

Study of neutron multiplicity using atmospheric neutrino simulation in SK-Gd experiment

Seiya Sakai (Okayama University, Japan) September 18th, 2022 INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 43rd Course (ERICE 2022)

Supernova Relic Neutrinos (SRN)

- Neutrinos from all past core-collapse supernovae are accumulated to form an integrated flux
 - → Supernova Relic Neutrinos (SRN, DSNB)
- Detecting SRN would provide valuable information about the supernova mechanism and the star formation history

K. Abe et al., Phys. Rev. D 104, 122002 (2021)

ERICE 2022

Super-Kamiokande (SK)

- Large water Cherenkov detector
- Consist of tank filled with ultrapure water and photomultiplier tube (PMT)
- ID : Reconstruct the information of charged particle
- OD : Cosmic ray muons veto
- Now SK is aiming for the world's first observation of SRN

SRN search in SK

- Target in SRN search
 - \rightarrow Inverse beta decay by $\overline{\nu}_e$

 $\bar{\nu}_e + p \rightarrow e^+$ (Prompt signal) + *n* (Delayed signal)

- SK-Gd experiment (Jul. 2020)
 - \rightarrow Load 0.1% (now 0.03%) of gadolinium (Gd) in ultra-pure water
- Gd has the largest thermal neutron capture cross section among natural elements
- Emit γ -rays of total ~8 MeV when Gd captured thermal neutron
 - \rightarrow Neutron tagging efficiency : ~90% (now ~70%)
 - \rightarrow Can reduce the backgrounds of SRN search

• But...

There are some backgrounds that we cannot distinguish even in SK-Gd experiment

Atmospheric neutrino background

- Mimic the signal of SRN event \rightarrow Need to estimate # of events precisely
- Neutron multiplicity (# of emitted neutrons per event) is different
- Understand the neutron multiplicity \rightarrow Can reduce the background and estimate it more precisely

Neutron multiplicity

- Neutron multiplicity expected from simulation is larger than observed data
 - → Caused by **neutrino-nucleus interaction**? or **nucleon-nucleus interaction**?

Purpose

- Check the change of neutron multiplicity by the difference of nucleon-nucleus interaction model
- Make 500 years worth of atmospheric neutrino events (0 2 GeV) using neutrino reaction simulation (NEUT)
 - → Check neutron multiplicity by nucleon-nucleus interactions using Geant4-based detector Monte Carlo simulation
- Nucleon-nucleus interaction model we compared
 - **BERT** (Binary cascade model)
 - **BIC** (Binary cascade model)
 - **INCL++** (Liege cascade model)

Mean neutron multiplicity

• Convert # of neutrons generated by 500 years worth of atmospheric neutrino events (0 - 2 GeV, total 3,857,094 events) into per event

Mean neutron multiplicity

Difference among nucleon-nucleus interaction models

- Large difference in neutron inelastic scattering
- Cross section of neutron inelastic scattering is the same among the models
 - \rightarrow Neutrons are easy to be generated

by neutron inelastic scattering in BERT

neutron inelastic	μ^- capture
proton inelastic	π^- capture
π^+/π^- inelastic	others

9

Mean neutron multiplicity

Mean # of neutron capture

- GCALOR : Physics model used in GEANT3-based detector Monte Carlo simulation (Close to BERT)
- Mean # of neutron capture is smaller than mean neutron multiplicity
 - \rightarrow Annihilate neutrons that have escaped from the detector
 - \rightarrow Neutron is annihilated by neutron inelastic scattering (e.g.) $n + {}^{16}\text{O} \rightarrow {}^{13}\text{C} + \alpha$

Mean # of neutron capture

Mean # of neutron capture

• From T2K experiment, neutron multiplicity of simulation (**NEUT & GCALOR**) is ~51% larger than

that of observed data

Estimated to be $\sim 39\%$ larger than that of observed data \rightarrow even at NEUT & BIC or NEUT & INCL++

mean

1.483

1.398

Need to reconsider neutrino-nucleus interaction

1.364

1.251

1.250

1.430

GCALOR

BERT

BIC

INCL++

Problems of neutrino-nucleus interaction model

• The probability of knocking out a nucleon of the $p_{1/2}$, $p_{3/2}$, $s_{1/2}$ or "others" state

% "others" state is not understood well

State	Probability
<i>p</i> _{1/2}	15.80%
p _{3/2}	35.15%
s _{1/2}	10.55%
others	38.50%

12

A. M. Ankowski et al., Phys. Rev. Lett. 108, 052505 (2012)

Problems of neutrino-nucleus interaction model

• The probability of knocking out a nucleon of the $p_{1/2}$, $p_{3/2}$, $s_{1/2}$ or "others" state In NEUT...

State	Probability
<i>p</i> _{1/2}	15.80%
p _{3/2}	35.15%
s _{1/2}	49.05% (= 10.55% + 38.50%)

- The energy level of nucleons of the $s_{1/2}$ state is deep
 - \rightarrow When a nucleon of the $s_{1/2}$ state is knocked out,

nucleons are easy to be emitted during the de-excitation

→ Important to understand "others" state

13

A. M. Ankowski et al., Phys. Rev. Lett. 108, 052505 (2012)

Summary

- Neutron multiplicity expected from atmospheric neutrino event simulation is larger than observed data
 - \rightarrow We do not understand that the cause is neutrino-nucleus interaction or nucleon-nucleus interaction
 - \rightarrow Check the change of neutron multiplicity by the difference of nucleon-nucleus interaction model
- Neutron multiplicity changes largely by neutron inelastic scattering
- As for neutrino-nucleus interaction, it is important to understand "others" state

