QCD in the heavy + dense regime

Owe Philipsen

Goethe University Frankfurt, Germany

A disclaimer...

"Anyone who wants to analyze the properties of matter in a real problem might want to start by writing down the fundamental equations and then try to solve them mathematically. Although there are people who try to use such an approach, these people are the failures in the field...."

Richard Feynman

That is the program pursued here.... necessary for results based on QCD!

Goals here:

- Understand how bulk nuclear physics arises qualitatively from QCD
- Identify and constrain possible effective theories

Motivation: why heavy QCD?

- The sign problem of lattice QCD
- Static fermion determinant ($m=\infty$) known exactly: HDQCD better approximation than quenched, corrections computable; here: move also into finite mass plane
- Sign problem milder than in full QCD, MC possible [Blum, Hetrick, Toussaint, PRD 96]
- Testing ground for new algorithms (complex Langevin, density of states,...)
- Analytic approach viable (no sign problem)

- Interest in deconfinement transition:

Disentangle Debye screening (medium) from screening by dynamical quarks (vacuum)

What is known at zero density?

Pure gauge:

- Global Z(3) center symmetry Order parameter: Polyakov loop

$$
\begin{gathered}
\langle L\rangle=\frac{Z_{Q}}{Z}=\exp \left[-\left(F_{Q}-F_{0}\right) / T\right] \\
\langle L\rangle=0 \Leftrightarrow F_{Q}=\infty
\end{gathered}
$$

Deconfinment transition: $\langle L\rangle \neq 0$
spontaneous breaking of $Z(3)$ center symmetry

- $T_{c} \approx 270-300 \mathrm{MeV}$
(uncertainty from scale setting, not calculation), equation of state [Boyd et al., NPB 96]
- Latent heat: [WHOT, PTEP 2I] $\frac{\Delta \epsilon}{T^{4}}=0.95(7)$

Including dynamical quarks

Z(3) symmetry explicitly broken by $\frac{1}{m_{q}}$

$$
\langle L\rangle \neq 0 \quad \text { always! }
$$

- Deconfinement transition weakens, disappears at $\frac{1}{m_{q}^{c}} \Leftrightarrow m_{\pi}^{c}$

- Lattice determination in progress: $m_{\pi}^{c} \approx 4 \mathrm{GeV}$ [WHOT, Frankfurt]

Dyson-Schwinger study $\quad m_{q}^{c} \approx 460 \mathrm{MeV}$ [Fischer, Luecker, Pawlowski]

Cuteri, O.P., Schön, Sciarra, PRD 21

Effective lattice theory for heavy + dense QCD

Two-step treatment:
I. Calculate effective theory analytically
II. Simulate effective theory

Step I.: split temporal and spatial link integrations:

$$
Z=\int D U_{0} D U_{i} \operatorname{det} Q e^{S_{g}[U]} \equiv \int D U_{0} e^{-S_{e f f}\left[U_{0}\right]}=\int D L e^{-S_{e f f}[L]}
$$

Spatial integration after analytic strong coupling and hopping expansion $\sim \frac{1}{g^{2}}, \frac{1}{m_{q}}$

Step II.: mild sign problem of effective theory

Analytic solution by linked cluster expansion

Starting point: Wilson's lattice action

Pure gauge part: character expansion

$$
\begin{aligned}
u(\beta) & =\frac{\beta}{18}+\frac{\beta^{2}}{216}+\ldots<1 \\
\beta & =\frac{2 N_{c}}{g^{2}} \quad T=\frac{1}{a N_{\tau}}
\end{aligned}
$$

Fermion determinant: hopping expansion

$$
\kappa=\frac{1}{2 a m+8}
$$

both convergent series expansions!

