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Core Collapse Supernova (Neutrino) Modeling:
Assessing Progress, Future Challenges

What can we say about core collapse supernova neutrinos?



Outline

What will it take to model core collapse supernova neutrinos?

Where do these modeling efforts stand?

What implications does this have for what we can say about them now?

What’s lies ahead?



• Sound speed decreases with radius (density).
• Infall velocity increases with radius.

SupersonicSubsonic

Regions are sonically 
disconnected.

Phase transition from nuclei (dense 
phase) and nucleons (light phase) to 
bulk nuclear matter through “nuclear 
pasta” phases.

𝑒! + 𝑝 → 𝜈" + 𝑛
𝑒! + 𝐴 → 𝜈" + 𝐴#

Electron capture dictates 
inner-core size.

Maximum scrunch.
• Fermi-Dirac Statistics
• Nucleon – nucleon interaction

potential’s hard core.

Outflow

Inflow
Shock

Shock propagation dictated 
by shock “jump conditions.”

Shock stalls due to neutrino 
and nuclear dissociation losses. 

Core Collapse Supernova Paradigm and Problem Description



Three-Dimensional General Relativistic Gravity

Bruenn, DeNisco, and Mezzacappa, Ap.J. 560, 326 (2001)

25 M 
Model

Newtonian General Relativistic

Three-Dimensional General Relativistic 
Magnetohydrodynamics

• Turbulent Convection
• Standing Accretion Shock Instability
• Slow to Rapid Progenitor Rotation
• Magnetic Isotropic Pressure 

and other MHD Stresses

Three-Dimensional General Relativistic 
Neutrino Kinetics

• Neutrino heating depends on the neutrino
luminosities, spectra, and angular distributions.

Necessary Model Components

accretes and a temporal shock expansion occurs, though it soon
decreases.

We can also find a typical signature of SASI in the evolution
of shock radii. From the top panel of Figure 3, a time
modulation is visible in the maximum shock radii, particularly
in model R0B00 (thick black line) for tpb100 ms.

Such a modulation reflects the appearance of SASI (Foglizzo
et al. 2006; Scheck et al. 2006). To see more quantitatively the
shock morphology and also the dominant SASI mode, we plot
time evolution of normalized mode amplitudes wA c cℓm ℓm 00
of spherical polar expansion of the shock surface Rshock(θ, f)
for several dominant modes in Figure 4. Here we adopt the
same definition for cℓm as in Burrows et al. (2012), with ℓ and m
representing the quantum number with respect to the real
spherical harmonics of Yℓ

m, respectively.
In the top panel, the dominant mode is (ℓ, m)=(2, 0) (black

line) for the first ∼120 ms after bounce. Since its sign is
positive, the shock morphology is prolate, as also shown in the
left and center columns in Figure 1. However, for tpb120 ms
in the same model R1B12, (ℓ, m)=(1, 0) (red line) gradually
takes over as the dominant term with its sign being negative.
Therefore, the shock morphology at the end of simulation time
is unipolar toward the negative z-axis, which is again consistent
with the right column in Figure 1. In the middle panel, R1B00
shows that A20 becomes negative for tpb50 ms, which
reflects a rotating oblate spheroid (see bottom panels in
Figure 2). At the same time, (ℓ, m)=(1,±1) (blue and green
lines) also show comparable amplitudes with that of (2, 0), but

with clear quasi-periodic oscillations. Between these two
∣ ∣ �m 1 modes, i.e., (ℓ, m)=(1, 1) and ( )�1, 1 , a phase shift
seemingly with ∼π/2 exists that indicates that the spiral SASI
motion appears (Blondin & Mezzacappa 2007). In the
nonrotating model R0B00, all three modes with ℓ=1 and
m=0,±1 show basically the same amplitude with almost no
phase shift up to tpb∼120 ms. Therefore, the dominant SASI
mode is the sloshing mode first after bounce. Afterward the (1,
0) mode gradually decouples from the other two different
azimuthal modes. There seems to be a phase shift of ∼π/2
between (1, 0) (red line) and the other two with (1,±1) (green
and blue). This can be explained by the dominant SASI motion
changing from the sloshing motion to the spiral one around
tpb∼120 ms. Note that the growth of the spiral SASI in the
nonrotating progenitors (Blondin & Mezzacappa 2007) is
consistent with the outcomes of previous 3D core-collapse
models (Hanke et al. 2013; Kuroda et al. 2016a; Ott et al.
2018).

3.3. Nonaxisymmetric Instabilities inside the MHD Outflow

In this subsection, we discuss nonaxisymmetric instabilities
inside the MHD outflow and their potential impact on the shock
evolution. In a 3D–GR model using similar precollapse rotation
rate and magnetic fields to our model R1B12, Mösta et al.
(2014) observed the appearance of the kink instability (Begel-
man 1998; Lyubarskii 1999; Narayan et al. 2009). According to
their analysis, the linear growth of the kink instability shortly
starts after bounce, which is followed by the nonlinear phase

Figure 1. Snapshots of the volume-rendered entropy (top panels) and inverse of the plasma β in the logarithmic scale ( C�log 1; bottom panels) for model R1B12. From
left to right panels, the postbounce times of tpb∼56, 100, and 250 ms are depicted, respectively. In the top panels, the central bluish spherical/spheroidal object
roughly corresponds to the unshocked PNS core. Note that the inclination angle of the coordinates is not fixed in each time snapshot to visualize the expansion
morphology more clearly. The white line denotes the length scale that is parallel to the rotational axis (z-axis).
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Microphysics

Extensive Set of Weak Interactions
State-of-the-Art Implementations of Them

Suitably Constrained Nuclear Equation of State

Requires a closure prescription. Closure must be realizable.
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Require conservation of lepton number and energy.



Relevant Neutrino Interactions
PTEP 2012, 01A309 H.-T. Janka et al.

Fig. 3. Summary of important neutrino reactions in a supernova core and/or nascent neutron star [4–6].
The symbol ν can mean any type of neutrino, A represents an atomic nucleus, and N means neutron (n)
or proton (p).

High mass accretion rates therefore tend to damp the shock expansion while neutrino-energy deposi-
tion behind the shock2, which depends on the product Lν

〈
ε2
ν

〉
, can drive shock expansion. This issue

will be elaborated on further below.
In order to successfully launch a supernova explosion, some mechanism is necessary by which

the stalled shock can be revived. Such a mechanism needs to tap the huge reservoir of gravitational
binding energy that is released during the formation of a neutron star. During the infall of the stellar
core, the energy is first converted to internal energy by hydrodynamic forces (i.e., compression and
the viscous dissipation of kinetic energy in matter decelerated in the accretion shock). The degeneracy
and thermal energy of electrons and nucleons thus stored in the proto-neutron star is subsequently
radiated away by neutrinos over a timescale of many seconds.

Deep in the highly degenerate neutron-star interior, electron neutrinos, νe, are first produced by
electron captures on protons. On their diffusive propagation towards the neutrinosphere, these elec-
tron neutrinos lose some of their energy in absorption–reemission processes as well as in scattering
reactions with electrons and free neutrons and protons (Fig. 3). This effect, together with the gravi-
tational settling and compression of the outer layers of the proto-neutron star, initially leads to rising
temperatures before, after some seconds, cooling sets in. Since the degeneracy is partially lifted in
the hot proto-neutron star mantle, the secondary production of electron antineutrinos, ν̄e, by positron
captures on neutrons becomes possible. Neutrino–antineutrino pairs of all three flavors are created
by thermal processes, i.e., nucleon–nucleon bremsstrahlung and electron–positron annihilation. Pure
neutrino reactions (Fig. 3) also contribute to the shaping of the emitted spectra of muon and tau neu-
trinos and antineutrinos (νµ, ν̄µ, ντ , ν̄τ ) [3], which are not produced by fast beta reactions and thus
are less tightly coupled to the stellar medium.

Even a small fraction of the huge energy reservoir of several 1053 ergs carried away by neutrinos
is already sufficient to account for the canonical explosion energy of a core-collapse supernova,
which ranges between some 1050 erg to around 1051 erg. It may appear astonishing that the explosion
selects an energy scale that is 2–3 orders of magnitude lower than the reservoir of available energy.