Plan

- Check neutron multiplicity in higher energy atmospheric neutrino events
- Compare basic distributions of SRN events with those of atmospheric neutrino background events using simulation
- Estimate atmospheric neutrino background of SRN search

SRN flux

Hubble constant

Density parameter

Cosmological constant

Total core-collapse rate

Metallicity distribution function of progenitors

Initial mass function of progenitors

Neutrino number spectrum from the core-collapse of a progenitor $(E'_{\nu} = (1 + z)E_{\nu})$

SRN flux

K. Nakazato *et al.*, Astrophys. J. **804**, 75 (2015) D. Kresse *et al.*, Astrophys. J. **909**, 169 (2021)

SK-Gd experiment

	Atomic weight
Gd	157.25 u
S	32.065 u
0	15.999 u
Н	1.00784 u

u : atomic mass unit

 $1 \text{ u} = 1.66054 \times 10^{-27} \text{ kg} = 931.478 \text{ MeV/c}^2$

 Gd_2 : 314.5 u

 $(SO_4)_3 : 288.18 u$

 $8H_2O$: 144.12 u

M. Vagins, "A Gadolinium-loaded Super-Kamiokande", Neutrino 2022 (Jun. 2, 2022)

Neutron capture time constant

K. Abe et al., Nucl. Instrum. Methods A 1027 (2022)

ERICE 2022

SRN and backgrounds

J. F. Beacom and M. R.Vagins, Phys. Rev. Lett. 93, 171101 (2004)

Neutrino reaction cross section

G. L. Fogli et al., JCAP, April 2005 (2005)

SRN search in SK-IV

K. Abe et al., Phys. Rev. D 104, 122002 (2021)

Atmospheric neutrino flux

Distance between reaction point and capture point

R. Akutsu, Ph.D. Thesis, The University of Tokyo (2019)

24

Cherenkov angle distribution

Difference among nucleon-nucleus interaction models 26

Model	BERT		BIC		INCL++	
Mean neutron multiplicity	0.781		0.693		0.608	
neutron inelastic scattering	1,874,645	62.26%	1,307,306	48.94%	1,106,647	47.20%
proton inelastic scattering	482,229	16.02%	533,767	19.98%	455,211	19.42%
π^+/π^- inelastic scattering	151,877	5.05%	336,647	12.60%	243,446	10.38%
μ^- capture	240,354	7.98%	241,151	9.03%	241,329	10.29%
π^- capture	226,287	7.51%	218,310	8.17%	242,773	10.35%
others	35,481	1.18%	34,288	1.28%	55,173	2.36%

Neutron inelastic scattering

• Cross section : G4NeutronInelasticXS (& NeutronHP)

γ-ray energy generated by neutron inelastic scattering 28

n energy (n inel. scat.) & Each γ energy (n inel. scat.) (Gd₂(SO₂) • 8H₂O 0.026%)

n energy (n inel. scat.) & Each γ energy (n inel. scat.) (Gd₂(SO₄)₃ • 8H₂O 0.026%)

Spectroscopic strength

The $p_{1/2}$, $p_{3/2}$, and $s_{1/2}$ spectroscopic strengths have been computed by integrating the oxygen spectral function of Refs. [18,22] over the energy ranges $11.0 \le E \le$ 14.0 MeV, $17.25 \le E \le 22.75$ MeV, and $22.75 \le E \le$ 62.25 MeV, respectively. Dividing these numbers by the degeneracy of the shell-model states, one obtains the quantities S_{α} listed in Table I. The same spectroscopic strengths have been used for protons and neutrons. TABLE I. Spectroscopic strengths of the ${}_{8}^{16}$ O hole states and their branching ratios for deexcitation by the $E_{\gamma} > 6$ MeV photon emission.

α	$p_{1/2}$	$p_{3/2}$	<i>s</i> _{1/2}
S_{lpha}	0.632	0.703	0.422
$Br(X_{\alpha} \to \gamma + Y)$	0%	100%	$16 \pm 1\%$

$$p_{1/2} : 0.632 \times (2/8) = 0.1580$$

$$\left(:: S_{p_{1/2}} \times \left(\text{protons}_{p_{1/2}}/\text{protons}_{\text{total}}\right)\right)$$

$$p_{3/2} : 0.703 \times (4/8) = 0.3515$$

$$s_{1/2} : 0.422 \times (2/8) = 0.1055$$
others : 1 - (0.1580 + 0.3515 + 0.1055) = 0.3850

A. M. Ankowski *et al.*, Phys. Rev. Lett. **108**, 052505 (2012)

Reference

- <u>1</u> K. Abe *et al.*, Phys. Rev. D **104**, 122002 (2021)
- 2 R. Akutsu, Ph.D. Thesis, The University of Tokyo (2019)
- <u>3</u> A. M. Ankowski *et al.*, Phys. Rev. Lett. **108**, 052505 (2012)
- <u>4</u> K. Nakazato *et al.*, Astrophys. J. **804**, 75 (2015)
- <u>5</u> D. Kresse *et al.*, Astrophys. J. **909**, 169 (2021)
- 6 M. Vagins, "A Gadolinium-loaded Super-Kamiokande", Neutrino 2022 (Jun. 2, 2022)
- <u>7</u> K. Abe *et al.*, Nucl. Instrum. Methods A 1027 (2022)
- 8 J. F. Beacom and M. R. Vagins, Phys. Rev. Lett. 93, 171101 (2004)
- <u>9</u> G. L. Fogli *et al.*, JCAP, April 2005 (2005)
- <u>10</u> E. Richard *et al.*, Phys. Rev. D **94**, 052001 (2016)
- <u>11</u> L. Wan *et al.*, Phys. Rev. D **99**, 032005 (2019)