Searching for dark matter decay to neutrinos with gamma-ray and neutrino telescopes

43rd International School of Nuclear Physics - Erice, Sicily September 18, 2022

Diyaselis M. Delgado López

Email: ddelgado@g.harvard.edu

Standard Model is great and all but ...

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

Need SM extension

Looking for a theory that explains observed neutrino masses and the nature of Dark Matter

Weakly-interacting massive particles (WIMPs) are a simple solution.

Overwhelming astrophysical and cosmological evidence for the existence of Dark Matter (DM).

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

DIYASELIS DELGADO

Local Stellar Dynamics

Galactic Rotation Curves

Cluster Dynamics

Gravitational Lensing

We must search for WIMP Dark Matter with a v perspective!

Neutrino Portal to Dark Matter

DIYASELIS DELGADO

All SM final states eventually lead to gamma rays or neutrinos.

Neutrino portal: the most invisible channel, hardest to detect, difficult to rule out!

Assuming a branching ratio to neutrinos of 100% provides an upper limit on the total DM decay lifetime

Indirect Detection

No need of specialized detectors

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

Focus on large reservoirs of DM

Dark Matter Searches What and where to look?

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

Previous Work: Dark Matter Annihilation to Neutrinos

Dark Matter Decay to Neutrinos

NEUTRINO SIGNAL

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

GAMMA-RAY SIGNAL

EXPECTED GAMMA-RAY SIGNAL DUE TO ELECTROWEAK CORRECTIONS

Flux from Dark Matter Decay in our Galaxy

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

Extragalactic Flux from Decaying Dark Matter An isotropic neutrino signal is expected due to the decay of

 $d\Phi_{\nu/\gamma}$ Decay

DM density parameter

$$H(z) = H_0 \left[(1+z)^3 \Omega_{DM} + \Omega_{\Lambda} \right]^2$$

Time-dependent Hubble parameter

Constants defined in: Beacom. J, et. Al. Phys. Rev. Lett. 99, 231301

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

Dark Matter of all other galactic halos of the Universe.

 ρ_{crit} Critical density today

E' = (1 + z) EStarting neutrino energy accounting for the expansion of the Universe

Dark Matter Decay to Neutrinos

NEUTRINO SIGNAL

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

GAMMA-RAY SIGNAL

EXPECTED GAMMA-RAY SIGNAL DUE TO ELECTROWEAK CORRECTIONS

First, we must detect neutrinos! Measured and expected fluxes of natural and reactor neutrinos

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

HALZEN, F. AND KHEIRANDISH, A. ARXIV:2202.00694

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

Size (Volume)

Neutrino Detection

ARGÜELLES ET AL., IOP 23, ARXIV:1907.08311

13

Neutrino Detection

		Energy Range	Experimental Analysis	Directionality	Detected Flavor
MeV		$2.5-15~{ m MeV}$	Borexino (Bellini et al., 2011)	×	$\bar{\nu}_e$ (IBD)
		$8.3-18.3~{ m MeV}$	KamLAND (Gando et al., 2012)		$\bar{\nu}_e$ (IBD)
		$10-40 { m ~MeV}$	JUNO (An et al., 2016)		$\bar{\nu}_e$ (IBD)
GeV		$15-10^3 { m MeV}$	SK (Olivares-Del Campo et al., 2018a)	×	$\bar{\nu}_e$ (IBD)
			DARWIN (McKeen and Raj, 2018)	×	All Flavors (Coherent)
		$0.1 - 30 { m ~GeV}$	DUNE (Abi et al., 2020b) HK (Olivares-Del Campo et al., 2018b)	×	$ u_e, \bar{\nu}_e, \nu_{ au}, \bar{\nu}_{ au}$ (CC)
TeV		$1-10^4~{ m GeV}$	SK (Abe et al., 2020; Frankiewicz, 2015)	 	All Flavors
		$20-10^4~{ m GeV}$	IceCube (Aartsen et al., 2016a)	\checkmark	All Flavors
		$50-10^5~{ m GeV}$	ANTARES (Adrian-Martinez et al., 2015)		$ u_{\mu},ar{ u}_{\mu}\;({ m CC})$
		$0.2 - 100 { m ~TeV}$	CTA (Queiroz et al., 2016)		All Flavors (Bremsstrahlung)
PeV		$10-10^4~{ m GeV}$	IC-Upgrade (Baur, 2019)		All Flavors
		$> 10 \ \mathrm{PeV}$	IC Gen-2 (Aartsen et al., 2014b)		All Flavors
EeV		$10-10^4 { m ~TeV}$	KM3Net (Adrian-Martinez et al., 2016)		All Flavors
		$1-100 { m ~PeV}$	TAMBO (Wissel et al., 2019)	\checkmark	$ u_{ au}, ar{ u}_{ au} ({ m CC})$
		$> 100 { m ~PeV}$	GRAND (Alvarez-Muniz et al., 2018)	\checkmark	$ u_{ au}, ar{ u}_{ au} ({ m CC})$

