

Max Planck Institute for Physics, Munich KATRIN Collaboration – TRISTAN Group

Daniel Siegmann

1

Tritium and Neutrinos

• β-decay of tritium

n p 3H 3He p

- e^- and ν share energy
- $E_{e^-} = E_{Total} E_{\nu}$

Neutrino Mass Measurement

- Effective neutrino mass $m_{\beta}^2 = \sum_{i=1}^3 |U_{ei}|^2 m_{\nu_i}^2$
- MAC-E filter principle
- Superposition of mass eigenstates

m1

Ve

m2

What are sterile Neutrinos?

- Neutrinos are **only left-handed**
- Right-handed neutrinos are a minimal extension to SM
- No weak interaction -> sterile
- Additional mass eigenstates
- keV sterile -> dark matter candidate

TRISTAN Project

- β-decay sensitive to all mass eigenstates $< E_{Total}$
- keV sterile neutrino search
- Dark matter candidate
- Tiny **kink**-like imprint in β -decay
- Target sensitivity $|U_{e4}|^2 = 10^{-6}$
 - High rates required $\mathcal{O}(10^8 \text{ e/s})$

> TRISTAN Project = KATRIN Detector **Upgrade** for sterile neutrino search

1.0

0.8

0.6

0.4

0.2

Differential decay rate (a.u.)

Challenges for TRISTAN Detector

- High rates $\mathcal{O}(10^8 \text{ e/s})$
 - 3500 Pixel (100 kcps per pixel)
 - Flux-tube Ø 20 cm -> Ø 3mm pixels
- Energy resolution < 300 eV (@20 keV)
 - Small anode (Ø90 μm)
- Low energy threshold < 2 keV
 - Thin entrance window (< 100 nm)

Silicon Drift Detector (SDD)
 21 Modules with each 166 pixel

Staged Approach

Proof of concept

Prototype-0

Understanding the SDD technology

Technical Realization

First Module

Apply and test detector in realistic environment➢ Monitor spectrometer

Womtor spectromet

Sterile Neutrino Measurement

Sterile neutrino search with KATRIN experiment

Staged Approach

Proof of concept

Prototype-0

Understanding the SDD technology

(2019, Mertens et al.), Astropart. Phys. 108, 40

(S. Mertens et

al 2021) J. Phys. G: Nucl. Part. Phys. 48 015008

Technical Realization

First Module

Apply and test detector in realistic environment > Monitor spectrometer

Sterile Neutrino Measurement

Sterile neutrino search with KATRIN experiment

TRISTAN Detector Module with 166 Pixel

- High rates $\mathcal{O}(10^8 \text{ e/s})$
 - > 166 independent pixel per module
 - Maximize detection area by 'hiding' electronics behind SDD
- Energy resolution < 300 eV (@20 keV)
 > Operate detectors at -30 °C
 > Short distance to amplifier
- Modular detector
 - Close to technological limit for chip size
 - > Manufacturing & repair
 - Easier to upscale

18.09.2022

10

Critical Assembly Step – Gluing SDD to CESIC

- SDD is glued to CESIC heat exchange
 - CESIC (silicon ceramic composite)
 - Same thermal expansion as silicon (SDD)
 - No material allowed to touch entrance window
- First attempts with less than 70% pixels working
 - Investigations for cause performed
 - Swapping to glue without spacer pills
- 99% yield for the following three detectors

➢ Gluing procedure works ☺

Daniel Siegmann

Characterization SO-166-4 (Winston)

- Detector installed in test bench
 - Source: ${}^{55}Fe$ (2x $\gamma @ \approx 6 \text{keV}$)
 - SDD temperature approx. -27°C
 - Connection problem @ pixel 7

 -> increased noise
- Count rate in expected range
- Overall good energy resolution
 - $\overline{FWHM}_{2\mu s,\gamma @ 5.9 \text{ keV}} = 143.7 \text{ eV}$
 - Expect $FWHM_{e^- \, @ \, 20 \, \mathrm{keV}} \, = 253 \, \mathrm{eV}$

Detector fully functional

190

180

-170 (A) -160 WHMJ -150

140

130

120

TRISTAN Module in Monitor-Spectrometer

- Exchange current detector in Monitor Spectrometer with 166 pixel TRISTAN-Module
- Testing in KATRIN-like conditions
 - Vacuum compatibility
 - Magnetic compatibility
 - Cabling and interconnections
 - Understanding electronic noise
 - Experience with KATRIN framework
- Evaporated ${}^{83m}Kr$ source
 - Electron lines between 7 keV to 32 keV

Installation of Detector in Monitor Spectrometer

- Successful installation of new 166 pixel detector in MoS
- Placed ⁵⁵Fe source in front of detector for first tests

Detector Characterization in Monitor Spectrometer

- First tests without magnets
 - 8.3e-8 mbar in detector chamber
 - ${}^{55}Fe$ (2x $\gamma @ \approx$ 6keV) with Al foil
- 165 out of 166 pixels functional
 - Problems finding working point for Pixel 46 (hope to fix it soon)
- $\overline{FWHM}_{2\mu s,-29^{\circ}C, @MoS} = 146.8 \, eV$
 - $\overline{FWHM}_{2\mu s,-27^{\circ}C @MPP} = 143.7 \ eV$

Performance acceptable, slightly worse than in 'optimal lab conditions'

C. Bruch and D. Siegmann

Electrons from Monitor Spectrometer

- Installed ${}^{83m}Kr$ source this week
 - Aligned detector and source using wall electrons + simulations
 - Optimized experimental setup
- Electrons visible on detector
 - Retarding potential set to 30 kV
 - Count rate plot shows source profile

First measurements look very promising
 More detailed analysis will follow in the next days

> ¹⁰⁴ 0 5

Counts /

10

10

100

Staged Approach

Proof of concept

Prototype-0

Understanding the SDD technology

Technical Realization

First Module

Apply and test detector in realistic environment➢ Monitor spectrometer

Monitor spectrometer

Sterile Neutrino Measurement

Sterile neutrino search with KATRIN experiment

Towards the Final TRISTAN Detector

TRISTAN Module

- > 166 Pixels Detector
 - Commissioning 2022

Full TRISTAN Detector

- > 21 x 166 Pixels \approx 3500 Pixels
- Integration after completion of

 ν -mass measurement

More than scaling up the detector

- Detector chamber
- Outgassing
- High density electronics

