Early quark deconfinement in compact stars & heavy-ion collisions at NICA/FAIR energies

David Blaschke^{a,b,c}, Tobias Fischer^a, Andreas Bauswein^d & Mateusz Cierniak^a

a – University Wroclaw, b - JINR Dubna, c – NRNU (MEPhI) Moscow, d – GSI Darmstadt

Grant No. UMO 2019 / 33 / B / ST9 / 03059

Grant No. 17-12-01427

Russian Science Foundation

NCE AND TECHNOLOGY

Early quark deconfinement in compact star astrophysics & upcoming experiments at NICA

David Blaschke^{a,b,c}, Tobias Fischer^a, Andreas Bauswein^d & Mateusz Cierniak^a a – University Wroclaw, b - JINR Dubna, c – NRNU (MEPhI) Moscow, d – GSI Darmstadt

- 1. Introduction: Recent relevant multi-messenger observations
- 2. New paradigm: Only hybrid stars fulfil new M-R constraints
- 3. Outlook: Supernovae & Mergers in the QCD phase diagram \rightarrow Constraints for the Onset of Deconfinement?

42th Int. School on Nuclear Physics, Erice, 19. September 2021

Grant No. UMO 2019 / 33 / B / ST9 / 03059

Russian Science Foundation

NICER radius measurement on PSR J0740+6620

New, large NICER radius for J0740: Riley et al., 2105.06980; Miller et al., 2105.06979

Attention:

Above ~1.5 M_sun hyperons Appear in the center of neutron stars.

Non-hyperonic nuclear EoS (APR) Are no longer applicable for High-mass neutron stars ~2M_sun ! --

Microscopic EoS need high-density Stiffening of the hypernuclear EoS, e.g., by multi-pomeron interactions.

Yamamoto et al., PRC 96 (2017)

Relativistic mean-field EoS have a Maximal NS radius R_2.0 ~ 13 km

Way out:

early deconfinement to color superconducting, stiff quark matter !

Shall the APR EoS be abandoned?

Y. Yamamoto, H. Togashi, T. Tamagawa, T. Furumoto, N. Yasutake, T. Rijken, PRC 96 (2017)

0.0

Nuclear saturation properties, when compared to APR. \rightarrow Neutron star radii R(M< 2 M sun) > 12 km !!

Old paradigm: hybrid stars smaller and lighter

Works on Special Point with M. Cierniak: 2012.15785 & 2009.12353; EPJ ST 229, 3663 (2020)

Dense quark plasma in color superconducting phase: nINJL mode

Constant-speed-of-sound (CSS) Equation of state (EoS)

$$p(\mu) = A(\mu/\mu_0)^{1+c_s^{-2}} - B,$$
$$p = c_s^2 \varepsilon - (1 + c_s^2) B$$

Perfect mapping nINJL \rightarrow CSS , Antic et al., arxiv:2105.00029

Maxwell construction with (1st order phase transition) Relativistic Density Functional EoS "DD2pxy" by S. Typel With density-dependent coupling And excluded volume v=x.y fm^3

2.6 M_sun object can by a hybrid neutron star! With early onset of deconfinement and twins! NICER radius measurement on PSR J0740+6620 will put constraints on this too!

New paradigm: hybrid stars larger and heavier

Work based on Special Point location with M. Cierniak, in preparation

Dense quark plasma in color
superconducting phase: nINJL model2.5Constant-speed-of-sound (CSS)
Equation of state (EoS)2.0GW 170817 exc
(Bauswein et all)

$$p(\mu) = A(\mu/\mu_0)^{1+c_s} - B$$
$$p = c_s^2 \varepsilon - (1 + c_s^2)B$$

Perfect mapping nINJL \rightarrow CSS , Antic et al., arxiv:2105.00029

Maxwell construction with (1st order phase transition) Relativistic Density Functional EoS "DD2-Y-T" by S. Typel With density-dependent coupling

2.5 M_sun object can by a hybrid neutron star! With early onset of deconfinement! NICER radius measurement on PSR J0740+6620 best described by hybrid stars!