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

ARGÜELLES, ET AL., REV. MOD. PHYS. 93, <u>ARXIV:1912.09486</u>

Neutrino Experiments

- South Pole.
- 5160 PMTs

MeV TeV PeV GeV

Cherenkov detector at the

1 gigaton of ice target with

IceCube has a measured diffuse astrophysical neutrino flux in the TeV-PeV range.

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

SEPTEMBER 18,2022

15

Neutrino Experiments

Liquid scintillator. Solar neutrinos (MeV)

Dil

Liquid scintillator (Reactor). Extraterrestrial neutrino fluxes (MeV)

> Liquid Argon TPC. Atmospheric neutrino fluxes (GeV)

Water Cherenkov. Atmospheric neutrinos (GeV-TeV)

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

Expected Neutrino Flux from Decaying Dark Matter

Decay results Neutrino Experiments

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

C. Argüelles, **DD**, A. Vincent, A. Friedlander, H. White, A. Kheirandish, I. Safa

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

C. Argüelles, **DD**, A. Vincent, A. Friedlander, H.

Dark Matter Decay to Neutrinos

NEUTRINO SIGNAL

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

GAMMA-RAY SIGNAL

EXPECTED GAMMA-RAY SIGNAL DUE TO ELECTROWEAK CORRECTIONS

Dark Matter Search Detecting Gammas

<u>C. Bauer, N. Rodd, B. Webber.</u> <u>10.1007/JHEP06(2021)121</u>

MeV	GeV	TeV	PeV	EeV
DIYA	SELIS DELGADO	DARK M	IATTER DEC	

ELECTROWEAK CORRECTIONS

VIRTUAL PARTICLES

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

W±

Expected Gamma-Ray Flux for Decaying Dark Matter

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

Expected Gamma-Ray Flux for Decaying Dark Matter

Gamma-Ray Experiments

Water Cherenkov. Gamma Rays and Cosmic Rays (GeV - TeV)

cherenkov telescope array Air Cherenkov. High Energy Gamma Rays (TeV)

AND OTHER EXPERIMENTS

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

Air Showers. Gamma Rays and Cosmic Rays (PeV)

SEPTEMBER 18,2022

29

Integral γ Flux Sensitivities

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

 HAWC CTA 	Experiment	$D (GeV cm^{-2}sr^{-1})$
IceTopKASCADE	CTA	$3.29 \cdot 10^{20}$
 KASCADE-Grande CASA-MIA EAG MOUL 	HAWC	$2.95 \cdot 10^{21}$
 EAS-MSU TASD 	ІсеТор	$8.74 \cdot 10^{22}$
	KASCADE	$9.18 \cdot 10^{22}$
	KASCADE- Grande	$9.18 \cdot 10^{22}$
	CASA-MIA	$1.13 \cdot 10^{23}$
•	EAS-MSU	$8.35 \cdot 10^{22}$
• • •	TASD	$8.60 \cdot 10^{22}$
10^{10}		

