Unitarity

the next step...?

Erice — September 2022

Ence September 2022

much work with **Prof. H. Nunokawa**

Irène Jo

UNIVERSITE PARIS-SACLAY DES SCIENCES D'ORSAY

cnrs)

Anatael Cabrera CNRS-IN2P3 / IJCLab / Université Paris-Saclay Orsay, France

Université de Paris European Innovation

status on neutrino oscillation knowledge...

Standard Model(3 families)

[leptons & quarks] & PMNS_{3×3}($\theta_{12}, \theta_{23}, \theta_{13}$) & & ± $\Delta m^2 \& + \delta m^2$

no conclusive sign of any extension so far!!

(inconsistencies vs uncertainties)

must measure all parameters→characterise & test (i.e. over-constrain) Standard Model

	today			≥2030		
	best kno	owledge	global	foreseen	dominant	source
θ12	3,0 %	sk⊕sno	2,3 %	<1.0%	JUNO	reactor
θ23	5,0 %	NOvA+T2K	2,0 %	≲1.0%	DUNE⊕HK	beam (octant)
θιз	I,8 %	DYB+DC+RENO	I,5 %	I,5 %	DC⊕DYB⊕RENO	reactor
+δm²	2,5 %	KamLAND	2,3 %	≲1.0%	JUNO	reactor
∆m ²	3,0 %	T2K+NOvA & DYB	I,3 %	≲1.0%	JUNO⊕DUNE⊕HK	<u>reactor</u> & beam
Mass Ordering	unknown	SK et al	NO @ ~3σ	@5σ	JUNO⊕DUNE⊕HK	reactor⊕beam
СРУ	unknown	T2K	3/2π @ ≲2σ	@5σ?	DUNE⊕HK⊕ALL	reactor⊕ <u>beam</u>
			(now)			(reactor-beam)

JUNO \oplus DUNE \oplus HK will lead precision in the field (\rightarrow Mass Ordering & CPV) except θ_{13} !

NOTE: ORCA \oplus PINGU \oplus IceCube complementary (Mass Ordering & Δ m² measurements)

2

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

what's the **next goal?**

today's **"signal"** (i.e. neutrino oscillations precision) ⇒ tomorrow's **"background"** what's tomorrow's **"signal"** (i.e. **next goal**)?

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

neutrino oscillations: done?

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

SMvI.I: knowns & unknowns...

Mass Neutrinos (3): v(1), v(2), $v(3) - \underline{assumed} \ge 3!$ [cosmology constraints ≤ 4]

PMNS matrix (3x3; *a la CKM*): U, <u>assumed</u> unitarity (→violation?)
•mixing parameters (3): θ₁₃, θ₁₂, θ₂₃ (octant?) — derived J [Jarlskog invariant]
•CP-violation parameter (1): δ?

```
Mass Squared Differences (2): \delta m^2 (i.e. \Delta m^2_{12})
\Delta m^2 (i.e. \Delta m^2_{13} or \Delta m^2_{23})
```


Unitarity

(general)

PMNS with / without Unitarity...

unitary needed for probability conservation of the SM predictions — must be conserved

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$
$$\stackrel{\text{a priori I8 parameters PMNS (3x3)}_{.9 \text{ real}}$$

unitary PMNS: parametrisation

$$\begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Unitarity conditions: 2 types...

a **unitary PMNS** (same for CKM) must...

•normalisation conditions [refer to "lepton universality" in CKM]

- •each row unitary (3)
- each column unitarity (3)

triangle closure conditions

• close all triangles (6)

issue!! depends on CP-violation phase (δ) knowledge **[unknown for v's]**

Unitarity: the structure of PMNS?

consider the full matrix structure

(not merely each of its elements)

why shape?

 $U_{e1} \ U_{e2} \ U_{e3}$

 $U_{\mu 3}$ $U_{\tau 3}$

Ve

Vμ

large mixing but a small one!
largest CP-violation (SM)
any symmetry behind?

U_{3x3} unitary?

[assumed!!, not demonstrated]

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

what is the **PMNS** telling us...?

PMNS

СКМ

A. De Gouvea, H. Murayama, hep-ph/0301050; PLB, 2015.
L. Hall, H. Murayama, N. Weiner, hep-ph/9911341.

Unitarity: the completeness of the SM...

SM "v I" ≈ theory of "Universe" [wo gravity for now] with...

- 3 gauge interactions
- •3 families (leptons & quarks) with mixing (PMNS / CKM)
- fermions: Dirac and massive
- renormalised effective QFT Loretz / CPT / etc invariant

what building blocks are sensitive Unitarity? [beyond SM]

- •**new families** → ≥4 families in the Universe?
- •**new interactions** → ≥4 gauge interactions in the Universe?
- missing phenomenology? [no change in families or interactions]

a effective Unitarity violation: the SM incompleteness manifestation

Unitarity with neutrinos: is it advantageous?

the **advantage of using neutrinos** to probe **Unitarity violation**...