2 The energy transfer by neutrinos scales linearly with the neutrino luminosity and the average interaction
cross section. The latter increases roughly with the luminosity-averaged square of the neutrino energy.
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Different from τ neutrinos, but analogously to νe and ν̄e,
νμ and ν̄μ participate in β reactions,

νl þ n ⇄ pþ l−; ð1Þ

ν̄l þ p ⇄ nþ lþ; ð2Þ

with their charged leptons l (standing for e or μ) when a
significant population of thermally excited μ− and μþ

appears [11]. Beta equilibrium for both flavors implies
the usual relation

Δμ≡ μn − μp ¼ μl − μνl ð3Þ

between the chemical potentials (including particle rest-
mass energies) of neutrons, protons, charged leptons, and
the corresponding neutrinos. Since the highly degenerate
Fermi sea of e− partially converts to μ−, and since initially
the trapped muon number is zero, an excess of μ− over μþ is
compensated by an opposite excess of ν̄μ over νμ.
Therefore, the diffusive flux of ν̄μ will dominate that of
νμ, leading to a gradual buildup of muon number. The
easier escape of ν̄μ compared to νμ is aided by the lower
neutral-current scattering cross section for ν̄μ mentioned
above and by the higher opacity for β reactions of νμ
compared to ν̄μ in analogy to the electron flavor. The
accumulation of net muon number in the proto-NS, i.e., the
process of muonization that leads to an excess of μ− over
μþ in the final NS, is facilitated by the reactions of Eqs. (1)
and (2). Also, other interactions that couple the e-lepton
and μ-lepton sectors (Table I) enhance the muonization rate
and thus increase both the νμ and ν̄μ fluxes.
Muonization might play a non-neglible role during all

stages of the SN postbounce (PB) evolution and NS as well
as black-hole (BH) formation. In the following, we discuss
its effects on the initiation of SN explosions by neutrino-
energy deposition.
Numerical modeling.—Our SN simulations were per-

formed with the PROMETHEUS-VERTEX neutrino-hydrody-
namics code [15,16] with an approximate treatment of
general relativistic gravity by the effective gravitational
potential of case A of Ref. [17]. The PROMETHEUS hydro-
dynamics module solves the equations of nonrelativistic
hydrodynamics (continuity equations for mass, momentum,
energy, lepton number, and nuclear composition) with an
explicit, directionally split, higher-order Godunov scheme
[18]. The transport module VERTEX integrates the energy-
dependent evolution equations of energy andmomentum for

all six neutrino species (νe, ν̄e, νμ, ν̄μ, ντ, ν̄τ) in the comoving
frame of the stellar fluid to orderv=c (v is the fluid velocity, c
the speed of light), including corrections due to general
relativistic redshift and time dilation. The closure is provided
by an Eddington factor based on the solution of a model-
Boltzmann equation, iterated for convergencewith the set of
two-moment equations [15]. Neutrino transport in multidi-
mensional simulations employs the ray-by-ray plus approxi-
mation [16].
We upgraded the PROMETHEUS-VERTEX code for includ-

ing all effects of μ− and μþ in the hydrodynamics and
equation of state (EOS) of the stellar plasma, the effective
relativistic gravity potential, and in the neutrino transport.
This implies the solution of conservation equations for
electron and muon lepton number:

∂ðρYlÞ
∂t þ∇ðρYlvÞ ¼ Ql ð4Þ

(here, relativistic corrections are omitted for simplicity).
Yl ¼ Yl− − Ylþ is the net number of charged leptons per
nucleon, ρ the baryon-mass density, and Ql the source rate
that is associated with all processes emitting and absorbing
νl and ν̄l. The EOS depends on Ye and Yμ; i.e., P ¼
Pðρ; T; Ye; Yμ; fYkgk¼1;…;Nnuc

Þ and ω ¼ ωðρ; T; Ye; Yμ;
fYkgk¼1;…;Nnuc

Þ for pressure P and specific energy density
ω (T is the medium temperature, Nnuc the number of
nuclear species). Analogously to e− and eþ, μ− and μþ

provide an additive contribution to P and ω and are treated
as ideal Fermi gases of arbitrary degeneracy and arbitrary
degree of relativity. In nuclear statistical equilibrium (NSE)
the mass fractions of nuclei and nucleons Yk are determined
by the Saha equations and, hence, Yk ¼ Ykðρ; T; Ye; YμÞ
holds; otherwise they follow from evolution equations
similar to Eq. (4) with Ql being replaced by source terms
for nuclear reaction rates. With ρ, ω, Ye, and Yμ given as
solutions of the hydrodynamics and Yk (k ¼ 1;…; Nnuc)
being determined either by NSE or Eq. (4), T and the
chemical potentials μe, μμ, μn, μp, and μk for all k can be
determined under the constraint of charge neutrality,P

kZkYk ¼ Ye þ Yμ, with Zk being the nuclear charge
number of species k.
Accounting for the presence of muons and the differences

of the ν and ν̄ scattering cross sections with nucleons due to
nucleon recoil and weak magnetism [13], we generalized the
neutrino-transport module VERTEX to an energy-dependent
six-species treatment, tracking νe, ν̄e, νμ, ν̄μ, ντ, and ν̄τ
individually. Besides our “standard” set of neutrino reaction
rates listed in Table 1 of Ref. [19], we also implemented all
relevant neutrino interactions with μ− and μþ as listed in
Table I. The detailed kinematics (energy and momentum
exchange between reaction partners) were fully taken into
account, describing charged leptons as arbitrarily relativistic
and arbitrarily degenerate fermions and nucleons as non-
relativistic fermions.Neutral and charged-current interactions

TABLE I. Neutrino reactions with muons.

νþ μ− ⇄ ν0 þ μ− 0 νþ μþ ⇄ ν0 þ μþ0

νμ þ e− ⇄ νe þ μ− ν̄μ þ eþ ⇄ ν̄e þ μþ

νμ þ ν̄e þ e− ⇄ μ− ν̄μ þ νe þ eþ ⇄ μþ

ν̄e þ e− ⇄ ν̄μ þ μ− νe þ eþ ⇄ νμ þ μþ

νμ þ n ⇄ pþ μ− ν̄μ þ p ⇄ nþ μþ

PRL 119, 242702 (2017) P HY S I CA L R EV I EW LE T T ER S
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What I will mean by “Full Weak Physics” in a later slide:

• Inclusion of all of the above weak interactions absent the neutrino–muon interactions.
• Use of state of the art rates for these interactions.

The computational cost is driven by the weak interactions included and how they are treated.



between neutrinos and nucleons were handled by the for-
malismofRefs. [20,21],which includes the effects of nucleon
correlations by a random-phase approximation (RPA). We
generalized the treatment to also include corrections due to
neutron and proton mean-field potentials in the β processes
[22–24] and due to the large rest masses of μ− and μþ. Weak-
magnetism corrections according to Ref. [13] are used in all
neutral and charged-current neutrino-nucleon interactions
(cf. Ref. [16]) except in charged-current reactions of νμ
and ν̄μ with nucleons (because lepton-mass dependence
was neglected in Ref. [13]). Neutral and charged-current
reactions of neutrinoswith nucleons bound in light nuclei (2H,
3H, 3He) were approximated by using the neutrino-nucleon
interactions ofRef. [25],which slightly overestimates (mainly
at low energies) the collective opacity of these reactions
compared to the detailed description in Ref. [26]. When
specified, we included in neutrino-nucleon scatterings virial
corrections for the axial response of nuclear matter at low
densities [27,28] and/or applied a strangeness-dependent
contribution to the axial-vector coupling coefficient [13] with
a value of gsA ¼ −0.1, consistent with experimental con-
straints [29]. The virial corrections were implemented via an
effective interaction in the RPA that was stronger at low
densities. This yielded results similar to those in Ref. [27].
Our SN simulations were performed in 2D for a

nonrotating 20 M⊙ progenitor model [30] with the
Lattimer-Swesty EOS (LS220) with nuclear incompress-
ibility K ¼ 220 MeV [31] and the SFHo EOS [32,33]
(models s20.0-LS220 and s20.0-SFHo, respectively). After
bounce, at densities below 1011 g cm−3, we employed a
23-species NSE solver at T > 0.5 MeV for infalling and
T > 0.34 MeV for expanding, high-entropy matter, and
nuclear “flashing” [15] at lower temperatures. For the
polar coordinate grid we used a time-dependent number
of 400–650 radial zones and 160 lateral zones with a
refinement to 320 lateral zones outside of the gain radius
(i.e., the radius exterior to which neutrino heating domi-
nates), and for the neutrino transport 15 geometrically
distributed energy bins with ϵmax ¼ 380 MeV.
Results.—In addition to conducting simulations for the

