : particle: $R \Rightarrow \uparrow$
- μ_{\downarrow}^{L} : particle: $L \Rightarrow \downarrow$
- $\bar{\mu}_{\downarrow}^{R}$: anti-particle: $R \Rightarrow \downarrow$
- $\bar{\mu}_{\uparrow}^{L}$: anti-particle: $L \Rightarrow \uparrow$
- Charge densities:
$Q_{V} \equiv\left(n_{\uparrow}^{R}+n_{\downarrow}^{L}\right)-\left(\bar{n}_{\downarrow}^{R}+\bar{n}_{\uparrow}^{L}\right)$,
$Q_{A} \equiv\left(n_{\uparrow}^{R}+\bar{n}_{\downarrow}^{R}\right)-\left(n_{\uparrow}^{L}+\bar{n}_{\downarrow}^{L}\right)$,
$Q_{H} \equiv\left(n_{\uparrow}^{R}+\bar{n}_{\uparrow}^{L}\right)-\left(n_{\downarrow}^{L}+\bar{n}_{\downarrow}^{R}\right)$.
- Vortical conductivities:
$\sigma_{V} \simeq \frac{2 \mu_{H} T}{\pi^{2}} \ln 2+\frac{\mu_{V} \mu_{A}}{\pi^{2}}$,
$\sigma_{A} \simeq \frac{T^{2}}{6}+\frac{\mu_{V}^{2}+\mu_{A}^{2}+\mu_{H}^{2}}{2 \pi^{2}}$,
$\sigma_{H} \simeq \frac{2 \mu_{V} T}{\pi^{2}} \ln 2+\frac{\mu_{H} \mu_{A}}{\pi^{2}}$.

VEA, M. N. Chernodub, arXiv:1912.11034 [hep-th].
right-handed helicity (\uparrow)

right-handed helicity (\uparrow) right-handed chirality (\boldsymbol{R})

left-handed chirality (L)

left-handed helicity (\downarrow) left-handed chirality (L)

anti-particles particles

Chirality $\left(\gamma^{5}\right)$

- For particles $\left(U_{R / L}\right)$ and anti-particles $\left(V_{R / L}=i \gamma^{2} U_{R / L}^{*}\right)$:

$$
\begin{array}{ll}
\gamma^{5} U_{R}=+U_{R}, & \gamma^{5} U_{L}=-U_{L} \\
\gamma^{5} V_{R}=-V_{R}, & \gamma^{5} V_{L}=+V_{L} . \tag{1}
\end{array}
$$

- The axial current $J_{A}^{\mu}=\bar{\psi} \gamma^{\mu} \gamma^{5} \psi$ satisfies (classically)

$$
\partial_{\mu} J_{A}^{\mu}=2 i m \bar{\psi} \gamma^{5} \psi,
$$

and is hence conserved when $m=0$.

- $Q_{A}=\int d^{3} x J_{A}^{0}$ can be promoted to a quantum operator:

$$
\begin{equation*}
: \widehat{Q}_{A}:=\sum_{j} \chi_{j}\left(\hat{b}_{j}^{\dagger} \hat{b}_{j}+\hat{d}_{j}^{\dagger} \hat{d}_{j}\right), \quad \chi_{R}=+1, \quad \chi_{L}=-1, \tag{2}
\end{equation*}
$$

which satisfies $\left[\widehat{Q}_{A}, \widehat{H}\right]=0 \Rightarrow$ when $m=0$.

- The polarisation of ψ can be characterised using $h=\frac{\boldsymbol{S} \cdot \boldsymbol{P}}{p}$, with

$$
\begin{equation*}
h U_{\lambda}=\lambda U_{\lambda}, \quad h V_{\lambda}=\lambda V_{\lambda}, \quad \lambda= \pm \frac{1}{2} \tag{3}
\end{equation*}
$$

