ν -Nucleus Reactions induced by Supernova ν

Toshio Suzuki Nihon Univesity

Sept. 17, 2022 Erice 1. Detection of SN neutrinos with water Cherenkov detectors

• Neutral-current reactions on ¹⁶O

Detection of 4.4 MeV γ from ¹²C (4.4 MeV, 1⁺, T=0) induced by ¹⁶O (ν, ν') ¹⁶O (12.97 MeV, 2⁻) \rightarrow ¹²C (4.4 MeV, 2⁺, T=0) + α Isospin mixing in (2⁻, T=1, 12.97 MeV) and (2⁻, T=0, 12.53 MeV) states in ¹⁶O

- Isotopic abundance of ${}^{18}\text{O} = 0.204\%$ Effects of the contributions from ν - ${}^{18}\text{O}$ reactions on SN ν detection by chargedcurrent reactions on ${}^{16}\text{O}$ in water are examined
- 2. ν^{-20} Ne reactions for nucleosynthesis of ¹⁹F Cross sections for ²⁰Ne (ν , ν 'p) ¹⁹F, ²⁰Ne ($\bar{\nu}_{e}$, e⁺n) ¹⁹F induced by SN ν

1. Detection of SN neutrinos with water Cherenkov detectors

Langanke, Vogel and Kolbe, PRL 76, 2629 (1996) γ spectrum in a water Cherenkov detector Super Kamiokande (SK-I, II, III): $E_{\gamma} > 5 \text{ MeV}$

FIG. 1. Schematic illustration of the detection scheme for supernova ν_{μ} and ν_{τ} neutrinos in water Čerenkov detectors.

FIG. 2. Signal expected from supernova neutrinos in a water Čerenkov detector. The solid line is the sum of the γ spectrum, generated by ν_x and $\bar{\nu}_x$ reactions on ¹⁶O, and of the positron spectrum (dashed line) from the $\bar{\nu}_e + p \rightarrow n + e^+$ reaction. The upper part (a) has been calculated assuming Fermi-Dirac neutrino distributions with (T = 8 MeV, $\mu = 0$) and (T = 5 MeV, $\mu = 0$) for ν_x and $\bar{\nu}_e$ neutrinos, respectively. In the lower part (b) Fermi-Dirac neutrino distributions with (T = 6.26 MeV, $\mu = 3T$) and (T = 4 MeV, $\mu = 3T$) have been assumed for ν_x and $\bar{\nu}_e$ neutrinos. The energy *E* refers to the photon or positron energy, respectively. The spectra are in arbitrary units.

• SK-IV: $E_{\gamma} > 3.5 \text{ MeV}$

 \rightarrow Detection of 4.4 MeV γ from ¹⁶O (ν, ν') ¹⁶O (12.97 MeV, 2⁻) M. Sakuda

¹⁶O (12.53 MeV, 2⁻, T=0) → ¹²C (4.4 MeV, 2⁺, T=0) + α
↓
$$^{12}C(g.s. 0^+) + \gamma$$
 (4.4 MeV)
¹⁶O (12.97 MeV, 2⁻, T=1) → ^{12}C (4.4 MeV, 2⁺, T=0) + α

$$\begin{split} &\Gamma_{\alpha 1}/\Gamma = \text{Br (12.97 MeV} \rightarrow {}^{12}\text{C (4.4 MeV)} + \alpha) \\ &= 0.37 \pm 0.06 \quad \text{Leavitt et al., Nucl. Phys. A 410, 93 (1983)} \\ &= 0.22 \pm 0.04 \quad \text{NNDC (Zijderhand and van der Leun, Nucl. Phys. A 460, 181 (1986).)} \\ &= 0.46 \pm 0.06 \quad \text{Charity et al., Phys. Rev. C 99, 044304 (2019)} \\ &\text{Averaged value} = 0.35 \end{split}$$