two employed nuclear EOSs with our standard set of
neutrino processes (Table 1 in Ref. [19]), we also inves-
tigated cases where we included (a) the virial corrections in
ν − N scattering, (b) all muon effects, (c) both muon and
virial effects, and (d) muons, virial effects, and a strange-
ness correction in ν − N scattering. Figure 1 displays the
time evolution of the average shock radii for the models
with SFHo (top left) and LS220 EOS (top right). It is
obvious that muon formation enables an explosion for the
SFHo model, which does not explode with standard
neutrino physics, and it allows for an earlier onset of the
explosion with the LS220 EOS.
Figure 2 compares the evolution of angle-averaged radial

profiles of the entropy per baryon (superimposed in color
on mass-shell trajectories) for two SFHo models. After the

arrival of the interface between the silicon-shell and
oxygen-rich Si layer at the shock at ∼240 ms PB, the
shock radius in the model with muons is considerably
larger than in the standard case, leading to an explosion,
despite the inverse order of the shock radii at earlier times
(Fig. 1). The lower panels of Fig. 1 provide an explanation:
with muons the proto-NS contracts notably faster (left). The
creation of μ− and μþ effectively softens the EOS by
conversion of thermal and degeneracy energy of e− into
rest-mass energy of muons. In addition, it significantly
raises the emission of ν̄μ and, to a lesser extent, also of νμ
(Fig. 3, middle panels). The accelerated shrinking of the NS
leads to higher temperatures at given densities and corre-
spondingly increased luminosities and mean energies of the
emitted electron- and τ-flavor neutrinos, which are shown
in Fig. 3 (left-hand and right-hand panels) at the gain
radius, where νe and ν̄e differences are relevant for the
neutrino heating. As a consequence, the neutrino-heating
rate, per baryon as well as integrated over the gain layer
(i.e., the region between gain radius and shock), becomes
sizably greater in the model with muons at t≳ 240 ms
(Fig. 1, bottom right). Muons therefore have a similar
overall effect as the strangeness-dependent reduction of
neutrino-nucleon scattering discussed in Ref. [3].
Figure 4 documents the appearance of significant charged-

muon number (up to Yμ ∼ 0.05) (at the expense of e−)
correlated with a temperature maximum in the NS between
∼7 km (∼4×1014gcm−3) and∼21 km (∼2 × 1013 g cm−3).
While in the model without muons νμ are more abundant
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FIG. 1. Upper row: Angle-averaged shock radii (solid line) and
mass-infall rates (at 400 km, dashed line) versus postbounce time
for our sets of models with SFHo (left) and LS220 EOS (right).
Lower row: Time evolution of NS radii (measured at an average
density of 1011 g cm−3, left) and net heating rate integrated over
the gain layer (in 1 B s−1 ¼ 1051 erg s−1, right) for models with
SFHo EOS.
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Different from τ neutrinos, but analogously to νe and ν̄e,
νμ and ν̄μ participate in β reactions,

νl þ n ⇄ pþ l−; ð1Þ

ν̄l þ p ⇄ nþ lþ; ð2Þ

with their charged leptons l (standing for e or μ) when a
significant population of thermally excited μ− and μþ

appears [11]. Beta equilibrium for both flavors implies
the usual relation

Δμ≡ μn − μp ¼ μl − μνl ð3Þ

between the chemical potentials (including particle rest-
mass energies) of neutrons, protons, charged leptons, and
the corresponding neutrinos. Since the highly degenerate
Fermi sea of e− partially converts to μ−, and since initially
the trapped muon number is zero, an excess of μ− over μþ is
compensated by an opposite excess of ν̄μ over νμ.
Therefore, the diffusive flux of ν̄μ will dominate that of
νμ, leading to a gradual buildup of muon number. The
easier escape of ν̄μ compared to νμ is aided by the lower
neutral-current scattering cross section for ν̄μ mentioned
above and by the higher opacity for β reactions of νμ
compared to ν̄μ in analogy to the electron flavor. The
accumulation of net muon number in the proto-NS, i.e., the
process of muonization that leads to an excess of μ− over
μþ in the final NS, is facilitated by the reactions of Eqs. (1)
and (2). Also, other interactions that couple the e-lepton
and μ-lepton sectors (Table I) enhance the muonization rate
and thus increase both the νμ and ν̄μ fluxes.
Muonization might play a non-neglible role during all

stages of the SN postbounce (PB) evolution and NS as well
as black-hole (BH) formation. In the following, we discuss
its effects on the initiation of SN explosions by neutrino-
energy deposition.
Numerical modeling.—Our SN simulations were per-

formed with the PROMETHEUS-VERTEX neutrino-hydrody-
namics code [15,16] with an approximate treatment of
general relativistic gravity by the effective gravitational
potential of case A of Ref. [17]. The PROMETHEUS hydro-
dynamics module solves the equations of nonrelativistic
hydrodynamics (continuity equations for mass, momentum,
energy, lepton number, and nuclear composition) with an
explicit, directionally split, higher-order Godunov scheme
[18]. The transport module VERTEX integrates the energy-
dependent evolution equations of energy andmomentum for

all six neutrino species (νe, ν̄e, νμ, ν̄μ, ντ, ν̄τ) in the comoving
frame of the stellar fluid to orderv=c (v is the fluid velocity, c
the speed of light), including corrections due to general
relativistic redshift and time dilation. The closure is provided
by an Eddington factor based on the solution of a model-
Boltzmann equation, iterated for convergencewith the set of
two-moment equations [15]. Neutrino transport in multidi-
mensional simulations employs the ray-by-ray plus approxi-
mation [16].
We upgraded the PROMETHEUS-VERTEX code for includ-

ing all effects of μ− and μþ in the hydrodynamics and
equation of state (EOS) of the stellar plasma, the effective
relativistic gravity potential, and in the neutrino transport.
This implies the solution of conservation equations for
electron and muon lepton number:

∂ðρYlÞ
∂t þ∇ðρYlvÞ ¼ Ql ð4Þ

(here, relativistic corrections are omitted for simplicity).
Yl ¼ Yl− − Ylþ is the net number of charged leptons per
nucleon, ρ the baryon-mass density, and Ql the source rate
that is associated with all processes emitting and absorbing
νl and ν̄l. The EOS depends on Ye and Yμ; i.e., P ¼
Pðρ; T; Ye; Yμ; fYkgk¼1;…;Nnuc

Þ and ω ¼ ωðρ; T; Ye; Yμ;
fYkgk¼1;…;Nnuc

Þ for pressure P and specific energy density
ω (T is the medium temperature, Nnuc the number of
nuclear species). Analogously to e− and eþ, μ− and μþ

provide an additive contribution to P and ω and are treated
as ideal Fermi gases of arbitrary degeneracy and arbitrary
degree of relativity. In nuclear statistical equilibrium (NSE)
the mass fractions of nuclei and nucleons Yk are determined
by the Saha equations and, hence, Yk ¼ Ykðρ; T; Ye; YμÞ
holds; otherwise they follow from evolution equations
similar to Eq. (4) with Ql being replaced by source terms
for nuclear reaction rates. With ρ, ω, Ye, and Yμ given as
solutions of the hydrodynamics and Yk (k ¼ 1;…; Nnuc)
being determined either by NSE or Eq. (4), T and the
chemical potentials μe, μμ, μn, μp, and μk for all k can be
determined under the constraint of charge neutrality,P

kZkYk ¼ Ye þ Yμ, with Zk being the nuclear charge
number of species k.
Accounting for the presence of muons and the differences

of the ν and ν̄ scattering cross sections with nucleons due to
nucleon recoil and weak magnetism [13], we generalized the
neutrino-transport module VERTEX to an energy-dependent
six-species treatment, tracking νe, ν̄e, νμ, ν̄μ, ντ, and ν̄τ
individually. Besides our “standard” set of neutrino reaction
rates listed in Table 1 of Ref. [19], we also implemented all
relevant neutrino interactions with μ− and μþ as listed in
Table I. The detailed kinematics (energy and momentum
exchange between reaction partners) were fully taken into
account, describing charged leptons as arbitrarily relativistic
and arbitrarily degenerate fermions and nucleons as non-
relativistic fermions.Neutral and charged-current interactions

TABLE I. Neutrino reactions with muons.