- The helicity current $J_{H}^{\mu}=\bar{\psi} \gamma^{\mu} h \psi+\overline{h \psi} \gamma^{\mu} \psi$ is conserved $\forall m$:

$$
\partial_{\mu} J_{H}^{\mu}=0
$$

- A comparison between Eqs. (1) and Eq. (3) shows that for a given mode U_{j},

$$
\begin{equation*}
2 \lambda_{j}=\chi_{j} \tag{4}
\end{equation*}
$$

- $Q_{H}=\int d^{3} x J_{H}^{0}$ can also be represented as a quantum operator:

$$
\begin{equation*}
: \widehat{Q}_{H}:=\sum_{j} 2 \lambda_{j}\left(\hat{b}_{j}^{\dagger} \hat{b}_{j}-\hat{d}_{j}^{\dagger} \hat{d}_{j}\right) \tag{5}
\end{equation*}
$$

satisfying $\left[\widehat{Q}_{H}, \widehat{H}\right]=0$.

CPT symmetries

	Q_{V}	Q_{A}	Q_{H}	\boldsymbol{J}_{V}	\boldsymbol{J}_{A}	\boldsymbol{J}_{H}	$\boldsymbol{\omega}$
C	-	+	-	-	+	-	+
P	+	-	-	-	+	+	+
T	+	+	+	-	-	-	-

$$
\begin{aligned}
& : \widehat{Q}_{V}:=\sum_{j}\left(\hat{b}_{j}^{\dagger} \hat{b}_{j}-\hat{d}_{j}^{\dagger} \hat{d}_{j}\right) \\
& : \widehat{Q}_{A}:=\sum_{j} 2 \lambda_{j}\left(\hat{b}_{j}^{\dagger} \hat{b}_{j}+\hat{d}_{j}^{\dagger} \hat{d}_{j}\right) \\
& : \widehat{Q}_{H}:=\sum_{j} 2 \lambda_{j}\left(\hat{b}_{j}^{\dagger} \hat{b}_{j}-\hat{d}_{j}^{\dagger} \hat{d}_{j}\right),
\end{aligned}
$$

- J_{V}^{μ}, J_{A}^{μ} and J_{H}^{μ} form a triad: same T, different C and P.
- New vortical effects $\boldsymbol{J}_{\ell}=\sigma_{\ell} \boldsymbol{\omega}$ allowed by CPT symmetries:

$$
\begin{equation*}
\sigma_{V} \simeq \frac{2 \mu_{H} T}{\pi^{2}} \ln 2+\frac{\mu_{V} \mu_{A}}{\pi^{2}}, \quad \sigma_{A} \simeq \frac{T^{2}}{6}+\frac{\mu^{2}}{2 \pi^{2}}, \quad \sigma_{H} \simeq \frac{2 \mu_{V} T}{\pi^{2}} \ln 2+\frac{\mu_{H} \mu_{A}}{\pi^{2}} . \tag{6}
\end{equation*}
$$

Classical results: RKT

- Fermions in equilibrium can be described using

$$
\begin{equation*}
f=f^{(\text {eq) })}(\beta \cdot k-\alpha), \quad \nabla_{\mu} \beta_{\nu}+\nabla_{\nu} \beta_{\mu}=0, \quad \nabla_{\mu} \alpha=0, \tag{7}
\end{equation*}
$$

where $\beta^{\mu}=T^{-1} u^{\mu}$ and $\alpha=\mu / T$.

- According to the relativistic Boltzmann equation $k^{\mu} \partial_{\mu} f=C[f]$, global equilibrium is achieved when

$$
\begin{equation*}
\nabla_{\mu} \beta_{\nu}+\nabla_{\nu} \beta_{\mu}=0, \quad \nabla_{\mu} \alpha=0 . \tag{8}
\end{equation*}
$$

- One possible solution of the Killing eq. corresponds to rigid rotation:

$$
\begin{equation*}
\beta=\beta_{0}\left(\partial_{t}+\Omega \partial_{\varphi}\right), \tag{9}
\end{equation*}
$$

giving rise to

$$
\begin{equation*}
u=\Gamma\left(\partial_{t}+\Omega \partial_{\varphi}\right), \quad\binom{T}{\mu}=\Gamma\binom{T_{0}}{\mu_{0}}, \quad \Gamma=\left(1-\rho^{2} \Omega^{2}\right)^{-1 / 2} . \tag{10}
\end{equation*}
$$