•**new families** $\rightarrow \geq 4$ lepton families in the Universe? [**mixing**: new states **active/sterile** and **regardless of kinematics**]

•new interactions → beyond weak-only interaction?
 [negligible EM/QCD corrections — or minimal]

•missing phenomenology? [no change in families or interactions] [even if we have now no clue!!]

 \Rightarrow effective Unitarity violation \Rightarrow major discovery (regardless)

probing SM "building-block symmetries" key path to progress!

Unitarity

(with reactor neutrinos)

this talk relies somewhat on Pedro's (mainly), Andrea's and Alberto's to minimise redundancies

Unitarity via the electron-row...

Unitarity violation with reactors: how?

unitary PMNS violation test via the electron-row normalisation

•absolute flux (ϕ) @ baseline L \rightarrow 0 : $\delta\phi$ [$\leq 6\%$]

• θ | 3 oscillation @ baseline L \approx | km : $\delta \phi$ [$\leq 6\%$] $\oplus \delta \theta_{13}$ [$\leq 3.2\%$]

• θ | 2 oscillation @ baseline L \approx 50km : $\delta \phi$ [$\leq 6\%$] $\oplus \delta \theta_{13}$ [$\leq 3.2\%$] $\oplus \delta \theta_{12}$ [$\leq 4\%$]

non-Unitarity basis (V): violation searches...

$$1 - (|V_{e1}|^2 + |V_{e2}|^2 + |V_{e3}|^2) = 1 - \xi_{ee}^2$$

explore the deviation (or violation) from unitarity unitarity violation => absolute flux deviation

 $|U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2 = 1 \Rightarrow$ by unitarity definition (SM)

unitarity violation implications...

non-standard v states and/or non-standard v interaction

October 14-16, 2019 - LAL Orsay, France,

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

Unitarity

(reactor neutrino \rightarrow experiments)

today's reactor **φ(absolute)** knowledge.

reactor flux poorer precision (rate or shape) ⇒ (long story short) unlikely new physics — unfortunately

H. Nunokawa et al (arXiv:1609.08623v2)

22

at longer baselines (more uncertainties)...

Unitarity

(reactor neutrino \rightarrow <u>future</u>)

reactor flux (rate-only) discrepancy...

generally excellent agreement <u>among all experiments</u>

<2011, excellent agreement to ILL-based (i.e. data) prediction</p>

(2011) ~7.0% mismatch between ILL-prediction and data

25

Anatael Cabrera (CNRS-IN2P3 & APC)

\geq 2021 reactor flux improvement.²⁶

Reevaluating reactor antineutrino spectra with new measurements of the ratio between 235 U and 239 Pu β spectra

V. Kopeikin,¹ M. Skorokhvatov,^{1,2} and O. Titov^{1,*}

¹National Research Centre Kurchalov Institute, 193182, Moscow, Russia
²National Research Nuclear University MEPh1 (Moscow Engineering Physics Institute), 115409, Moscow, Russia (Dated: May 31, 2021)

We report a reanalysis of the reactor antineutrino energy spectra based on the new relative measurements of the ratio $R = {}^{o}S_{5}/{}^{o}S_{9}$ between cumulative β spectra from ²³³U and ²⁴⁹Pu, performed at a research reactor in National Research Centre Kurchatov Institute (KI). <u>A discrepancy with the</u> β spectra measured at Institut Laue-Langevin (ILL) was observed, indicating a steady excess of the ILL ratio by the factor of 1.054 ± 0.002 . We find a value of the ratio between inverse beta decay cross section pet fission for ²³⁶U and ²³⁹Pu: $({}^{b}\sigma_{f}/{}^{o}\sigma_{f})_{NI} = 1.45 \pm 0.03$, and then we reevaluate the converted antineutrino spectra for ²³⁵U and ²³⁶U. We conclude that the new predictions are consistent with the results of Daya Bay and STEREO experiments.

arXiv:2103.01684v2 [nucl-ex] 28 May 2021

DoubleChooz: R=0.925 \pm 0.010 (exp(\pm 0.023) model) \Rightarrow R \rightarrow I but still issues!

prediction: any remaining bias? [how to be sure?]
what's the uncertainty? [so far not right]

solve much of the"issue": enough?