νþ μ− ⇄ ν0 þ μ− 0 νþ μþ ⇄ ν0 þ μþ0

νμ þ e− ⇄ νe þ μ− ν̄μ þ eþ ⇄ ν̄e þ μþ

νμ þ ν̄e þ e− ⇄ μ− ν̄μ þ νe þ eþ ⇄ μþ

ν̄e þ e− ⇄ ν̄μ þ μ− νe þ eþ ⇄ νμ þ μþ

νμ þ n ⇄ pþ μ− ν̄μ þ p ⇄ nþ μþ

PRL 119, 242702 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

15 DECEMBER 2017

242702-2

Bollig, Janka, et al. 2017 PRL 119, 242702 

a smaller gain radius (Figure 3), and a shorter heating
timescale,

E

Q̇
(8)heat

gain

gain
t =

with vE dV e( )
R

R

gain
( , ) 1

2
2

gain

shock

ò r= + + F
q f

∣ ∣ being the bind-

ing energy of the gain layer. Since the effective timescale of
mass advection through the gain layer,

M

Ṁ
(9)adv

gain
t =

(where Ṁ 0> ), which measures the average exposure time of
matter to neutrino heating, is very similar in models 3Ds and
3Dn, the smaller heatt in 3Ds also leads to a higher timescale

ratio adv heatt t . The ratio adv heatt t exceeds the critical value of
unity shortly before the SN shock in 3Ds begins its runaway
expansion.
The mean energies of the radiated neutrinos in model 3Ds

are up to ∼1MeV higher and the luminosities of en and ēn by up
to ∼10%–15%, whereas the xn -luminosities rise by up to
∼30%. The increase of the total neutrino luminosity is more
than 6 1052´ erg s−1 at maximum, which mainly comes from
layers below the en -sphere, because the neutrino-loss rate Q̇cool
between the location of this sphere (at ∼1011 g cm−1) and the
gain radius differs between models 3Ds and 3Dn by at most
∼1052 erg s−1 (Figure 4). Note that at t 300pb 2 ms the relative
differences of the neutrino properties of models 3Ds and 3Dn
decrease and even change sign, because the former explodes
whereas the latter continues to collapse and to accrete mass
onto the PNS at a higher rate.

Figure 3. Explosion diagnostics for model 3Ds (thick lines) compared to the non-exploding model 3Dn (thin lines) as functions of post-bounce time tpb. Top left:
angle-averaged shock radius (black), gain radius (red) and NS radius (blue; defined by a density of 1011 g cm−3); top right: diagnostic energy (positive total energy
behind the shock). Gray lines display the corresponding 2D models without (2Dn, thin) and with strangeness contributions (2Ds, thick); middle left: mass-accretion
rate (Ṁ) ahead of the shock (red) and baryonic NS mass (blue); middle right, bottom left and right: mass, non-radial kinetic energy, and time-integrated neutrino-
energy deposition in the gain layer, respectively.
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Uncertainty: Uncertainty in things included in the models.

Limitation: Model limitations due to things not yet included.

Melson, Janka, Bollig, et al. 2015 Ap.J. Lett. 808, L42

A 10% correction in the neutrino–nucleon scattering cross 
section consistent with the uncertainty in the strangeness 
content of the nucleon led to explosion in a model that 
otherwise failed to explode.

The inclusion of muons led to explosion in a model that otherwise 
failed to explode.



The interplay between opacity improvements is complex. Calls into question the efficacy of varying a single opacity. 
A true sensitivity study in 3D is not possible at this time.

The Astrophysical Journal, 760:94 (12pp), 2012 November 20 Lentz et al.

Figure 1. Properties of models at core bounce, where bounce is defined as the maximum compression of the central density during the launching of the bounce
shock. Models shown are: Base (black; all opacities); Base-noNES (blue; without NES) with the other NIS opacity variation models discussed in Section 3.1.1
indistinguishable from models Base and Base-noNES at bounce and omitted for clarity, the NIS opacity variation models with the IPA EC from Section 3.1.2; IPA
(orange; all NIS opacities); IPA-noNIS (red; without NIS opacities; no NES, no NPS, nucleon IS); IPA-noNES (green; without NES), but not IPA-ISnp (nucleon IS),
which is indistinguishable from model IPA at bounce and omitted for clarity. The pair opacity test models (Section 3.3) and improved nucleon EC model (Section 3.2)
are also indistinguishable from model Base and omitted for clarity. The panels are radial velocity (upper left), density (upper center), entropy (upper right), temperature
(kT , lower left), net electron (or proton) fraction (Ye, lower center, solid lines), net lepton fraction (YL = Ye + (nνe − nν̄e )/nbaryons, lower center, dashed lines), and
pressure (lower right). All quantities are plotted relative to enclosed rest mass in M".
(A color version of this figure is available in the online journal.)

Table 2
Model Summary Table

Model Bounce Properties Post-bounce Peak

Core Mass (Msh) Central ρc Central Ye Central YL Shock Radius νe-luminosity
(M") (1014 g cm−3) (km) (Bethe s−1)

Base 0.430 3.234 0.2448 0.2804 161 408
Base-noNIS 0.431 3.234 0.2453 0.2811 150 478
Base-noNES 0.430 3.234 0.2450 0.2807 158 481
Base-ISnp 0.431 3.233 0.2451 0.2808 153 404
Base-noNPS 0.430 3.233 0.2448 0.2804 160 408
IPA 0.554 3.824 0.2843 0.3331 159 432
IPA-noNIS 0.618 4.239 0.3099 0.3712 148 449
IPA-noNES 0.608 4.162 0.3056 0.3647 159 454
IPA-ISnp 0.554 3.831 0.2849 0.3339 149 430
IPA-noNPS 0.551 3.825 0.2843 0.3331 159 432
Base-noEPpair 0.431 3.233 0.2448 0.2804 183 407
Base-noBrems 0.430 3.216 0.2443 0.2798 163 407
Base-noPair 0.435 3.216 0.2443 0.2798 185 410
Base-B85ea-np 0.431 3.239 0.2452 0.2808 159 393

3.1.1. NIS Comparisons Using LMSH EC Table

For this set of tests, we compare a model with our full
opacity set (Base) to models without electron scattering (Base-

noNES), without positron scattering (Base-noNPS), replacing
the nucleon scattering of Reddy et al. (1998) with the IS
equivalent of Bruenn (1985) (Base-ISnp), and to a model with
all three of these changes (Base-noNIS). At bounce we find

4
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The Interplay of Neutrino Opacities

NES vs. no-NES
Hybrid Model

NES vs. no-NES
IPA Model



state tables that satisfy these conservative constraints. We also
display the results for other interactions (Klähn et al. 2006;
Maslov et al. 2016) commonly used in astrophysics and heavy-
ion physics, among which a nontrivial number are found to
violate the bound. We emphasize that realistic uncertainties in
the relevant parameters ξ0, n0, E0, Kn, and Qn do not affect
these conclusions in any significant fashion.

Furthermore, the lower limit on the symmetry energy,
implied by the UG constraint for u<1, has implications for
the surface energy of nuclei, the location of the crust–core
boundary, and the radii and moments of inertia of neutron stars.
We show herein that this lower limit will establish maxima to
the surface symmetry energy parameter SS and minima to
neutron-star radii and moments of inertia. Curiously, although
our conjecture EPNM>EUG essentially determines a minimum
for the symmetry energy, it also implies a maximum limiting
behavior for u�1. This has implications for the threshold
density for the onset of rapid neutrino cooling due to the
nucleon Urca process and, thus, for neutron-star cooling.