Kinematic frame for rigid rotation

The kinematic tetrad is given by:
[Becattini, Grossi, PRD 2015]
Velocity: $\quad u=\Gamma\left(e_{\hat{t}}+\rho \Omega e_{\hat{\varphi}}\right), \quad \Gamma=\left(1-\rho^{2} \Omega^{2}\right)^{-1 / 2}$,
Acceleration: $\quad a=\nabla_{u} u=-\rho \Omega^{2} \Gamma^{2} e_{\hat{\rho}}$,
Vorticity: $\quad \omega=\frac{1}{2} \varepsilon^{\hat{\alpha} \hat{\beta} \hat{\gamma} \hat{\sigma}} e_{\hat{\alpha}} u_{\hat{\beta}}\left(\nabla{ }_{\hat{\gamma}} u_{\hat{\sigma}}\right)=\Omega \Gamma^{2} e_{\hat{z}}$,
Fourth vector: $\quad \tau=\varepsilon^{\hat{\alpha} \hat{\beta} \hat{\gamma} \hat{\sigma}} e_{\hat{\alpha}} u_{\hat{\beta}} a_{\hat{\gamma}} \omega_{\hat{\sigma}}=-\rho \Omega^{3} \Gamma^{5}\left(\rho \Omega e_{\hat{t}}+e_{\hat{\varphi}}\right)$.

Quantum rigidly-rotating thermal states

- Thermal states can be constructed using

$$
\langle\hat{A}\rangle=Z^{-1} \operatorname{Tr}(\hat{\varrho} \hat{A}), \quad \hat{\varrho}=\exp \left[-\frac{1}{T_{0}}\left(\widehat{H}-\Omega \widehat{M}^{z}-\sum_{\ell} \mu_{\ell ; 0} \widehat{Q}_{\ell}\right)\right]
$$

where $Z=\operatorname{Tr}(\hat{\varrho})$ is the partition function.

- Expanding $\widehat{\Psi}$ w.r.t. U_{j} and $V_{j}=i \gamma^{2} U_{j}^{*}$,

$$
\begin{equation*}
\widehat{\Psi}(x)=\sum_{j}\left[U_{j}(x) \hat{b}_{j}+V_{j}(x) \hat{d}_{j}^{\dagger}\right] \tag{11}
\end{equation*}
$$

we are interested in the following t.e.v.s:

$$
\begin{equation*}
J_{V}^{\mu}=\left\langle: \widehat{\bar{\Psi}} \gamma^{\mu} \widehat{\Psi}:\right\rangle, \quad J_{A}^{\mu}=\left\langle: \widehat{\bar{\Psi}} \gamma^{\mu} \gamma^{5} \widehat{\Psi}:\right\rangle, \quad J_{H}^{\mu}=\left\langle: \widehat{\bar{\Psi}} \gamma^{\mu} 2 h \widehat{\Psi}:\right\rangle \tag{12}
\end{equation*}
$$

- The charge currents deviate from the perfect fluid form,

$$
\begin{equation*}
J_{\ell}^{\mu}=Q_{\ell} u^{\mu}+\sigma_{\ell}^{\omega} \omega^{\mu}+\sigma_{\ell}^{\tau} \tau^{\mu} \tag{13}
\end{equation*}
$$

- The circular terms are suppressed since $\tau=-\Omega^{3} \Gamma^{5}\left(\rho^{2} \Omega \partial_{t}+\partial_{\varphi}\right)$.

Vortical conductivities: mode sums

- Noting that

$$
\begin{equation*}
\left\langle\hat{b}_{j}^{\dagger} \hat{b}_{j}\right\rangle=n_{\beta_{0}}(\tilde{p}, 1,2 \lambda, 2 \lambda), \quad\left\langle\hat{d}_{j}^{\dagger} \hat{d}_{j}\right\rangle=n_{\beta_{0}}(\tilde{p},-1,2 \lambda,-2 \lambda) \tag{14}
\end{equation*}
$$

where $\tilde{p}=p-\Omega m$ and

$$
\begin{equation*}
n_{\beta_{0}}\left(\tilde{p}, q_{V}, q_{A}, q_{H}\right)=\left[\exp \left(\beta_{0}\left(\tilde{p}-q_{\ell} \mu_{\ell}\right)\right)+1\right]^{-1} \tag{15}
\end{equation*}
$$