• Isospin mixing

 $|U\rangle = \sqrt{1 - \beta^2} |U, T=1\rangle - \beta |D, T=0\rangle \qquad |U\rangle = |12.97 \text{ MeV}, 2^-\rangle \\ |D\rangle = \sqrt{1 - \beta^2} |D, T=0\rangle + \beta |U, T=1\rangle \qquad |D\rangle = |12.53 \text{ MeV}, 2^-\rangle$

$$\beta = \frac{\varepsilon}{\sqrt{1+\varepsilon^2}}, \quad \beta^2 = \langle T=0 | H_c | T=1 \rangle / \Delta E$$

$$\varepsilon^2 = \frac{P_{\alpha D}}{P_{\alpha U}} \frac{\Gamma_{\alpha U}}{\Gamma_{\alpha D}}$$
 $P_{\alpha} = \alpha$ penetrability, $\Gamma_{\alpha} = \alpha$ -width
We need P_{α} to derive ε or β
e.g. in Leavitt et al. $\frac{P_{\alpha D}}{P_{\alpha U}}$ is estimated to be $\approx 0.033 \rightarrow \varepsilon^2 = 0.28 \rightarrow \beta = 0.45 \pm 0.04$

• Isospin Mixing parameter β from B(M2) values

$$B(M_J,q) = \frac{J[(2J+1)!!]^2}{J+1} q^{-2J} F_T^2(M_J,q).$$

$$\begin{split} F_T^2(q) &= \frac{1}{2J_i + 1} \sum_{J=1}^{\infty} \{ \left| \langle J \parallel \tilde{T}_J^{\text{el}}(q) \parallel J_i \rangle \right|^2 + \left| \langle J \parallel \tilde{T}_J^{\text{mag}}(q) \parallel J_i \rangle \right|^2 \}, \\ T_{M2} &= \mu_N \frac{q}{\sqrt{6}} \sum_i \left[\sqrt{\frac{2}{5}} j_1(qr_i) \{ 2g_\ell [Y^{(1)} \times \vec{\ell}]^2 + 3g_s [Y^{(1)} \times \vec{s}]^2 \} \right. \\ &+ \left. \sqrt{\frac{3}{5}} j_3(qr_i) \{ 2g_\ell [Y^{(3)} \times \vec{\ell}]^2 - 2g_s [Y^{(3)} \times \vec{s}]^2 \} \right] \end{split}$$

μ capture on ¹⁶ O (10 ³ /s) ($f_A = g_A^{eff}/g_A$)	Neut	
¹⁶ N Exp. Calc.	$f_A = 0$	
2 ⁻ (0.0 MeV): 6.3 ± 0.7 , 7.2	$1-\beta^2$	
$7.9 \pm 0.8 (f_A = 0.63 \pm 0.03)$	2_ 1	
8.0 ± 1.2	2-, 1	
0^{-} (0.120 MeV): 1.1 ± 0.2 1.33		
$1.56 \pm 0.18 \ (f_A = 0.62 \pm 0.02)$	1-, 1	
1^{-} (0.397 MeV): 1.73 ± 0.10 1.52		
$1.31 \pm 0.11 \ (f_A = 0.62 \pm 0.03)$	0	
$2^{-}+1^{-}+0^{-}$: 9.15 ± 0.70 10.1 ± 0.5	(n n ²)	
$10.9 \pm 0.7 (f_A = 0.62 \pm 0.02)$	_ CL	
10.87 ± 1.22	104	
$E_{r} > 16 \text{ MeV}: 102.6 \pm 0.6 $ 112.0	×	
98 ± 3 ($f_4 = 0.95$)	.0 ti	
	sec 0	
¹⁶ N β^- decay rate $(10^{-3}/s)$		
$2^- \rightarrow 0^+: 27.2 \pm 0.4$ 27.2	Ū0.	
$(f_{A} = 0.73 \pm 0.01)$		
2 ⁻ : $f_A = 0.68 \pm 0.05$		

ral-current cross sections ¹⁶O (ν , ν') ¹⁶O* 0.68 for 2⁻ (12.97 MeV), 1⁻ (13.09 MeV) $^{2}=0.94 \ (\beta=0.25), \quad f_{A}^{2}*(1-\beta^{2})=0.43$ $2.97 \text{ MeV} \rightarrow \alpha + {}^{12}\text{C} (4.4 \text{ MeV})$ with $\Gamma_{\alpha 1}/\Gamma = 0.35$ $3.09 \text{ MeV} \rightarrow p + {}^{15}N_{g.s.}$ 25