To investigate these applications of the UG bound, we
require a better parameterization of S than that given by the
expansion of Equation (11), which fails in the limits of both
small and large u. Instead, we model the symmetric matter and
symmetry energy using these expressions:

E T u a u b u c u d u 38SNM
2 3 4 3 5 3 2� � a � a � a � a[ ] ( )

and

S u T u au bu cu du2 1 .
39

2 3 2 3 4 3 5 3 2� � � � � �( ) [( ) ]
( )

The parameters are fit to properties of matter at saturation
density (u=1):
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Because the value of Q0 is quite uncertain we use d′=0,
which implies Q0=−432.3 MeV for the typical values
E0=−16MeV, K0=220MeV, and n0=0.16 fm−3. This
value matches the means of the values of Q Qn sym� for the
interactions displayed in Figures 6 and 7 for L∼50MeV.
In this section, we always make use of this parametrization

for the symmetry energy. While this parametrization allows the
use of any reasonable value for the empirical parameters and
thus does not automatically lead to any correlations between
these parameters, this does not necessarily imply the absence of

Figure 9. UG bounds on symmetry energy parameters. The thick lines show the bound Equation (24) using the conservative parameter set of Equation (25). Excluded
regions are shown by shading. Left panel: Experimental constraints are from Lattimer & Lim (2013) and Lattimer & Steiner (2014), supplemented by isobaric analog
states and isovector skin (IAS+ΔR) results from Danielewicz et al. (2017). The thick dashed curve shows the analytic bound from Equation (32). Right panel: Filled
circles show the point S L,0

LB
0( ) at the tangent density ut=1 and the point where ut=1/2. Triangles show values for interactions commonly used in tabulated

equations of state for astrophysical simulations (notation and data from Fischer et al. 2014), and open squares (from Klähn et al. 2006) and the inverted triangle (from
Maslov et al. 2016) show those of other frequently used interactions. The shaded regions TKHS, GCR, and HS show the parameter ranges inferred from the PNM
calculations of Tews et al. (2013), Gandolfi et al. (2012), and Hebeler et al. (2010), respectively.
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Keeping Pace with the
Nuclear Equation of State

The nuclear equation of state is increasingly constrained by

• nuclear experiment,
• relativistic heavy ion collisions,
• measurements of neutron star masses, and
• measurements of neutron star radii.

For a review, see Oertel et al. RMP 89 015007 (2017).

Tews et al. Ap.J. 848, 105 (2017)

Some equations of state used in past core collapse
supernova simulations have been ruled out.

Left Standing



Status Report

The efficacy of the neutrino shock reheating/delayed shock mechanism has now been 
demonstrated by all leading groups across progenitor characteristics (mass, rotation, and 
metallicity). 

For recent reviews, see:

• Mueller, Proceedings of the Astronomical Society of Australia 33 e048 (2016)
• Janka, Melson, and Summa, Ann. Rev. Nucl. Part. Sci. 66 341 (2016)
• Mueller, Liv. Rev. Comp. Astr. 6 3 (2020)
• Mezzacappa, Endeve, Messer, and Bruenn, Liv. Rev. Comp. Astr. 6 4 (2020)

Nonetheless, significant challenges remain.
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the theoretical calculations (black dots in Fig. 6). There is scatter in both 
the theory and observations, the latter due to systematic uncertainties 
in the models employed and observational limitations, and the former 
due to numerical and astrophysical uncertainties. However, natural 
chaos in the dynamics would naturally lead to a spread in energies (sec-
tion ‘Core-collapse supernova explosions’), to a degree as yet unknown, 
even for the same initial stellar structure. We note that there seems to be 
a larger observational spread in the inferred energies at lower masses. 
This could reflect natural chaos in the turbulent neutrino mechanism, 
measurement uncertainties, the effects of unknown rotation or the 
possibility that the lowest-mass progenitors explode thermonucle-
arly just after the onset of a collapse that does not achieve nuclear 
densities. However, it is too soon to draw any definitive conclusions 
on this score. Be that as it may, the observed roughly monotonically 
increasing trend of explosion energy with mass and the ability of the 
neutrino mechanism to reproduce the observed range of explosion 
energies are both encouraging.

Finally, the infalling accretion matter plumes that hit the PNS core 
generate sound waves that are launched outwards. Much of the energy 
of these sound waves is absorbed behind the shock wave and can mod-
estly contribute to the explosion energy. Such a component is automati-
cally included in our bookkeeping. Although it is difficult to estimate 
separately, we do not envision that acoustic power can contribute more 
than about 5−10% to the total.

Residual neutron-star masses
The bottom panel of Fig. 5 depicts the evolution of the residual baryon 
mass of the PNS core for the suite of 2D models investigated here. Such 
masses cease accumulating early because the mass-accretion rates 
drop quickly after the explosion commences. The final baryon masses 
at the last timesteps are given in Table 1, as are the corresponding gravi-
tational masses. The latter include the gravitational binding energy 
(negative) of the core. These masses range from a low near 1.2M⊙ to 
a high near 2.0M⊙, spanning the observed range72. The neutron-star 
masses that we find are closely, but not perfectly, monotonic with pro-
genitor mass and the shallowness of the Chandrasekhar mantle, except 
for those models that do not explode. Presumably, these models will 
eventually collapse to black holes, but on timescales longer than we 
have simulated.

Ejecta compositions
The issue of the ejecta elemental composition is fundamental to super-
nova theory. The shallowness of the outer-mantle density profile and 
the associated mass of the inner ejecta are roughly correlated with the 
yields of oxygen and intermediate-mass (for example, Ar, Si, Ca) ele-
ments. As suggested in section ‘Supernova energies’, such a structure 
is also likely to explode (if via the neutrino mechanism) with higher 
energies. Therefore, more of these inner ejecta will be able to achieve 
the higher temperatures that can transform oxygen and silicon into 
iron-peak species as well. This includes 56Ni. Therefore, one expects that 
in the context of the neutrino mechanism of explosion, 56Ni yields are 
roughly increasing functions of progenitor mass, with the exceptions 
to strict monotonicity alluded to previously. Specifically, if a 9M⊙ star 
explodes by the neutrino mechanism, it cannot have much 56Ni in its 
ejecta, and if a ~16M⊙−25M⊙ star explodes by the same mechanism, the 
56Ni yield should be greater.

All the inner ejecta from the region interior to the stalled-shock wave, 
before and just after explosion, are very neutron-rich (Ye ≈ 0.1−0.2). As 
they expand outwards, absorption by νe and νe on balance tends to push 
the ejecta Ye upwards. If the expansion is fast, then some of the ejecta 
will be slightly neutron-rich below Ye = 0.5. However, if the expansion 
is slow, there is plenty of time for some of the debris to become 
proton-rich (Ye > 0.5). However, generally Ye = 0.5 seems to predominate 
in the bulk. Therefore, those models that explode early and fast should 
provide some neutron-rich ejecta, although most of their ejecta could 
still be proton-rich, while those models that explode later and more 
slowly (generally, the more massive progenitors) will be the most 
proton-rich. This is what we9 see in cases with electron fractions from 
about 0.5 to as high as around 0.58–0.6. This might make such super-
novae sites for the rp-process (rapid proton capture) and for light 
proton-capture nuclei (p-nuclei) (for example, 74Se, 78Kr and 84Sr)73–75. 
However, these numbers should be viewed as preliminary, because 
they depend on detailed neutrino transport calculations and the com-
plicated trajectory histories of the ejecta parcels. We note that obser-
vations of 57Ni in SN1987A, which is inferred to be a ~18M⊙ progenitor, 
require that no material with Ye < 0.497 could have been ejected76. Also, 
none of the ejecta seen in modern simulations can be the site of all the 
r-process (the rapid neutron addition process that is responsible for 
the creation of half the heavy elements), although the first peak is not 
excluded. The timescales and electron fractions are not at all conducive.

Furthermore, as stated, inner supernova matter explodes aspheri-
cally, with bubble, botryoidal and fractured structures predominating. 
However, the spatial distribution of Ye in the ejecta can have a roughly 
dipolar component, with one hemisphere more proton-rich than its 
counterpart. Figure 7 depicts a snapshot of a simulation of a 19M⊙ 
model. The bluish veil is the shock, and the fractured surface is an isoen-
tropy surface defined by Ye. As seen, there is an orange–purple dichot-
omy, which reflects the fact that the ejecta have a dipole in Ye that 
persists. Even an initially uniform ejecta Ye distribution may be 
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Fig. 6 | Comparison of theoretical and empirical explosion energy versus 
ejecta mass. Plotted are the empirically inferred explosion energies versus the 
inferred ejecta masses, with error bars, for a collection of observed type IIp 
(plateau) supernovae. Our theoretical numbers, taken from Table 1, are 
superposed as black dots. It must be recalled that these are 2D models, and that 
there are quantitative differences between 2D and 3D simulations. We assume 
for convenience that the theoretical ejecta masses are the progenitor masses, 
minus the baryon mass of a putative residual neutron star of 1.6M⊙. This ignores 
any mass loss before explosion, which is an assumption that is incorrect by 
about 1M⊙−3M⊙. Nevertheless, the rough correspondence between theory and 
measurement is encouraging. We note that the error bars on the measurement 
points are not firm and do not include any systematic errors in the light-curve 
modelling procedures. In any case, the general average trend from low to high 
explosion energy from lower to higher massive-star progenitor mass reflected 
in the observations is reproduced well by the theory, both quantitatively and 
qualitatively. In addition, at a given mass there is an inferred measured spread 
in supernova energies. This may represent a real variation in explosion energy 
at a given progenitor mass due in part to the natural chaos in turbulent flow. 
Indeed, it is theoretically expected that nature would map a given star’s 
properties to distribution functions in the outcomes and products of its 
supernova death. The empirical estimates were taken from Morozova et al.103, 
Martinez & Bersten104, Pumo et al.105,106 and Utrobin & Chugai107–110.
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The following are based on 2D models:
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Transitioning to Quantitative Prediction
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number is ensured by, (a) a conservative discretization of the
neutrino number equation (Eq. (30)), (b) a conservative han-
dling of the electron number equation (Eq. (4)), and (c) the
exact numerical balance of the source terms (cf. Eq. (13))
−4πmB

