

Neutrino Mass and the Early Universe

Bowen Fu Supervised by Steve King In collaboration with Marco Chianese

International School of Nuclear Physics : 43rd Course Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics

Outline

Cosmology problems

* Neutrino portal dark matter: limitation of type I seesaw model

New model: Type Ib seesaw model in cosmology

Dark Matter Production

Boltzmann equation

$$\mathcal{H}T\left(1+\frac{T}{3g_*^{\mathfrak{s}}(T)}\frac{dg_*^{\mathfrak{s}}}{dT}\right)^{-1}\frac{dY_i}{dT} = \sum_{kl} \left\langle \Gamma_{i\to kl} \right\rangle Y_i^{\mathrm{eq}}\left(\frac{Y_i}{Y_i^{\mathrm{eq}}} - \frac{Y_kY_l}{Y_k^{\mathrm{eq}}Y_l^{\mathrm{eq}}}\right) - \sum_{jk} \left\langle \Gamma_{j\to ik} \right\rangle Y_j^{\mathrm{eq}}\left(\frac{Y_j}{Y_j^{\mathrm{eq}}} - \frac{Y_iY_k}{Y_i^{\mathrm{eq}}Y_k^{\mathrm{eq}}}\right) + \mathfrak{s}\sum_{jkl} \left\langle \sigma_{ij\to kl} v_{ij} \right\rangle Y_i^{\mathrm{eq}}Y_j^{\mathrm{eq}}\left(\frac{Y_iY_j}{Y_i^{\mathrm{eq}}Y_j^{\mathrm{eq}}} - \frac{Y_kY_l}{Y_k^{\mathrm{eq}}Y_l^{\mathrm{eq}}}\right)$$

- Freeze-out: The particle is in equilibrium with the thermal bath after reheating. As the universe cools down, the particle decouples from the thermal bath.
- Freeze-in: The particle is out of equilibrium after reheating (usually with negligible initial abundance).
 The particle is produced gradually from the thermal bath and finally decouples as the universe cools down.

* The observed DM relic abundance gives a constraint $\Omega_{\rm DM}^{\rm obs} h^2 = 0.120 \pm 0.001$ 1807.06209

Leptogenesis

- Baryon asymmetry
- Solution to baryon asymmetry from neutrinos
- Decay of RH neutrinos: interference of tree and 1-loop diagrams

- Lepton asymmetry can be transferred to quark asymmetry through EW sphaleron process
 Phys.Lett.B 384 (1996) 169-174

Neutrino Portal Dark Matter

- Connection between neutrino physics and dark matter
- * General neutrino portal: $y_i \phi \overline{\chi} N_i$ the dark particles are charged under a Z₂ symmetry

dark scalar dark fermion RH neutrino

- * heavy scalar scenario: $\phi \rightarrow \chi N_i$
- Freeze-in production of dark matter:

v-Yukawa dominance: sizeable Y

Neutrino Portal Dark Matter in the Littlest Seesaw model

* The Littlest Seesaw model: a version of type I seesaw model explaining neutrino mass and

mixing with two RH neutrinos and minimal free parameters

JHEP 02 (2016), 085

v-Yukawa interaction can only dominate dark matter production when the RHN mass is

JCAP 09 (2018) 027

- * Leptogenesis in the Littlest Seesaw model: $M_{R1} = 5.1 \times 10^{10} \text{ GeV}, M_{R2} = 3.3 \times 10^{14} \text{ GeV}$
- * Production through graviton for superheavy particles $\frac{1}{M_{\rm P}}$

above 4 TeV

JHEP 10 (2018) 184

JCAP 06 (2020) 019

Nevertheless, a v-Yukawa dominant region can be found

JCAP 01 (2021) 034

Predictive but not testable for collider experiments

Q: Can we find a model where v-Yukawa dominance can appear for GeV scale heavy neutrino? And perhaps compatible with leptogenesis?