Generates couplings over all distances, n-pt. couplings, higher reps....:

$$
\lambda\left(u, N_{\tau} \geq 5\right)=u^{N_{\tau}} \exp \left[N_{\tau}\left(4 u^{4}+12 u^{5}-14 u^{6}-36 u^{7}+\frac{295}{2} u^{8}+\frac{1851}{10} u^{9}+\frac{1055797}{5120} u^{10}\right)\right]
$$

Effective theory with leading interactions

$$
\begin{array}{rlr}
Z= & \int \mathcal{D} W \prod_{\langle\mathbf{x}, \mathbf{y}\rangle}\left[1+\lambda\left(L(\mathbf{x}) L(\mathbf{y})^{*}+L(\mathbf{x})^{*} L(\mathbf{y})\right)\right] & \text { pure gauge } \\
& \times \prod_{\mathbf{x}}\left[1+h_{1} L(\mathbf{x})+h_{1}^{2} L(\mathbf{x})^{*}+h_{1}^{3}\right]^{2 N_{f}}\left[1+\bar{h}_{1} L(\mathbf{x})+\bar{h}_{1}^{2} L(\mathbf{x})^{*}+\bar{h}_{1}^{3}\right]^{2 N_{f}} & \text { stat. det. } \\
& \times \prod_{\langle\mathbf{x}, \mathbf{y}\rangle}\left[1-h_{2} N_{f} \operatorname{tr}\left(\frac{h_{1} W(\mathbf{x})}{1+h_{1} W(\mathbf{x})}\right) \operatorname{tr}\left(\frac{h_{1} W(\mathbf{y})}{1+h_{1} W(\mathbf{y})}\right)\right] & \text { kinetic det. } \\
& \times\left[1-h_{2} N_{f} \operatorname{tr}\left(\frac{\bar{h}_{1} W(\mathbf{x})^{\dagger}}{1+\bar{h}_{1} W(\mathbf{x})^{\dagger}}\right) \operatorname{tr}\left(\frac{\bar{h}_{1} W(\mathbf{y})^{\dagger}}{1+\bar{h}_{1} W(\mathbf{y})^{\dagger}}\right)\right] \ldots \\
\ldots(\mathbf{x})=\prod_{\tau=0}^{N_{\tau}-1} U_{0}(\tau, \mathbf{x}), \quad L(\mathbf{x})=\operatorname{tr}(W(\mathbf{x})), \quad \mathcal{D} W=\prod_{\mathbf{x} \in \Lambda_{s}} \mathrm{~d} W(x) .
\end{array}
$$

This is a 3d continuous spin model!

- mild sign problem, MC simulable
- series expansion in eff. couplings

Yang-Mills deconfinement trans. from series expansion

Solution of effective theory

order of expansion

Two calculations:

1. by "hand"
(Q. Pham, J. Scheunert, GU)
2. automatic graph generation (J. Kim, GU)

Conversion to 4d YM

Deconfinement transition for heavy, dynamical QCD

Deconfinement transition at finite density

[Fromm, Langelage, Lottini, O.P. JHEP (2012)]

Same phase structure: continuum effective Polyakov loop theories, benchmarking possible!
[Fischer, Lücker, Pawlowski PRD (20|5); Lo, Friman, Redlich PRD (20|4)]

Cold and dense QCD: static strong coupling limit

[Fromm, Langelage, Lottini, Neuman, O.P., PRL (2013)]
$\mathrm{T}=0$: anti-fermions decouple:

$$
\begin{aligned}
& h_{1}=\left(2 \kappa e^{a \mu}\right)^{N_{\tau}}=e^{\frac{\mu-m}{T}} \\
& \bar{h}_{1}=\left(2 \kappa e^{-a \mu}\right)^{N_{\tau}}=e^{\frac{-\mu-m}{T}}
\end{aligned}
$$

$$
Z(\beta=0) \xrightarrow{T \rightarrow 0}\left[\prod_{f} \int d W\left(1+h_{1} L+h_{1}^{2} L^{*}+h_{1}^{3}\right)^{2}\right]^{V}=z_{0}^{V}
$$

free baryon gas (HRG) emerges!
cf. finite T [Langelage, O.P. JHEP (20I0)]
spin $3 / 2,0$
Silver blaze phenomenon + Pauli principle: $\quad \lim _{T \rightarrow 0} a^{3} n=\left\{\begin{array}{c}0, \\ 2 N_{c}, \\ \hline\end{array} \quad \mu>m\right.$
Ist order phase transition from vacuum to saturated quark crystal
$N_{f}=2$: The baryon gas (or liquid)

$$
z_{0}=\left(1+4 h_{d}^{3}+h_{d}^{6}\right)+\left(6 h_{d}^{2}+4 h_{d}^{5}\right) h_{u}+\left(6 h_{d}+10 h_{d}^{4}\right) h_{u}^{2}+\left(4+20 h_{d}^{3}+4 h_{d}^{6}\right) h_{u}^{3}
$$

$$
+\left(10 h_{d}^{2}+6 h_{d}^{5}\right) h_{u}^{4}+\left(4 h_{d}+6 h_{d}^{4}\right) h_{u}^{5}+\left(1+4 h_{d}^{3}+h_{d}^{6}\right) h_{u}^{6}
$$

"Di-baryons": 3 spin I triplets, I spin 0 singlet, $\Delta^{++} \Delta^{0}, \quad p p$

Complete spin-flavour structure of baryons (mesons for finite T or isospin chemical potential)

> Gauge and Lorentz symmetries!