∫
dV

∫ ∞
0 dε C(0)(ε) (defined on the transport grid) and∫

dV QN (defined on the hydro grid). Point (a) requires that in
Eq. (30) the flux divergence is discretized in analogy to the sec-
ond line in Eq. (21) and that the β ∂J/∂r and (2β/r+ ∂β/∂r)J
terms are combined to div(βJ) to be discretized in analogy
to the third line in Eq. (21). The energy derivative in Eq. (30)
is treated in a conservative way as described in Sect. (3.3.5).
Point (b) is achieved by the use of a conservative numerical in-
tegration of the electron number equation (Eq. (4)) in the spirit
of the PROMETHEUS code, and requirement (c) is fulfilled
by employing a conservative procedure for mapping the elec-
tron number source term from the transport grid to the hydro
grid (see Sects. 3.6.1, 3.6.2). Doing so, the total lepton number
remains constant in principle at the level of machine accuracy.

Different from the number transport, where the zeroth order
moment equation for neutrinos by itself defines a conservation
law, the derivation of a conservation law for the total energy
implies a combination of the radiation energy and momentum
equations. The use of a staggered radial mesh for discretizing
the latter equations defies a suitable contraction of terms in
analogy to the analytic case. Therefore our numerical descrip-
tion does not conserve neutrino energy with the same accuracy
as neutrino number and the quality of total energy conservation
has to be verified empirically for a given problem and numeri-
cal resolution.

For our supernova simulations, tests showed that neutrino
number is conserved to an accuracy of better than 10−11 per
time step, while for neutrino energy a value below 10−7 is
achieved. With a typical number of about 50 000 transport time
steps for a supernova simulation we thus find an empirical up-
per limit for the violation of energy conservation of 0.5% of the
neutrino energy. This translates to 0.05% of the internal energy
of the collapsed stellar core, i.e. a few times 1049 erg in abso-
lute number. Errors of the same magnitude are introduced by
the non-conservative treatment of the gravitational potential as
a source term in the fluid-energy equation (Eq. (3)). Note that
the use of different grids for the hydrodynamics and the trans-
port does not affect the energy budget because we employ a
conservative mapping of the neutrino source term between the
grids (see Sects. 3.6.1, 3.6.2).

3.7. Approximate general relativistic treatment

We have not yet coupled our general relativistic version of the
neutrino transport to a general relativistic hydrodynamics code.
For the time being we work with a basically Newtonian code,
which was extended to include post-Newtonian corrections of
the gravitational potential. We hope that the deeper gravita-
tional potential can account for the main effects of general
relativity on stellar core collapse and the formation of neu-
tron stars which do not approach gravitational instability to be-
come black holes (cf. Bruenn et al. 2001). Because the gen-
eral relativistic changes of the space-time metric are ignored,

a consistent description of the neutrino transport requires that
the fully relativistic equations are simplified such that only the
effects of gravitational redshift and time dilation are retained.

3.7.1. Modified gravitational potential

By comparing the Tolman-Oppenheimer-Volkoff equation
for hydrostatic equilibrium in general relativity (see, e.g.,
Kippenhahn & Weigert 1990, Sect. 2.6) with its Newtonian
counterpart (cf. Eq. (2)) one can define a modified “gravita-
tional potential” which includes correction terms due to pres-
sure and energy of the stellar medium and the neutrinos:

ΦGR(r) =

G

r∫

∞

dr′
1

r′2

(
m +

4πr′3(p + P)
c2

)
1
Γ2

(
ρtotc2 + p
ρc2

)
, (53)

where ρtotc2:=ρ(c2 + e) is the total (“relativistic”) energy den-
sity and P = 4π/c

∫ ∞
0 dε K the neutrino pressure. The calcula-

tion of the gravitational mass m(r) :=
∫ r

0 dr′ 4πr′2(ρtot + c−2E +
c−3UF/Γ) takes into account contributions of neutrino energy
density E = 4π/c

∫ ∞
0 dε J and flux F = 4π

∫ ∞
0 dε H. The met-

ric function Γ is calculated as Γ(r) =
√

1 + U(r)2 − 2Gm(r)/rc2

with the term U2 accounting for the effects of fluid motion.
Equation (53) can be used in the Newtonian hydrodynamic

equations (Eqs. (2), (3)) in order to approximately take into ac-
count general relativistic effects (cf. Keil 1997). The quality of
this approach has to be ascertained empirically by comparison
with fully general relativistic calculations. In our case such a
comparison yields quite satisfactory results (see Sect. 4.3).

3.7.2. Approximate GR transport

The general relativistic moment equations describing transport
of neutrino energy, momentum and neutrino number can be
derived from the Lindquist-equation (cf. Eq. (5), Sect. 2.2.1).
They are:

1
c

D
Dt

J +
Γ

R2

∂

∂R
(R2HeΦ) + Γ∂ReΦ H

− ∂
∂ε

[
ε
(
eΦ

U
R

(J − K) + c−1DtΛK + Γ∂ReΦ H
)]

+ eΦ
U
R

(3J − K) + c−1DtΛ (J + K) = eΦC(0) , (54)
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for the energy transport, and
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+ c−1DtΛ)J = eΦ C(0) , (56)
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Figure 1. Average shock radius (Rs), PNS radius (RPNS), PNS mass (MPNS), and the average electron antineutrino energy (〈εν̄e 〉) as a function of time. The
average shock radius and the PNS radius are shown in the top panels, the middle panels show the PNS mass, and the bottom panels show the average electron
antineutrino energy extracted at a radius of 400 km in the co-moving frame. The left column represents the s20 models and the right column the s9 models.
Time is given in ms after core bounce.

leads to the reappearance of the SASI. These processes repeat
cyclically and oscillations in the average shock radius depend on the
details of these highly complicated cycles. Alternating periods of
shock expansion and contraction are seen in both s20-FMD-H and
s20-RbR-H, but the cycles do not entirely coincide in the two models.

Models s9-RbR-H and s9-FMD-H result in successful supernova
explosions. Shock revival starts ∼300 ms after core bounce, see
the right top panel of Fig. 1. Before this time, the average shock
radius steadily increases until the conditions for runaway shock
expansion are met. The s9 progenitor is characterized by a region
of low density immediately around the degenerate core, which leads
to low accretion rates in the two simulations. This favours the growth
of convective activity and disfavours the SASI, due to the resulting
large advection time-scales. While strong SASI does not develop in
models s9-RbR-H and s9-FMD-H, Glas et al. (2019) reported that
large-scale convective plumes in the post-shock layer lead to dipole
deformation of the shock front. These deformations can first be seen
around 100 ms after bounce, and they reach their peak between 250
and 300 ms post-bounce, see the bottom panel of fig. 13 in Glas et al.
(2019). After the onset of runaway shock expansion, the accretion
rate on to the PNS is further reduced. As in the case of the s20
models, the global properties of models s9-FMD-H and s9-RbR-H
agree very well.

The properties of the PNS are virtually unaffected when changing
the neutrino-transport scheme, and this is true for both progenitors.