CEP in the QCD phase diagram: HIC vs. Astrophysics

A. Andronic, D. Blaschke, et al., "Hadron production ...", Nucl. Phys. A 837 (2010) 65 - 86

Binary neutron star merger simulation

S. Blacker & A. Bauswein (GSI Darmstadt), 1.35 M_sun + 1.35 M_sun https://www.gsi.de/fileadmin/theorie/simulation-neutron-star-merger.mp4

Population of the QCD phase diagram with mixed phase, 6... 25 ms

S. Blacker, A. Bauswein, et al., Phys. Rev. D 102 (2020) 123023

Binary neutron star merger simulation

S. Blacker & A. Bauswein (GSI Darmstadt), 1.35 M_sun + 1.35 M_sun https://www.gsi.de/fileadmin/theorie/simulation-neutron-star-merger.mp4

Population of the QCD phase diagram with mixed phase, 6... 25 ms

EoS for applications to supernova and merger Simulation:

CompOSE

With deconfinement:

https://compose.obspm.fr/eos/166

S. Blacker, A. Bauswein, et al., Phys. Rev. D 102 (2020) 123023

Hybrid star formation in postmerger phase

Hybrid star formation in postmerger phase

Strong phase transition in postmerger GW signal, A. Bauswein et al., PRL 122 (2019) 061102; [arxiv:1809.01116]

Strong deviation from $f_{peak} - R_{1.6}$ relation signals **strong phase transition in** NS merger! Complementarity of f_{peak} from postmerger with tidal deformability $\Lambda_{1.35}$ from inspiral phase.

Hybrid star formation in postmerger phase

Strong PT in postmerger GW signal, S. Blacker et al., arxiv:2006.03789, PRD102 (2020) 123023

Dominant postmerger frequency f_{peak} vs. tidal deformability $\Lambda_{1.35}$ from inspiral phase: Results from hybrid models appear as **outliers** of the grey band (maximal deviation of purely hadronic models from a least squares fit) = signalling a **strong phase transition in** NS !

GW signal of deconfinement in merger of hybrid stars

Merger of hybrid stars with early phase transition: Bauswein & Blacker, EPJ ST 229 (2020)

The combination of stiff hadronic EoS (DD2) and string-flip (SF) model allows for early onset of deconfinement in low-mass neutron stars and even third-family solutions (mass twins). For these cases, the event GW170817 could have been a **merger of two hybrid stars**! Also in these cases (red dots in above figure) a **significant deviation** from the grey band of Purely hadronic star mergers without a phase transition is obtained!

Deconfinement transition as SN explosion mechanism

T. Fischer, N.-U. Bastian et al., Quark deconfinement as supernova engine of massive blue Supergiant star explosions, Nature Astronomy 2 (2018) 980-986; arxiv:1712.08788

Population of the QCD Phase Diagram in Mergers & SNe

Binary NS merger, 1.35 M_sun + 1.35 M_sun

SN explosion, 50 M_sun

S. Blacker, A. Bauswein et al., Phys. Rev. D102 (2020) 123023; arxiv:2006.03789 T. Fischer et al., Nat. Astron. 2 (2018) 980; arxiv:1712.08788

Population of the QCD Phase Diagram

S. Blacker, A. Bauswein et al., PRD 102 (2020) 123023 arXiv:2006.03789 T. Fischer et al., Nat. Astron. 2 (2018) 980 arXiv:1712.08788 H.W. Barz, B. Friman et al., PRD 40 (1989) 157 GSI Preprint, GSI-89-13

CEP in the QCD phase diagram: HIC vs. Astrophysics

A. Andronic, D. Blaschke, et al., "Hadron production ...", Nucl. Phys. A 837 (2010) 65 - 86

CEP in the QCD phase diagram: HIC vs. Astrophysics

P. Senger, Phys. Scripta 96 (2021) 054002; and references therein !

The NICA Facility at JINR Dubna NICA NICA construction live

NICA Main parameters of accelerator complex

Nuclotron

Parameter	SC synchrotron	
particles	∱p, Îd, nuclei (Au, Bi,)	
max. kinetic energy, GeV/u	10.71 ([↑] p); 5.35 ([↑] d) 3.8 (<mark>Au</mark>)	
max. mag. rigidity, Tm	38.5	
circumference, m	251.52	
vacuum, Torr	10 -9	
intensity, Au /pulse	1 10 ⁹	
Booster		
	value	
ion species	A/Z <u>≤</u> 3	
max. energy, MeV/u	600	
magnetic rigidity, T m	1.6 – 25.0	
circumference, m	210.96	
vacuum, Tor	10-11	
intensity, Au /p	1.5 10 ⁹	