...the vortical conductivities can be expressed as mode sums:

$$
\begin{aligned}
\sigma_{V}^{\omega} & =\sum_{\sigma= \pm 1} \sum_{\lambda= \pm \frac{1}{2}} \frac{2 \lambda \sigma}{4 \pi^{2} \Omega} \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} d p n_{\beta_{0}}(\tilde{p}, \sigma, 2 \lambda, 2 \lambda \sigma) \int_{0}^{p} d k p J_{m}^{-}(q \rho) \\
\sigma_{A}^{\omega} & =\sum_{\sigma= \pm 1} \sum_{\lambda= \pm \frac{1}{2}} \frac{1}{4 \pi^{2} \Omega} \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} d p n_{\beta_{0}}(\tilde{p}, \sigma, 2 \lambda, 2 \lambda \sigma) \int_{0}^{p} d k p J_{m}^{-}(q \rho) \\
\sigma_{H}^{\omega} & =\sum_{\sigma= \pm 1} \sum_{\lambda= \pm \frac{1}{2}} \frac{\sigma}{4 \pi^{2} \Omega} \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} d p n_{\beta_{0}}(\tilde{p}, \sigma, 2 \lambda, 2 \lambda \sigma) \int_{0}^{p} d k p J_{m}^{-}(q \rho)
\end{aligned}
$$

where ρ is the distance to the rotation axis, $q=\sqrt{p^{2}-k^{2}}$ and

$$
\begin{equation*}
J_{m}^{-}(q \rho)=J_{m-\frac{1}{2}}^{2}(q \rho)-J_{m+\frac{1}{2}}^{2}(q \rho) \tag{16}
\end{equation*}
$$

Leading order in Ω

- At small Ω,

$$
\begin{equation*}
n_{\beta_{0}}\left(\tilde{p}, q_{V}, q_{A}, q_{H}\right)=n_{\beta_{0}}\left(p, q_{V}, q_{A}, q_{H}\right)-m \Omega \partial_{p} n_{\beta_{0}}\left(p, q_{V}, q_{A}, q_{H}\right) \tag{17}
\end{equation*}
$$

\ldots and the sum over m can be performed using

$$
\begin{equation*}
\sum_{m=-\infty}^{\infty} J_{m}^{-}(q \rho)=0, \quad \sum_{m=-\infty}^{\infty} m J_{m}^{-}(q \rho)=1 \tag{18}
\end{equation*}
$$

such that the k integral is trivially $\int_{0}^{p} d k p \sum_{m} m J_{m}^{-}=p^{2}$.

- Integrating by parts w.r.t. p gives

$$
\begin{aligned}
\sigma_{\ell}^{\omega} & =\sum_{\sigma= \pm 1} \sum_{\lambda= \pm \frac{1}{2}} \frac{2 \lambda q_{\ell}}{2 \pi^{2}} \int_{0}^{\infty} d p p n_{\beta_{0}}(p, \sigma, 2 \lambda, 2 \lambda \sigma) \\
& =-\sum_{\sigma= \pm 1} \sum_{\lambda= \pm \frac{1}{2}} \frac{q_{A} q_{\ell} T^{2}}{2 \pi^{2}} \operatorname{Li}_{2}\left[-\exp \left(\frac{\boldsymbol{q} \cdot \boldsymbol{\mu}}{T}\right)\right]
\end{aligned}
$$

where $\left(q_{V}, q_{A}, q_{H}\right)=(\sigma, 2 \lambda, 2 \lambda \sigma)$.