The radius and mass of the PNS, which are important for determining
the properties of GWs, are unchanged between the FMD and RbR+
runs, see Fig. 1. Additionally, the luminosities and average energies
of the emitted neutrinos show little variation between the runs with
different neutrino-transport schemes. From around 400 ms after
bounce, the luminosities and energies of the electron neutrinos and
antineutrinos undergo variations of ∼10–20 per cent. The bottom
panels of Fig. 1 show the average energies of electron antineutrinos
extracted at a radius of 400 km, for all four high-resolution simula-
tions. We do not show luminosity plots since they are not directly
relevant for the discussion about GW characteristics, they are shown
in figs 7 and 14 of Glas et al. (2019). The temporal variations in
the average properties of the neutrinos, seen in models s20-FMD-H
and s20-RbR-H, are caused by the alternating periods of SASI and
convection in the post-shock layer and the resulting variations in the
conditions near the PNS surface, see Glas et al. (2019).

4.2 Gravitational waves from the high-resolution simulations

The GW amplitudes and the corresponding spectrograms, for two
different observer orientations, from the high-resolution s9 models
are shown in Figs 2 and 3, respectively. The signals and the spectro-
grams form the high-resolution s20 models are shown in Figs 4 and
5, respectively. The signals are in general very similar to what has
recently been reported in the literature (see e.g. Kuroda et al. 2016b;
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Fig. 19 A schematic of the structure of a typical neutrino transport linear system that must be solved at each
time step. The diagonal, dense blocks are generally non-symmetric and have characteristic substructure
arising from the coupling in angle, energy, isospin (i.e. between neutrinos and antineutrinos), and neutrino
flavor, though the particulars of that structure are dependent on the lexical ordering of the solution vector.
Fully implicit methods also couple individual spatial zones to one another, producing a linear system that
contains a series of outlying bands in addition to the diagonally dominant dense block structure. This
global linear system typically requires considerable communication on parallel platforms, where domain
decomposition is often used to spread the spatial extent of the problem across the distributed memory space.
IMEX methods do not require solution of this global system, but the inversion of a similarly structured set
of dense blocks is required at each spatial index. However, this reduction of the implicit problem to a purely
local operation can result in considerable performance advantages

strong scalability is achievable if node-level execution is made faster. On modern
platforms, this has very much become a question of the effective use of hybrid-node
architectures.

7.2 Implementation on heterogeneous architectures

Currently, the most widely available and performant microarchitectures are based on
graphical processing units (GPUs). As suggested by their name, GPUs were originally
designed to handle computer graphics-intensive tasks in applications ranging from sci-
entific visualization to video games. However, the very high intensity with which they
compute and their relatively low power-consumption traits (as compared to modern
CPUs) led to their adoption as engines for a variety of scientific computing tasks.
Indeed, at this writing, GPU-based architectures dominate much of the highest-end
HPC platforms, and all planned near-future exascale platforms will employ GPUs as
the primary source of compute power.

The primary characteristic that provides the compute power of modern GPUs is the
large number of compute cores, as compared to traditional CPUs. Modern GPUs (e.g.
the NVIDIA V100) contain more than 5000 cores, compared to the few dozen that
are present on contemporary CPUs. Each core may have a relatively low clock speed
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Figure 1. Mass–radius relations of the equations of state LS180 (blue) and LS220 (red) for the gravitational mass (left panel) and the baryonic mass (right panel). Solid
lines display the case of cold neutron stars (T = 0), while curves for the case of a hot proto-neutron star with a constant entropy of s = 1.5 kb nucleon−1 are shown
as dashed lines. The black horizontal line in the left panel corresponds to a mass of 1.97 M" as measured by Demorest et al. (2010) for the pulsar J1614-2230. The
gravitational masses for neutron stars with baryonic masses of 1.36 M" and 1.58 M" are indicated both for T = 0 (solid blue horizontal lines) or s = 1.5 kb nucleon−1

(dashed blue horizontal lines) in the left panel (figures provided by A. Bauswein.)
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Figure 2. Average shock radius and proto-neutron star (PNS) radius (defined
by a fiducial density of 1011 g cm−3) for the 2D models G15 (GR, full rates,
black thick solid line), S15 (GR, reduced rates, blue, thick, dash-dotted), M15
(pseudo-Newtonian, full rates, red, thick, dashed), and M15 (purely Newtonian,
black, thick, dotted). 1D models corresponding to G15, M15, and S15 are also
shown as thin lines for comparison. Note that the shock is located considerably
further out in S15-1D than in G15-1D and M15-1D. This is a consequence
of the strong sensitivity of the shock position rsh to the PNS radius, rPNS, for
a stationary spherical accretion flow (rsh ∝ r

8/3
PNS, see, e.g., Equation (1) of

Marek & Janka 2009). The larger PNS radius in S15-1D can in turn be traced to
less efficient cooling by µ/τ neutrinos and higher temperatures in the density
region 1012–1013 g cm−3. Different PNS radii (caused by PNS convection; see
Appendix C in Buras et al. 2006a) are also responsible for the larger shock
radii in the 2D models G15 and M15 compared to G15-1D and M15-1D at
early times, when multi-dimensional effects in the gain region do not yet play a
significant role. (The data for M15-1D have been provided by L. Hüdepohl.)

4.1.2. Explosion Energy

We can compute a diagnostic “explosion energy” by inte-
grating over the material with positive binding energy ebind at a
certain time. Since this energy does not account for subsequent
nuclear recombination, burning, and the gravitational binding
energy of the outer layers of the star, this quantity does not pro-
vide a direct measure for the final supernova explosion energy.
In the GR case, we define ebind in terms of the lapse function
α, the rest-mass density ρ, the specific internal energy ε, the
pressure P, and the Lorentz factor W as follows:

ebind = α(ρ(c2 + ε + P/ρ)W 2 − P ) − ρWc2. (2)

In order to maintain consistency with previous studies (Buras
et al. 2006a; Marek & Janka 2009; Bruenn et al. 2009), we
exclude rest-mass contributions to the specific internal energy
ε. It can easily be verified that Equation (2) correctly reduces to

ebind → ρ(ε + ρv2/2 + Φ) (3)

in the Newtonian limit (where Φ is the gravitational potential).2
The diagnostic explosion energy is then computed by integrating
over the region where ebind is positive,

Eexpl =
∫

ebind>0

ebind dṼ . (4)

Here, dṼ is the three-volume element for the curved space–time
metric (and not the flat-space volume element).

The time evolution of Eexpl is plotted in the right panel
of Figure 5, which shows that material behind the shock
first becomes nominally unbound 200 ms after bounce for
model G11. This corresponds to the time when the shock
first expands beyond ∼400 km, allowing the temperature to
drop sufficiently for nucleon recombination to α-particles to
set in. The diagnostic explosion energy slowly increases rather
unsteadily at an average rate of 6×1049 erg s−1, and then seems
to level off around 3.5×1049 erg after 600 ms post-bounce with

2 Precisely speaking, we have α → 1 + Φ/c2 and W → 1 + v2/2 in the
Newtonian limit, and obtain the Newtonian expression as an approximation to
O(ε/c2, P/ρc2, v2/c2, Φ/c2).

6
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The Anatomy of a Core Collapse Supernova Neutrino “Light Curve”
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The following depend on the fidelity of the core collapse
supernova (classical neutrino kinetics) modeling:

• explosion
• time to explosion
• duration of accretion phase
• neutrino fluence of the accretion phase
• neutrino fluence of the explosion phase
• evolution of the neutrino fluence
• temporal modulation of the neutrino fluence
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Figure 1. Schematic geometry of the model and flavor-dependent zenith-angle distributions of neu-
trino fluxes. The 3 ellipses are schematic polar plots of the normalized angular distributions of the ⌫e

(blue), ⌫̄e (red), and ⌫x (green) fluxes at the point where the arrows originate.

in the weak interaction basis, where � =
p

2GFne. Finally, the e↵ective Hamiltonian due to
⌫ � ⌫ interactions is given by

⌦⌫⌫ =
p

2GF

Z
d3q

(2⇡)3
(%q � %̄q)(1 � vp · vq) , (2.4)

where the term (1�vp ·vq) leads to multi-angle e↵ects [12], i.e., neutrinos moving on di↵erent
trajectories experience di↵erent potentials.

The last term on right-hand-side in eq. (2.1) represents a collisional term acting on
neutrino flavor evolution if they are still undergoing collisions with matter or amongst them-
selves. Collisions occur at a rate proportional to G2

F . In the context of both MSW and
collective flavor conversions, the collisional term is expected to be negligible, as the con-
versions occur far from the neutrinosphere, where neutrinos are free-streaming. However,
the situation is less clear for fast conversions. A back-of-the-envelope calculation, using a
nucleon density nB = ⇢nuc/mN ⇡ 1.8 ⇥ 1038 cm�3 and the neutrino-nucleon scattering cross-
section � ⇠ G2

FE2
⇠ 10�42 cm�2 for E⌫ ⇠ 10 MeV, suggests that the scattering rate is

� = �nB ⇠ 107 s�1. We will find fast conversions can occur with a larger rate ⇠ 108 s�1

and therefore neglect the collisional e↵ects as a first approximation. We leave a dedicated
investigation of this to a future work.