Type Ib Seesaw Model

Traditional type I seesaw mechanism (Littlest Seesaw) Φ Φ L_{α} M_N L_{α} M_N M_N M_N M_N L_{β} $m \propto \frac{Y^2 v^2}{M_N}$

- At least 2 Majorana RH neutrinos + 1 Higgs
- I Yukawa coupling for each RH neutrino
- 2 free parameters after considering neutrino mass an mixing: M_{R1} and M_{R2}
- To have a sizeable coupling, the righthanded neutrino has to be above TeV scale

Type Ib seesaw mechanism

- 1 Dirac neutrino +2 Higgs
- 1 Yukawa coupling for each Higgs
- 3 free parameters after considering neutrino mass an mixing: Y₁, Y₂ and M_N
- One of Y₁, Y₂ can be small while the other one is sizeable, providing GeV scale heavy neutrino

Type Ib Seesaw Model with a Neutrino Portal

Particles and symmetries

	Q_{lpha}	$u_{R\beta}$	$d_{R\beta}$	L_{α}	$e_{R\beta}$	Φ_1	Φ_2	$N_{\rm R1}$	N_{R2}	ϕ	$\chi_{L,R}$
$SU(2)_L$	2	1	1	2	1	2	2	1	1	1	1
$U(1)_Y$	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	$-\frac{1}{2}$	$-\frac{1}{2}$	0	0	0	0
Z_3	1	ω	ω	1	ω	ω	ω^2	ω^2	ω	ω	ω^2
Z_2	+	+	+	+	+	+	+	+	+	-	

* Seesaw Lagrangian and neutrino portal $\mathcal{N} = (N_{R1}^c, N_{R2})$

 $\mathcal{L}_{\text{seesawIb}} = -Y_{1\alpha}^* \overline{L^c}_{\alpha} \Phi_1^* \mathcal{N}_L - Y_{2\alpha} \overline{L}_{\alpha} \Phi_2 \mathcal{N}_R - M_N \overline{\mathcal{N}_L} \mathcal{N}_R + \text{h.c.}$ $\mathcal{L}_{\text{N}_R \text{portal}} = y \phi \, \overline{\chi} \mathcal{N} + \text{h.c.}$

Freeze-in production of dark matter

Relation to Experiments

✤ 2 key parameters:

- tan β : the ratio of VEVs of the Higgs v_2/v_1
- m_{ϕ}/m_{χ} : For hierarchical mass spectrum, the dark matter production depends on m_{ϕ}/m_{χ}
- ✤ U²: active-sterile neutrino mixing strength

- The strongest constraint is given by ν_μ mixing
- v-Yukawa dominance is allowed above the coloured dashed lines
- * Less constrained as $tan\beta$ increases
- * More constrained as m_{ϕ}/m_{χ} increases
 - JHEP 05 (2021) 129]

Resonant Leptogenesis in Type Ib Seesaw Model

* An extended model with a superheavy third RHN and a scalar field

$$\mathcal{L}_{\text{seesawIb}} = -Y_{1\alpha} \overline{\ell}_{\alpha} \phi_1 N_{R1} - Y_{3\alpha} \overline{\ell}_{\alpha} \phi_2 N_{R3} - 2Y_{13} \overline{\xi} \, \overline{N_{R3}^c} N_{R1} - 2Y_{23} \overline{\xi} \overline{N_{R3}^c} N_{R2} - M \overline{N_{R1}^c} N_{R2} - \frac{1}{2} M_3 \overline{N_{R3}^c} N_{R3} + \text{h.c.}$$

Summary

- Indications of BSM physics: neutrino mass and mixing, dark matter, baryon asymmetry
- Neutrino physics can be related to dark matter through a neutrino portal in type I seesaw model, but the connection is not testable
- A new type Ib seesaw model can make a testable connection between neutrino physics and dark matter which can also explain baryon asymmetry through leptogenesis

Thank You!

13