

The CONUS Reactor Neutrino Experiment

Janine Hempfling (on behalf of the CONUS Collaboration) Max-Planck-Institut für Kernphysik, Heidelberg

INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS, 43rd Course 20.09.2022

Coherent Elastic Neutrino Nucleus Scattering

Plots by A. Bonhomme

2/19

 Coherent interaction of low energy neutrinos with nuclei

$$\frac{d \sigma(E_{\nu},T)}{dT} \simeq \frac{G_F^2}{4 \pi} \underbrace{\left[\underbrace{N - (1 - 4 \sin^2(\theta_W)) Z}_{\approx N^2} \right]^2 \underbrace{F^2(q^2) M}_{\Rightarrow 1}}_{\approx N^2} \underbrace{\left(1 - \frac{MT}{2 E_{\nu}^2} \right)}_{kinematics}$$

- At low momentum transfer: interaction with entire nucleus
 cross-section enhancement
- At full coherency: $\sigma \propto N^2$ for E_v ≤ 30 MeV

Coherent Elastic Neutrino Nucleus Scattering

- Only low-energy nuclear recoil observable
 very low energy threshold, low background and intense v-flux required
- 1974: CEvNS theoretically described by D. Freedman
- 2017: observed by COHERENT at π -DAR source with CsI[Na] (and Ar in 2021)

Coherent Elastic Neutrino Nucleus Scattering

Detecting CevNS: How & Why?
 2 artificial neutrino sources:

Reactor	Accelerator
v from fission products	ν from π-DAR
only $\bar{\nu}_{e}$	different flavors: $\nu_{e}^{}, \nu_{\mu}^{}, \overline{\nu}_{\mu}^{}$
v energies of < 10 MeV	ν energies of ~20-50 MeV

- Physics potentials:
 - Standard Model measurements (e.g. Weinberg angle)
 - Beyond Standard Model searches
 - Nuclear structure
 - reactor investigations

The CONUS Experiment

N. Ackermann, H. Bonet, A. Bonhomme, C. Buck, J. Hakenmüller, J. Hempfling, J. Henrichs, G. Heusser,

- M. Lindner, W. Maneschg, T. Rink, E. Sanchez Garcia, J. Stauber, H. Strecker
- Max Planck Institut für Kernphysik (MPIK), Heidelberg

K. Fülber, R. Wink

- Preussen Elektra GmbH, Kernkraftwerk Brokdorf (KBR), Brokdorf

 ν US

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

Preussen

Elektra

- At the nuclear power plant in Brokdorf (KBR) in Germany
- Reactor core:
 - Reactor core: thermal power 3.9 GW_{th}
- High duty cycle (~1 month/yr off)
- 24 m w.e. overburden (angle-dependent)
- CONUS at 17 m distance to core •
 - neutrino flux $2 \cdot 10^{13} \overline{v_e} \text{ s}^{-1} \text{ cm}^{-2}$
- Power plant switched off since beginning of 2022

The CONUS Experiment – Experimental Setup

 $\land \land \land \land \land \land \land \land$

- 4 p-type point contact HPGe detectors
 - 1kg each
 - very low background components
 - electrical cryocooler
 - pulser resolution (FWHM) < 80 eV_{ee}
 - energy threshold $\leq 300 \text{ eV}_{ee}$
- Active + passive shielding
 - lead with low ²¹⁰Pb content
 - borated PE, pure PE
 - active µ-veto (plastic scintillator)
- Monitoring of environmental parameters

Eur. Phys. J. C 81, 267 (2021)

 Suppression of external natural radioactivity and cosmogenic background by a factor of 10⁴

Eur. Phys. J. C 79, 699 (2019) arXiv: 2112.09585 (2021)

Residual background fully described by MC simulations

stable background level in [0.5 – 1] keV_{ee}: 10 counts/kg/d/keV_{ee}

Ionization Quenching Factor

- Ionization quenching factor (IQF)
- Extensively measured from 10-100keV, data lacking in keV range → Conus ROI