Axial/helical vortical effects: Consitutive relations

- For high temperatures, the vortical conductivities are

$$
\begin{aligned}
& \sigma_{V}^{\omega}=\quad \frac{2 \mu_{H} T}{\pi^{2}} \ln 2+\frac{\mu_{A} \mu_{V}}{\pi^{2}}+O\left(T^{-1}\right), \\
& \sigma_{A}^{\omega}=\frac{T^{2}}{6} \quad+\frac{\mu_{V}^{2}+\mu_{A}^{2}+\mu_{H}^{2}}{2 \pi^{2}}+O\left(T^{-1}\right), \\
& \sigma_{H}^{\omega}=\quad \frac{2 \mu_{V} T}{\pi^{2}} \ln 2+\frac{\mu_{A} \mu_{H}}{\pi^{2}}+O\left(T^{-1}\right) .
\end{aligned}
$$

- At finite T and $\mu_{V}, \boldsymbol{\omega}$ generates both \boldsymbol{J}_{A} and \boldsymbol{J}_{H} !

Particle/anti-particle polarisation from $\boldsymbol{J}_{A} \pm \boldsymbol{J}_{H}$

- Considering now a system with $\boldsymbol{\Omega}_{\mathrm{sys}}=\boldsymbol{n}_{\mathrm{sys}}\left|\boldsymbol{\Omega}_{\mathrm{sys}}\right|$ and $J_{\ell} \equiv \boldsymbol{J}_{\ell} \cdot \boldsymbol{n}$, we can identify:

$$
\begin{aligned}
& J_{V}=J_{\uparrow}+J_{\downarrow}-\bar{J}_{\uparrow}-\bar{J}_{\downarrow}, \\
& J_{A}=J_{\uparrow}+\bar{J}_{\uparrow}-J_{\downarrow}-\bar{J}_{\downarrow}, \\
& J_{H}=J_{\uparrow}+\bar{J}_{\downarrow}-J_{\downarrow}-\bar{J}_{\uparrow},
\end{aligned}
$$

where $(\uparrow, \downarrow) \equiv$ (right-, left-)handed helicity, while \equiv anti-particles.

- The net helicity current of particles and anti-particles can be obtained as

$$
\begin{equation*}
J_{\uparrow}-J_{\downarrow}=\frac{J_{A}+J_{H}}{2}, \quad \bar{J}_{\uparrow}-\bar{J}_{\downarrow}=\frac{J_{A}-J_{H}}{2} \tag{19}
\end{equation*}
$$

- The polarisation of (light flavour) quarks / anti-quarks can be related to the above via

$$
\begin{equation*}
\mathcal{P}_{q}=\kappa_{q j}\left(J_{\uparrow}-J_{\downarrow}\right), \quad \mathcal{P}_{\bar{q}}=\kappa_{\bar{q} \bar{j}}\left(\bar{J}_{\uparrow}-\bar{J}_{\downarrow}\right) \tag{20}
\end{equation*}
$$

where $\kappa_{q j}=\kappa_{\bar{q} \bar{j}}$ are (C-even) kinematical factors.

(Anti-)hyperon polarisation from q / \bar{q}

(a)

(b)

- The discussion above applies to $q=(u, d)$. [strange-neutrality requires $\mu_{s}=0$]
- \mathcal{P}_{Λ} comes predominantly from \mathcal{P}_{s}. [QCDSF Collaboration, PLB 545 (2002) 112.]
- \mathcal{P}_{q} can be transferred to $\mathcal{P}_{\bar{s}}$ via intermediate K_{S}^{0}, K^{+}states:

$$
\begin{equation*}
\mathcal{P}_{s}=\kappa_{s \bar{q}} \mathcal{P}_{\bar{q}}, \quad \mathcal{P}_{\bar{s}}=\kappa_{\bar{s} q} \mathcal{P}_{q}, \quad \kappa_{s \bar{q}}=\kappa_{\bar{s} q} \tag{21}
\end{equation*}
$$

- The intermediate Kaons donate their \bar{s} quarks to the antihyperon:

$$
\begin{equation*}
\mathcal{P}_{\Lambda}=\kappa_{\Lambda s} \mathcal{P}_{s}, \quad \mathcal{P}_{\bar{\Lambda}}=\kappa_{\bar{\Lambda} \bar{s}} \mathcal{P}_{\bar{s}}, \quad \kappa_{\Lambda s}=\kappa_{\bar{\Lambda} \bar{s}} \tag{22}
\end{equation*}
$$

Freezeout calculation

a, GeV	b, GeV	c, GeV	d, GeV	f, GeV^{-1}
$0.166(2)$	$0.139(16)$	$0.053(21)$	$1.308(28)$	$0.273(8)$