Integral γ Flux from DM and Gamma-Ray Flux Sensitivities

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

C. Argüelles, **DD**, A. Vincent, A. Friedlander, H. White, A. Kheirandish, I. Safa

Dark Matter Decay to Neutrinos: Comprehensive Results

DIYASELIS DELGADO

Summary

- **Dark Matter (DM) neutrino connections** offer solutions to the mysteries of the nature of Dark Matter and origin of neutrino mass.
- We can look for both neutrinos and gamma-rays as final products of Dark matter decay to neutrinos \rightarrow Correlated signal.
- We present new comprehensive constrains for the Dark Matter decay lifetime in the **wide mass range** of $m_{\chi} = [$ MeV EeV], thanks to major experimental advances.
- New constraints for gamma rays contribution to the lifetime limits will be reported on an upcoming paper. Stay tuned!

ddelgado@g.harvard.edu

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

Expected Gamma-Ray Flux for Decaying Dark Matter

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

Converting Differential or Diffuse Flux Limits to Lifetimes Diffuse Fluxes $\tau_{\chi} = \frac{1}{4\pi} \frac{1}{m_{\chi} \Phi_{\nu}} \frac{1}{3} \frac{dN_{\nu}}{dE} D$ 2 Differential Fluxes ($\alpha = 1$) **Differential Fluxes** $\tau = \frac{2D}{3m_{\chi}^2(4\pi)^2} \left[\Delta \ln(10) \frac{d\phi}{dE} \right]_{U}$ $\tau = \frac{2D(\alpha - 1)}{3m_{\chi}^2(4\pi)^2} \left(\left(10^{\Delta/2} - 10^{-\Delta/2} \right) \frac{d\phi}{dE} \right|_{U} \right)^{-1}$ lim

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

Rescaled Annihilation Limits

Converting Gamma-Ray Diffuse Flux Limits to Limits on the Dark Matter Differential Spectrum

• The reported gamma-ray flux limit, $\frac{d\phi}{dE}\Big|_{lim} \equiv f_0 E^{-\alpha}$, for which the actual limit at the bin center $E = \bar{E}$ is:

$$\phi_{lim}(\bar{E}) = 4\pi \int_{a_{-}}^{a^{+}} f_0 E$$

 Δ is the bin width.

Dark matter flux is given by:

$$\phi = \int dE \, \frac{1}{4\pi} \frac{1}{m_{\chi}\tau_{\chi}} \frac{dN_{\gamma}}{dE} D(\Omega, x)$$

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

Gamma-Ray Experimental Sensitivities

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

Gamma-Ray Experimental Sensitivities

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

HAWC

Gamma-Ray Experimental Sensitivities

DIYASELIS DELGADO

DARK MATTER DECAY TO NEUTRINOS - ERICE 2022

CHIANESE ET. AL. (2021)

Gamma-Ray Electroweak Corrections

- The standard 1 \rightarrow 2 decay process is $\chi \rightarrow \bar{\nu}\nu$.
- Higher orders involve the bremsstrahlung of an electroweak gauge boson.
- The branching ratio $R = \sigma(\chi \to \bar{\nu}\nu W) / \sigma(\chi \to \bar{\nu}\nu)$ only depends generally only on the details of the underlying 1 \to 2 process for $Q^2 \sim m_{\gamma}^2$.
- We have three cases:
 - 1. Fermi regime $m_{\gamma} \lesssim m_W$
 - Perturbative electroweak regime $m_{\gamma} \lesssim m_W \lesssim 10^6$ GeV 2.
 - Non-perturbative regime where large logarithms over-compensate the З. small electroweak coupling α_2

KACHELRIEß, ET AL., PHYS. REV. D 76, ARXIV:0707.0209