The Collider

Design parameters, Stage II

45 T*m, 11 GeV/u for Au⁷⁹⁺

Ring circumference, m	503,04
Number of bunches	22
r.m.s. bunch length, m	0,6
β, m	0,35
Energy in c.m., Gev/u	4-11
<i>r.m.s.</i> ∆p/p, 10 ⁻³	1,6
IBS growth time, s	1800
Luminosity, cm ⁻² s ⁻¹	1x10 ²⁷

Stage I:

- without ECS in Collider, with stochastic cooling
- reduced number of RF
- reduced luminosity

Collision system limited by source. *Now Available:* C(A=12), N(A=14), Ne(A=20), Ar(A=40), Fe(A=56), Kr(A=78-86), Xe(A=124-134), Bi(A=209)

Booster fully assembled in the tunnel **Commissioning and test ongoing** for beam diagnostics, beam acceleration, electron cooling, power supply, magnets, cryogenics

Experiment with BM@N: Short-Range Correlations (SRC)

Experiment at BM@N with a 4A GeV C-beam: ${}^{12}C + p \rightarrow 2p + {}^{10}_{4}Be + p (pp SRC)$

First fully exclusive measurement in inverse kinematics probing the residual A-2 nuclear system!

M. Patsyuk et al., arXiv:2102.02626 Accepted for publication in **nature physics**

Experiment with BM@N: A's in C + C, Al, Cu at 4A GeV

Interior of MPD Hall

Electromagnetic Calorimeter (ECAL)

read-out: WLS fibers + MAPD

 $\sigma(E)$ better than 5% @ 1 GeV

- Pb+Sc "Shashlyk"
- Segmentation (4x4 cm²)

Barrel ECAL = <u>38400</u> ECAL towers (2x25 half-sectors x 6x8 modules/half-sector x 16 towers/module)

So far ~300 modules (16 towers each) = 3 sectors are produced Another 3 sectors are planned to be completed by May 2021 Chinese collaborators will produce 8 sectors by the end of 2021 25% of all modules are produced by JINR (production area in Protvino) 75% produced in China, currently funding is secured for approx. 25% $L \sim 35 \text{ cm}$ (~ 14 X_o) time resolution ~500 ps

Projective geometry

Electromagnetic probes in ECAL

Hadroproduction with MPD

- Particle spectra, yields & ratios are sensitive to bulk fireball properties and phase transformations in the medium
- Uniform acceptance and large phase coverage are crucial for precise mapping of the QCD phase diagram
 - 0-5% central Au+Au at 9 GeV from the PHSD event generator, which implements partonic phase and CSR effects
 Recent reconstruction chain, combined dE/dx+TOF particle ID, spectra analysis

- MPD provides large phase-space coverage for identified pions and kaons (> 70% of the full phasespace at 9 GeV)
- Hadron spectra can be measured from p₁=0.2 to 2.5 GeV/c
- Extrapolation to full p_T-range and to the full phase space can be performed exploiting the spectra shapes (see BW fits for p_T-spectra and Gaussian for rapidity distributions)