- Applying the vortical effects for $\mathcal{P}_{q / \bar{q}}$, we get

$$
\begin{equation*}
\mathcal{P}_{\Lambda}=\frac{1}{2} \kappa_{\Lambda s} \kappa_{s \bar{q}} \kappa \bar{q} \bar{j}\left(\sigma_{A}^{\omega}-\sigma_{H}^{\omega}\right) \omega, \quad \mathcal{P}_{\bar{\Lambda}}=\frac{1}{2} \kappa_{\bar{\Lambda} \bar{s}} \kappa_{\bar{s} q} \kappa q j\left(\sigma_{A}^{\omega}+\sigma_{H}^{\omega}\right) \omega . \tag{23}
\end{equation*}
$$

- At freezeout,
[Cleymans, Oeschler, Redlich, Wheaton, PRC 73 (2006) 034905]

$$
\begin{equation*}
T \equiv T\left(\mu_{B}\right)=a-b \mu_{B}^{2}-c \mu_{B}^{4}, \quad \mu_{B}(\sqrt{s})=\frac{d}{1+f \sqrt{s}} \tag{24}
\end{equation*}
$$

- The total polarisation can be obtained by integrating \mathcal{P} over the FO hypersurface:

$$
\begin{equation*}
\mathcal{P}_{q / \bar{q}}=\frac{1}{2} \kappa_{q j}\left(\sigma_{A}^{\omega} \pm \sigma_{H}^{\omega}\right) \int d \Sigma_{\mu} \omega^{\mu} \tag{25}
\end{equation*}
$$

Result

- The anti-hyperon / hyperon polarisation ratio becomes simply

$$
\begin{equation*}
\mathcal{R}_{\bar{\Lambda} / \Lambda}=\frac{\mathcal{P}_{\bar{\Lambda}}}{\mathcal{P}_{\Lambda}}=\frac{\mathcal{P}_{q}}{\mathcal{P}_{\bar{q}}}=\frac{\sigma_{A}^{\omega}+\sigma_{H}^{\omega}}{\sigma_{A}^{\omega}-\sigma_{H}^{\omega}}=1+\frac{8 \ln 2}{\pi^{2}} \frac{\mu_{B}}{T}+O\left(\mu_{B}^{2} / T^{2}\right) . \tag{26}
\end{equation*}
$$

Conclusion

- The (V, A, H) triad uncovers the helical vortical effects (HVE).
- \boldsymbol{J}_{A} generated at finite T and/or finite μ_{V}, even when $\mu_{A}=\mu_{H}=0$.
- \boldsymbol{J}_{H} generated at finite T and μ_{V}, even when $\mu_{A}=\mu_{H}=0$.
- Polarisation of light quarks /antiquarks can be expressed via $J_{A} \pm J_{H}$.
- Assuming $\mathcal{P}_{q / \bar{q}} \rightarrow \mathcal{P}_{\bar{s} / s} \rightarrow \mathcal{P}_{\bar{\Lambda} / \Lambda}$, it is easy to derive $\mathcal{R}_{\bar{\Lambda} / \Lambda} \simeq 1+\frac{8 \ln 2}{\pi^{2}} \frac{\mu_{B}}{T}$.

Conclusion

- The (V, A, H) triad uncovers the helical vortical effects (HVE).
- \boldsymbol{J}_{A} generated at finite T and/or finite μ_{V}, even when $\mu_{A}=\mu_{H}=0$.
- \boldsymbol{J}_{H} generated at finite T and μ_{V}, even when $\mu_{A}=\mu_{H}=0$.
- Polarisation of light quarks /antiquarks can be expressed via $J_{A} \pm J_{H}$.
- Assuming $\mathcal{P}_{q / \bar{q}} \rightarrow \mathcal{P}_{\bar{s} / s} \rightarrow \mathcal{P}_{\bar{\Lambda} / \Lambda}$, it is easy to derive $\mathcal{R}_{\bar{\Lambda} / \Lambda} \simeq 1+\frac{8 \ln 2}{\pi^{2}} \frac{\mu_{B}}{T}$.

THANK YOU!

