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Core Collapse Supernova Paradigm and Problem Description

* Sound speed decreases with radius (density).

o . : Maximum scrunch.
* Infall velocity increases with radius.

* Fermi-Dirac Statistics
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Necessary Model Components

Three-Dimensional General Relativistic Gravity Three-Dimensional General Relativistic

Neutrino Kinetics
Newtonian General Relativistic

* Neutrino heating depends on the neutrino

= v-Luminosity luminosities, spectra, and angular distributions.
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Bruenn, DeNisco, and Mezzacappa, Ap.J. 560, 326 (2001)
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Three-Dimensional General Relativistic
Magnetohydrodynamics

ft,r0,0,0,¢,) Required

{ILH}(t,z) = ff(t,z,a)){l,f}da) Feasible

Turbulent Convection

Standing Accretion Shock Instability
Slow to Rapid Progenitor Rotation
Magnetic Isotropic Pressure

and other MHD Stresses

_____________________________________________________________________

K(zt) = jf(t,z,w)i’@fdw

| =

k = 2[(1 — I+ By —1hQ h]
Microphysics Eddington Factor /
k=—h

Extensive Set of Weak Interactions
State-of-the-Art Implementations of Them

___________________________________________________________

Kuroda, Arcones, Takiwaki, and Kotake Ap.J. 896, 102 (2020) Suitably Constrained Nuclear Equation of State | \Mezzacappa, Endeve, et al. Liv. Rev. Comp. Astr. 6, 4 (2020)




Relevant Neutrino

Beta processes:

Neutrino scattering:

Thermal pair
processes:

Neutrino-neutrino
reactions:

Janka et al. Prog. Theor. Exp. Phys. 2012, 01A309
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TABLE 1. Neutrino reactions with muons.
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Bollig et al. PRL 119, 242702 (2017)

What | will mean by “Full Weak Physics” in a later slide:

* Inclusion of all of the above weak interactions absent the neutrino—muon interactions.
e Use of state of the art rates for these interactions.

The computational cost is driven by the weak interactions included and how they are treated.
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Keeping Pace with
the Weak Interactions

Uncertainty: Uncertainty in things included in the models.

A 10% correction in the neutrino—nucleon scattering cross
section consistent with the uncertainty in the strangeness
content of the nucleon led to explosion in a model that
otherwise failed to explode.
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Limitation: Model limitations due to things not yet included. 250 T 5
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The Interplay of Neutrino Opacities
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The interplay between opacity improvements is complex. Calls into question the efficacy of varying a single opacity.




Keeping Pace with the
Nuclear Equation of State

Left Standing

The nuclear equation of state is increasingly constrained by 120

* nuclear experiment,
* relativistic heavy ion collisions,
* measurements of neutron star masses, and

* measurements of neutron star radii. 30 =

60/
, KVR

40 =

For a review, see Oertel et al. RMP 89 015007 (2017).

L [MeV]

Some equations of state used in past core collapse
supernova simulations have been ruled out.

Tews et al. Ap.J. 848, 105 (2017)
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Status Report

The efficacy of the neutrino shock reheating/delayed shock mechanism has now been
demonstrated by all leading groups across progenitor characteristics (mass, rotation, and
metallicity).

For recent reviews, see:

Mueller, Proceedings of the Astronomical Society of Australia 33 e048 (2016)
Janka, Melson, and Summa, Ann. Rev. Nucl. Part. Sci. 66 341 (2016)

Mueller, Liv. Rev. Comp. Astr. 6 3 (2020)
Mezzacappa, Endeve, Messer, and Bruenn, Liv. Rev. Comp. Astr. 6 4 (2020)

Nonetheless, significant challenges remain.
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Transitioning to Quantitative Prediction
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3D 9.6 M Model, Lentz et al. (2021), in preparation

Time scale over which explosion develops presents a significant challenge for 3D models.
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Explosion Energy vs Post-Bounce Time
Comparison of 9, 10, 11, and 12 M, SEWBI16 Progenitors
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The Anatomy of a Core Collapse Supernova Neutrino “Light Curve”
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The Evolution of Core Collapse Supernova Neutrino Spectra
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Enter Neutrino Mass and Mixing
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Neutrinos have mass and can change flavor. computations!

Shock heating mediated by the electron-flavor neutrinos.
The spectra are different across neutrino flavor.
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A Common Theme: It’s all about the Angular Distributions

Length and Time Scales Severe
e.qg., length scale is O(1 cm) and typical CCSN radial resolution is O(100 m)

How do we couple this quantum evolution to the classical evolution?

flavor mixing due to
neutrino forward scattering
on neutrinos

flavor mixing due to RS

V' fast flavor instability

* Tamborra I. and Shalgar S. ARNPS
2021 71, 165 * Duan, H., Fuller, G. M., & Qian, Y.-Z. 2010, ARNPS 60, 569
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Observation of the electron neutrino burst or lack thereof could convey
information about the mass hierarchy.



Recent progress has been great!

Multiple groups have demonstrated the efficacy of the neutrino heating mechanism over a range of progenitor
characteristics, in three dimensions.

Current three-dimensional models have allowed us to study associated phenomena such as gravitational wave emission.
There is a great deal of development to be done to arrive at (classical) definitive three-dimensional models.

Full three-dimensionality.

Full general relativity.

Full physics (weak interaction physics, magnetic fields, ...).
Full phase space.

And we need to run many models
for a sufficiently long time.

Quantum kinetics looms large as a potential requirement, the development of which will occupy our community for some time.

We have a detailed picture for core collapse supernova neutrinos, but that picture can change in quantitative and qualitative ways
given one or more considerations listed above.