Ability to cover full energy range of the "horn" with consistent acceptance

Strange and multi-strange baryons

Stage'1 (TPC+TOF): Au+Au @ 11 GeV, PHSD + MPDRoot reco. ×10⁶ $\times 10^3$ Entries / 1 MeV/c² 40-Entries / 2 MeV/c Entries / 1.5 MeV/c² $\Xi \rightarrow \Lambda + \pi$ 400 $\Lambda \rightarrow p + \pi$ $\Omega^{-} \rightarrow \Lambda + K^{-}$ 30 300 Mass = 1.3216Mass = 1.6728Mass = 1.1160Sigma = 0.0028Sigma = 0.0025Sigma = 0.001920-S/B = 3.1S/B = 3.4S/B = 4.8200 S/(S+B = 32.7)0.5 Eff. = 1.8%Eff. = 4.5%Eff = 0.6%10-100 1.35 1.08 1.18 1.3 1.4 1.45 1.1 1.12 1.14 1.16 1.65 1.7 1.75 Minv, GeV/c² M_{inv}, GeV/c² Miny, GeV/c² ×10³ Entries / 2 MeV/c² 0000 100 6000 Entries / 1 MeV/c² 200 Entries / 2 MeV/c² $\overline{\Lambda} \rightarrow \overline{p} + \pi^+$ $\overline{\Xi}^+ \rightarrow \overline{\Lambda} + \pi^+$ $\overline{\Omega}^+ \rightarrow \overline{\Lambda} + K^+$ 150 Mass = 1.6730 Mass = 1.3216Mass = 1.1160Sigma = 0.0026Sigma = 0.0025Sigma = 0.001850 100 S/B = 3.0S/B = 3.8S/B = 4.5S/VS+B = 18.2S/VS+B = 104.32000 Eff. = 8.8%Eff. = 1.0%Eff. = 3.1%1.25 1.08 1.1 1.12 1.14 1.16 1.18 1.3 1.35 1.4 1.45 1.64 1.66 1.68 1.7 1.72 Minv, GeV/c² M_{inv}, GeV/c² Miny, GeV/c² particle anti-A anti-Ξ* anti $-\Omega^+$ Ξ Ω -Λ

1.5 · 106

8.0 · 104

7.104

1.5 · 104

yield in 10 weeks

3.108

3.5 · 106

NICA Facility running plan

- Extensive commissioning of Booster accelerator
- Heavy-ion (Fe/Kr/Xe) run of full Booster+Nuclotron setup
- Year 2022:
 - Completion of NICA Collider and transfer lines
- Year 2023:
 - Initial run of NICA with Bi+Bi @ 9.2 AGeV (other energies a second priority)
 - Goal to reach luminosity of 10²⁵ cm⁻²s⁻¹
- Year 2024:
 - Goal to have Au+Au collisions and acceleration in NICA (up to 11 AGeV)
- Beyond 2024:
 - Maximizing luminosity, possibility of collision energy and system size scan

2nd CEP in QCD phase diagram: Quark-Hadron Continuity?

T. Schaefer & F. Wilczek, Phys. Rev. Lett. 82 (1999) 3956

C. Wetterich, Phys. Lett. B 462 (1999) 164

T. Hatsuda, M. Tachibana, T. Yamamoto & G. Baym, Phys. Rev. Lett. 97 (2006) 122001

2nd or no CEP in QCD phase diagram: Crossover all over ?

From: T. Kojo, "Delineating the properties of neutron star matter in cold, dense QCD", PoS Lattice2019, 244

Conclusions

- First observations of binary mergers open new possibilities to constrain properties of the quark-gluon plasma at low temperatures and high baryon densities. Hybrid EoS are developed that allow to estimate quark plasma parameters in hypermassive (proto-) neutron stars
- GW170817: narrow window of small radii at 1.4 M_sun (Capano et al.: 10.4< R_1.4[km] <11.9) strongly suggests an early onset of deconfinement with a critical density n_c < 2 n_0 and an onset mass M_onset < 1.0 M_sun [Blaschke & Cierniak: 2012.15785]
- GW190814: the lighter object in the extremely asymmetric merger with its 2.6 M_sun can be either the heaviest neutron star or the lightest black hole. The central baryon density in such high-mass hybrid stars reaches 5.3 n_0. Our EoS allows it to be a hybrid star ...
- NICER radius measurement on PSR J0740+6620 triggers a new paradigm: NS with M> 2M_sun should have a deconfined quark matter core when R_2.0 > 13 km !
 - Such a result is similar to the "two families" scenario of Drago & Pagliara, PRD 102 (2020); For the baryon density at the center of a star with 2.1 M_sun we find n < 5 n_0, n_0=0.15 fm^-3.
- Consequences for supernova simulations: A new lower limit for onset of deconfinement?
- Consequences for merger simulations: Check the GW signal for deconfinement !
- Good news for entering a color superconducting quark matter phase at NICA (BMaN, MPD)