Measurement of IQF in Ge:

- direct, model-independent using neutrons
- scientific cooperation with PTB:
 - pulsed proton beam
 - mono-energetic neutrons via Li(p,n) reaction
- Experimental setup:
 - neutron collimator
 - thin HPGe target
 - liquid scintillator (LS) array

 $IQF = \frac{E_{ionization}}{-}$

 $E_{\it nuclear\ recoil}$

Eur. Phys. J. C 82, 815 (2022)

Ionization Quenching Factor

- Model-independent analysis of data (~16h beam exposure)
- All systematic uncertainties included

Data compatible with Lindhard model: $k = 0.162 \pm 0.004 (stat + syst)$

Eur. Phys. J. C 82, 815 (2022)

CEVNS Analysis - Data Selection & Noise Cuts

- Noise-temperature correlation cut
- Reject microphonic and spurious events with time-difference distribution cut
- Run-1+2 exposure after all cuts: - 248.7 kg d (reactor-on)
 - 58.8 kg d (reactor-off)

Phys. Rev. Lett. 126, 041804 (2021)

11/19

- Criteria:
 - ratio of electronic noise to background MC < 4
- Electronic noise described with an exponential

CEVNS Analysis – Data Analysis Strategy

- Simultaneous likelihood fit for all detectors & runs (reactor ON&OFF):
 - theoretical CEvNS signal prediction
 - reactor spectrum
 - MC + exponential electronic noise fit for background description
 - systematic uncertainties

- Best CEvNS limit at reactor: $< 0.4 \text{ d}^{-1} \text{ kg}^{-1}$ (90 % C.L.)
- Signal expectation depends on quenching factor

For k=0.16: expected CEvNS signal 17x below CONUS upper limit

90% C.L.

-1.00 -0.75 -0.50 -0.25

-1.00

CHARM

0.00

 $\epsilon^{d\mathrm{V}}_{ee}$

0.25

0.50

0.75

1.00

k = 0.16

600

550

0 -

300

350

400

450

Ionization energy I [eV]

500

- Simplified models:
 - new light scalar/vector mediators
 - universal couplings
 - light scalar boson ϕ : $\frac{d \sigma_{\phi}}{dT} = \frac{g_{\phi}^4 (14N + 15.1Z)^2 M^2 T}{4 \pi E_v^2 (2MT + m_{\phi}^2)^2}$

- light vector boson Z':
$$\frac{d\sigma_{Z'}}{dT} = \left(1 - \frac{3g_{Z'}^{\nu} g_{Z'}^{q}(Z+N)}{\sqrt{2}G_{F}Q_{SM}(2MT+m_{Z'}^{2})}\right)^{2} \frac{d\sigma_{SM}}{dT}$$

```
Light scalar boson \phi
```


J. High Energ. Phys. 2022, 85 (2022)

• Neutrino electron scattering channel:

EPJC 82, 813 (2022)

 $\mu_{v} < 7.5 \cdot 10^{-11} \mu_{B} (90\% C.L.)$

 $q_{\nu} < 3.3 \cdot 10^{-12} e_0 (90\% C.L.)$ 18/19

Summary & Outlook

- CONUS experiment sets best limit on CEvNS with reactor Phys. neutrinos
 - detailed description of the Ge detectors given
 - extensive correlated background studies given
- Competitive limits for tensor NSIs as well as simplified BSM J. High Energ. Phys. 2022, 85 (2022) models
- Direct and precise measurement of the ionization quenching Eur. Phys. J. C 82, 815 (2022) factor in germanium down to 0.4 keV_{nr}
- Future plans:
 - proceeding BSM analyses
 - data taking still ongoing:
 - extended dataset with improved control of environmental parameters + reactor-OFF
 - DAQ upgrade: pulse shape studies for noise, background suppression, lower threshold
 - new experimental site under discussion (reactor off since end of 2021)

Phys. Rev. Lett. 126, 041804 (2021)

Eur. Phys. J. C 81, 267 (2021)

Eur. Phys. J. C 79, 699 (2019)