(less discrepancy data and ILL-prediction)

experiment flux uncertainty: (ultimatedly dominated by <u>thermal power</u>)

DoubleChooz uncertainty: ~1.0% Bugey4 uncertainty: ~1.4% DYB uncertainty: ~1.5%

Uncertainty (%)	ND	
Proton Number	0.66	
Thermal Power	0.47	→ irreducible‼
TnC Selection	0.24	
Background	0.18	
Energy per Fission	0.16	
θ_{13} Correction	0.16	
Statistics	0.22	
Total	0.97	

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

Unitarity knowledge potential...

must improve the reactor flux uncertainty \rightarrow discovery potential!

<u>much work & new data</u> for the control of the uncertainties \rightarrow **possible**?

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

27

https://liquido.ijclab.in2p3.fr/nucloud/

CLOUD = "Chooz LiquidO Ultranear Detector" [project: "AntiMatter-OTech"]

Chooz's 3rd generation experiment...

the Ardennes mountains

neutrino emission: ~ 10^{21} V/s per core

the Meuse river

SedF

CLOUD Detector

•LiquidO technology •Mass: ~5ton

TVIUSS. JUIT

•Overburden: ≤3m

•Baseline: ≤30m

Chooz-B: Reactor Cores

CLOUD background control...

vast scientific programme...

European Innovation Council

UK Research and Innovation

scientific programme to be released soon — innovation (protected)

Innovation Programme (confidential for now) — "Antimatter-OTech" Fundamental Science Programme (soon)

- **CODE** (France) **first time in neutrinos!**
 - CIEMAT (Spain)
 - •IJCLab/Université Paris-Saclay (France)
 - •J-G Universität Mainz (Germany)
 - Subatech/Nantes Université (France)
 - $\bullet \textbf{Sussex University} (\text{UK})$
 - Charles University (Czech Republic)
 - INFN-Padova (Italy)
 - •UC-Irvine (US)
 - •Universidade Estadual de Londrina (Brasil)
 - **PUC-Rio** de Janeiro (Brasil)
 - Queen's University (Canada)
 - •University of Zaragoza (Spain)
- Tohoku University / RCNS (Japan)

CLOUD collaboration (EDF
13 institutions over 10 countries)

SuperChooz exploration...

Chooz-A: Cavern Reactor Core

nrs

Chooz-B: Reactor Cores

the Ardennes mountains

Ultra Near Detectors ← •LiquidO technology •Mass: ≤5ton •Overburden: ≤3m •Baseline: ≤30m

the Meuse river

Chooz-A: Super Far Detector LiquidO technology Mass: ~ I Okton Overburden: ≤ I 00m Baseline: ~ I km

https://liquido.ijclab.in2p3.fr/superchooz/

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

<u>SuperChooz Pathfinder agreement between CNRS⊕EDF... [last Sunday!]</u>

LiquidO Consortium (They/Them) • You Detection in Fundamental Particle Physics & Innovation 1d • Edited • 🚱

Fantastic news at the #LiquidO (LiquidO Consortium) this week...

We are delighted to announce that our **#detection #technology** has the potential to open a new era of **#neutrino #fundamental #science** at the EDF **#ChoozB #nuclear #reactor**, located at the heart of **#Europe**, with the official start of the **#SuperChooz #Pathfinder** project (https://lnkd.in/efej2nqn) upon the signature (tweeter: https://lnkd.in/em4t2i_s) of the dedicated agreement between the directions of EDF (Cédric Lewandowski: announced at https://lnkd.in/ePEy5c94) and Centre national de la recherche scientifique (Reynald Pain **#CNRS-#IN2P3**) on the 7th of September 2022.

#LiquidO capabilities and performance are needed for the **#SuperChooz** (tweeter: https://lnkd.in/evT4VQ5W) to face an unprecedented **#neutrino #detection** challenge in the horizon of 2030 with a new experimental setup using 3 LiquidO detectors: 2 small "ultra-near detectors" (**#UND**) and 1 huge "super-far detector" (**#SFD**). If proved feasible, the ~10 kton **#SFD** would be located in one of the caverns of the '60s' **#ChoozA #nuclear #reactor** becoming available upon the dismantlement by the **#DP2D** department of EDF.

The **#UND** framework, along with the **#LiquidO**'s performance demonstration, will be addressed as part of the approved **#Europe**-based **#pilot #project "#AntiMatter #OTech"** project (https://lnkd.in/ezf37Baz) funded by the **#EIC**(https://lnkd.in/eu3jxYjb) and the **#UKRI** starting officially from December 2022. Both **#SuperChooz** and **#LiquidO** are scientifically led by **Anatael Cabrera**.

Further details at our new(!!) LiquidO's website (https://lnkd.in/eVYaBpiG), where our history and present in terms of #R&D developments and projects in both #fundamental #research and #innovation are described.

SedF

CNrs

...

EDF&CNRS exploration...