Cold and dense regime: onset of baryon matter

Accuracy: $\sim u^{5} \kappa^{8}$

[Glesaaen, Neuman, O.P., JHEP I5]

- Continuum approach ~a as expected for Wilson fermions
- Cut-off effects grow rapidly beyond onset transition: lattice saturation!
- Finer lattice necessary for larger density!

Binding energy per baryon, strong coupling limit

$$
\epsilon \equiv \frac{e-n_{B} m_{B}}{n_{B} m_{B}} \stackrel{L O}{=}-\frac{4}{3} \frac{1}{a^{3} n_{B}}\left(\frac{z_{3}}{z_{0}}\right)^{2} \kappa^{2}
$$

Light quarks: 1st order onset transition + endpoint

$$
\kappa=0.12
$$

phase coexistence: first order
for higher $T=\frac{1}{a N_{T}}$ crossover
nuclear liquid gas transition!

Phase diagram of heavy QCD

Equation of state for heavy baryon matter

[Glesaaen, Neuman, O.P., JHEP I5]

EoS fitted by polytrope, non-relativistic fermions!
Can we understand the pre-factor? Interactions, mass-dependence...

QCD for a large number of colours

Definition,'t Hooft 1974: $\quad N_{c} \longrightarrow \infty, \quad g^{2} N_{c}=$ const.

- suppresses quark loops in Feynman diagrams
- mesons are free;
corrections: cubic interactions $\sim 1 / \sqrt{N_{c}}$, quartic int. $\sim 1 / N_{c}$
- meson masses $\sim \Lambda_{Q C D}$
- baryons: N_{c} quarks, baryon masses $\sim N_{c} \Lambda_{Q C D}$
- baryon interactions: $\sim N_{c}$

Witten 1979

Conjectures for the QCD phase diagram

Pictures from [McLerran, Pisarski Nucl.Phys.A 796 (2007)]

Quarkyonic matter in momentum space:
Fermi sea of quarks, surrounded by Fermi shell of baryons;
$p_{F} \sim \mu$ interpolates from purely baryonic to quark matter

From conjecture to calculation

[O.P., Scheunert JHEP (2019)]

Investigate N_{c}-dependence in effective theory
"In principle" straight-forward: use character expansion for general N_{c} and recompute all integrals for general N_{c}, without approximation

For example, static strong coupling limit, baryon gas:

$$
Z(\beta=0)=\left(1+\left(N_{c}+1\right) h_{1}^{N_{c}}+h_{1}^{2 N_{c}}\right)^{V}
$$

Baryonic spin degeneracy depends on number of colours!

Thermodynamic functions for large Nc

Strong coupling limit:

Order hopping expansion		κ^{0}	κ^{2}	κ^{4}
$h_{1}<1$	$a^{4} p$	$\sim \frac{1}{6 N_{\tau}} N_{c}^{3} h_{1}^{N_{c}}$	$\sim-\frac{1}{48} N_{c}^{7} h_{1}^{2 N_{c}}$	$\sim \frac{3 N_{\tau} \kappa^{4}}{800} N_{c}^{8} h_{1}^{2 N_{c}}$
$a^{3} n_{B}$	$\sim \frac{1}{6} N_{c}^{3} h_{1}^{N_{c}}$	$\sim-\frac{N_{\tau}}{24} N_{c}^{7} h_{1}^{2 N_{c}}$	$\sim \frac{\left(9 N_{\tau}+1\right) N_{\tau}}{1200} N_{c}^{8} h_{1}^{2 N_{c}}$	
$a^{4} e$	$\sim-\frac{\ln (2 \kappa)}{6} N_{c}^{4} h_{1}^{N_{c}}$	$\sim \frac{N_{\tau} \ln (2 \kappa)}{48} N_{c}^{8} h_{1}^{2 N_{c}}$		
$h_{1}>1$	$a^{4} p$	$\sim-\frac{1}{4} N_{c}^{3} h_{1}^{N_{c}}$		
$a^{3} n_{B}$	$\sim \frac{4 \ln \left(h_{1}\right)}{N_{\tau}} N_{c}$	$\sim-12 N_{c}$	$\sim 198 N_{c}$	
	$a^{4} e$	~ 4	$\sim-N_{\tau} \frac{N_{c}^{4}}{h_{1}^{N_{c}}}$	$\sim-\frac{\left(59 N_{\tau}-19\right) N_{\tau}}{20} \frac{N_{c}^{5}}{h_{1}^{N_{c}}}$
	ϵ	$\sim-4 \ln (2 \kappa) N_{c}$	$\sim 24 \ln (2 \kappa) N_{c}$	