Sakuda, Suzuki, Reen, Nakazato, and Suzuki, PTEP in press, arXiv:2211.07851

Preliminary:

Time evolution of events

Burst
 Accretion
 Cooling

(v_e, e) cross sections	Ratio N(¹⁸ O)/N(¹⁶ O)		
$ \begin{array}{c} 10^{-38} \\ 10^{-39} \\ 10^{-40} \\ 10^{-41} \\ 10^{-42} \\ 10^{-43} \\ 10^{-44} \\ 10^{-45} \\ \end{array} $	80 $E_{e} (MeV)$ $E_{e} = 5-60 MeV$		
$(M, Z) = (20M_{\odot}, 0.02) Z = metalicity \\ = 9.32 \text{ MeV}, = 11.1 \text{ MeV}, =11.9 \text{ MeV} \\ Expected event numbers Nakazato, Suzuki, Sakuda, PTEP (2018) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline $			
ordinary supernovaSKreactionno osc.normalinverted10 $\frac{^{16}O(\nu_e, e^-)X}{^{16}O(\bar{\nu}_e, e^+)X}$ 3658103 E_{ν}^{to} electron scattering1401571563xinverse β-decay319935344242/total341639274635	K 32Kton kpc $ot \approx$ Expected event numbers with ${}^{18}O(v_e, e^-){}^{18}F$ (v_e, e^-) 10^{52} erg flavor $41 ->68$ $178 -> 203$ $134 -> 172$ $(+28\%)$		

2. Synthesis of ¹⁹F by ν process

 $\nu - {}^{20}$ Ne reactions ²⁰Ne (v, v'p) ¹⁹F S_P = 12.843 MeV ²⁰Ne ($\overline{\nu}_{e}$, e⁺) ²⁰F Q=7.024 MeV, ${}^{20}F \rightarrow {}^{19}F + n$ S_n = 6.601 MeV Q + S_n = 13.625 MeV

E. ²⁰Ne (v, v'n) ¹⁹Ne $S_n = 16.864 \text{ MeV}$ ²⁰Ne (v_e, e⁻) ²⁰Na Q=13.887 MeV ²⁰Na → ¹⁹Ne + p $S_p = 2.195 \text{ MeV}$ Q + S_p = 16.082 MeV

 $T(v_e) < T(\overline{v_e}) \leq T(v_x)$

Hauser-Feshbach statistical model

→ BR for γ , p, n, d, ³He, α and multi-particle emissions ²⁰Ne -> ¹⁹F Fermi-Dirac with temperature T

Summary

- 1. Detection of 4.4 MeV γ from ¹⁶O (ν, ν') ¹⁶O (12.97 MeV, 2⁻) Isospin mixing in (2⁻, T=1, 12.97 MeV) and (2⁻, T=0, 12.53 MeV) Expected event no. of 4.4 MeV $\gamma \sim 1/5$ of γ with $E_{\gamma} > 5$ MeV
- Effects of the contributions from v-¹⁸O reactions on the SN detection by charged-current reactions on ¹⁶O are studied. Cross sections for ¹⁸O are larger at E_v < 20 MeV Expected event nos. of SNv are enhanced by ~15-30% for the case with the MSW osc. and by ~65 % for the case without the osc.
- Cross sections for ²⁰Ne (ν, ν'p) ¹⁹F, ²⁰Ne (ν_e, e⁺n) ¹⁹F induced by SNν are evaluated for the study of production of ¹⁹F in SN.
 Synthesis of ¹⁹F by simulation calculations in SN is under way by Kajino group.

Collaborators

 $\nu^{-16}0$

M. Sakuda, Okayama Univ.K. Nakazato, Kyushu Univ.H. Suzuki, Tokyo Univ. of ScienceM. S. Reen, Akal Univ.

 ν -²⁰Ne

S. Chiba, Tokyo Institute of Technology

T. Kajino, Beihan Univ.

Acknowledgement:

The presenter thanks to JSPS for financial support from JSPS KAKENHI Grant Nos. JP19K03855, JP20K03988.