Beyond the onset transition: $\quad p \sim N_{c}$ definition of quarkyonic matter!

Pressure scaling, including gauge corrections

$p \sim N_{c}\left(1+\right.$ const. $\left.N_{c}^{-1}\right)$

Baryon onset with growing Nc

$$
\left.\begin{array}{rl}
u(\beta)=\frac{1}{\lambda_{H}}=\frac{1}{g^{2} N_{c}}<1 & \quad \text { Gross, Witten } 80 \\
n_{B} / T^{3} \\
4 N_{t}^{3}-N_{c}=3 \\
3 N_{t}^{3}-N_{c}=5 \\
2 N_{c}^{3}=7 \\
N_{c}=9
\end{array}\right)
$$

Transition steepens independent of Nt , asymptotically becomes first order
But: system immediately jumps to lattice saturation, unphysical

Continuum approach

Order of limits, take continuum limit first!

Not enough orders to take limits, but steepening of transition clearly observed!
Quarkyonic matter on the lattice!

Phase diagram with increasing Nc

Conjectured large N_{c} phase diagram emerges smoothly in heavy QCD
Dense QCD is consistent with quarkyonic matter (=baryon matter for nucl. densities)

- No phase transition to quarkyonic matter besides nuclear liquid gas
- Should also hold for light quarks!

Implications for physical QCD ?

A possibility consistent with all lattice results so far:
(Semi-) analytic treatment of heavy dense Lattice QCD gives new insights:

- Deconfinement transition for any baryon density on coarse lattices
- Mathematical origin of silver blaze phenomenon
- Prediction of nuclear liquid gas transition
- Equation of state in baryon matter phase
- Prediction of quarkyonic matter, without additional phase transition

Mass dependence, possibility of extrapolations...?

Backup slides

Subleading couplings

Subleading contributions for next-to-nearest neighbours:

$$
\begin{aligned}
& \lambda_{2} S_{2} \propto u^{2 N_{\tau}+2} \sum_{[k]]}^{\prime} 2 \operatorname{Re}\left(L_{k} L_{l}^{*}\right) \quad \text { distance }=\sqrt{2} \\
& \lambda_{3} S_{3} \propto u^{2 N_{\tau}+6} \sum_{\{m n\}}^{\prime \prime} 2 \operatorname{Re}\left(L_{m} L_{n}^{*}\right) \quad \text { distance }=2
\end{aligned}
$$

as well as terms from loops in the adjoint representation:

$$
\lambda_{a} S_{a} \propto U^{2 N_{T}} \sum_{<i j>} \operatorname{Tr}^{(a)} W_{i} \operatorname{Tr}^{(a)} W_{j} \quad ; \quad \operatorname{Tr}^{(a)} W=|L|^{2}-1
$$

Numerical results for $\mathrm{SU}(3)$, one coupling

Order-disorder transition =Z(3) breaking

Linked cluster expansion of effective theory

$$
\mathcal{Z}=\int \mathcal{D} \phi e^{-S_{0}[\phi]+\frac{1}{2} \sum v_{i j}(x, y) \phi_{i}(x) \phi_{j}(y)+\frac{1}{3!} \sum u_{i j k}(x, y, z) \phi_{i}(x) \phi_{j}(y) \phi_{k}(z)+\ldots}
$$

"perturbation theory" in effective couplings
Glesaaen, Neuman, O.P. I5