Even after neglecting the collisions, a self-consistent solution of the flavor evolution
requires solving the complete space-time-dependent problem described by eq. (2.1). First
attempts at solution, by Fourier transforming eq. (2.1) along some of the space or time
directions, have been recently presented in [29–35]. However, with the tools available at
present, solving the full seven-dimensional problem remains a formidable challenge.

Interestingly, a major simplification suggests itself if one is interested in studying flavor
conversions only at small distances from the SN core. Most of the neutrinos are emitted
around a radius O(10) km from the center of the SN. For phenomena that take place very
close to this emission region, the curvature of the neutrinosphere is not relevant. We therefore
model the source region as a di↵use flat infinite plane, as shown in figure 1.

– 4 –

deeper neutrinospheres

Dasgupta, Mirizzi, and Sen, JCAP 1702, 019 (2017)

Lentz et al. Ap.J. Lett. 807, 31



The Evolution of Core Collapse Supernova Neutrino Spectra
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Enter Neutrino Mass and Mixing
Think of the 

temporal and 
spatial scales!
Think of the 
resolution

requirements!
Think of the cost 

of the 
computations!

Think of the 
physics!
Think of 

what we can 
learn!

Normal Hierarchy

N⌫e = N⌫x (2.6)

N⌫̄e = cos2(✓�)N⌫̄e + sin2(✓�)N⌫x (2.7)

4N⌫x = cos2(✓�)N⌫x + sin2(✓�)N⌫̄e +N⌫e + 2N⌫x (2.8)

Inverted Hierarchy

N⌫e = sin2(✓�)N⌫e + cos2(✓�)N⌫x (2.9)

N⌫̄e = N⌫x (2.10)

4N⌫x = sin2(✓�)N⌫x + cos2(✓�)N⌫e +N⌫̄e + 2N⌫x (2.11)

Figure 2.5: Normal and Inverted Hierarchy Comparison (from (Hew, 2012))
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indices, and we use the ð−;þ;þ;þÞ sign convention for
the metric. The flavor-diagonal (a ¼ b) components of fLL
and fRR are the occupation probabilities at particular
spacetime coordinates xμ of neutrinos with frequency ν
and direction 3-vector Ω in a comoving orthonormal tetrad.
That is, fAAaa are the ordinary neutrino distribution
functions, and the number density nAa of neutrino flavor
a and handedness A in such a frame is

nAaðxμÞ ¼
Z

d3ν
c3

fAAaa; ð2Þ

where d3ν ¼ ν2dνdΩ. The off-diagonal elements of fLL
and fRR describe quantum flavor coherence. fLR is also
a Nf × Nf matrix that represents quantum coherence
between left- and right-handed neutrinos. In the ultra-
relativistic limit, the QKEs can be written to order ϵ2,
where ϵ ≪ 1 is the ratio of the neutrino mass, mass
splitting, forward-scattering potentials, or gradients to
the neutrino frequency, as

dF
dλ

þ forceþ drift ¼ −pμuμ

!
C −

i
ℏc

½H;F &
"
; ð3Þ

where uα is the dimensionless fluid four-velocity. λ is an
affine parameter such that the neutrino four-momentum is
pμ ¼ dxμ=dλ. In the comoving orthonormal tetrad, the
momentum is also pμ ¼ ð1;ΩÞhν=c, where the first com-
ponent is the time component. The derivative expands
in a general curved spacetime to d=dλ ¼ pμ∂=∂xμ −
Γμ
αβp

αpβ∂=∂pμ, where Γμ
αβðxμÞ are connection coefficients

(units of cm−1). The 2Nf × 2Nf collision integral
CABabðν;Ω; xμÞ (units of cm−1) can be decomposed as [62]

C ¼ Cþ − C− ¼ f1 − F ; Π̃þg − fF ; Π̃−g; ð4Þ

where the calculation and use of the self-energies
Π̃'

ABabðν;Ω; xμÞ will be described in more detail in
Sec. IV. The oscillation potential HABabðν;Ω; xμÞ (units
of ergs) is described below. If neutrinos are Majorana
particles, only F needs to be evolved; but if neutrinos are
Dirac particles, an additional antineutrino field F̄ must be
evolved with an analogous equation. Throughout the rest of
this paper, we will refer to the Nf × Nf matrices fab and
f̄ab as simply the neutrino and antineutrino distribution
functions, respectively.
The terms labeled “force” and “drift” in Eq. (3) areOðϵ2Þ

corrections to the d=dλ term that account for refractive
effects due to the finite masses of neutrinos (see, e.g.,
[62,64]). We neglect them in this work for simplicity, and
more work needs to be done to assess the importance of
these terms in the context of core-collapse supernovae.
We will also assume for simplicity that there is no spin
coherence (fLR ¼ f̄LR ¼ 0) and, in the case of Dirac

neutrinos, there are no right-handed neutrinos and no
left-handed antineutrinos (fRR ¼ f̄LL ¼ 0). Spin coherence
effects are not expected to be important in CCSNe, since
the neutrino-antineutrino-mixing contributions to the
potential are suppressed by an additional factor of ϵ and
neutrinos in typical CCSN profiles likely pass through
the associated resonance too rapidly [64,66,67]. However,
spin coherence effects may not be negligible in other
environments such as neutron star mergers [54]. Under
the assumption of no spin coherence, we can separate left-
handed neutrinos from right-handed (anti)neutrinos, and
Dirac and Majorana neutrinos evolve identically. The
QKEs for f ¼ fLL and f̄ ¼ fRR (Majorana) or f̄ ¼ f̄RR
(Dirac) then become

pμ ∂f
∂xμ − Γμ

αβp
αpβ ∂f

∂pμ ¼ −pμuμ

!
C −

i
ℏc

½H; f&
"
;

pμ ∂f̄
∂xμ − Γμ

αβp
αpβ ∂f̄

∂pμ ¼ −pμuμ

!
C̄ −

i
ℏc

½H̄; f̄&
"
; ð5Þ

where Cab and Hab are the Nf × Nf collision integral and
Hamiltonian, respectively, from the LL quadrants of C and
H. Similarly, C̄ab and H̄ab come from the RR quadrants of
C and H (Majorana) or C̄ and H̄ (Dirac).
The Hamiltonian operator is often decomposed as

H ¼ Hvacuum þHmatter þHneutrino: ð6Þ

The Hamiltonian for antineutrinos is related to that for
neutrinos by H̄vacuum ¼ H(

vacuum, H̄matter ¼ −H(
matter, and

H̄neutrino ¼ −H(
neutrino. The vacuum Hamiltonian is

Hvacuum ¼ UHðmÞ
vacuumU†; ð7Þ

where HðmÞ
vacuum ¼ diag

# ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ν2 þm2

l c
4

q %
is the vacuum

Hamiltonian in the neutrino mass basis, ml is the mass
of the neutrino corresponding to lepton flavor l. The unitary
matrix U describes the mixing between the flavor and mass
bases [68,69]. The matter potential in the local comoving
frame is

Hmatter ¼
ffiffiffi
2

p
GFℏ3c3diagðnl − nl̄Þ; ð8Þ

where nl and nl̄ are the number density of charged lepton
and antilepton of flavor l, though in the astrophysical
systems of interest electrons are the only lepton with a
significant abundance. Neutral current interactions with
nucleons also technically contribute to the potential, but
since they affect all flavors equally, the potential offset does
nothing to modify oscillations and can be ignored. Finally,
the neutrino self-interaction potential is

NEUTRINO QUANTUM KINETICS IN COMPACT OBJECTS PHYS. REV. D 99, 123014 (2019)

123014-3

𝑓"" 𝑓"% 𝑓"&
𝑓%" 𝑓%% 𝑓%&
𝑓&" 𝑓&% 𝑓&&

• Neutrinos have mass and can change flavor.
• Shock heating mediated by the electron-flavor neutrinos.
• The spectra are different across neutrino flavor.
• Impact on shock reheating?
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Figure 1. Schematic geometry of the model and flavor-dependent zenith-angle distributions of neu-
trino fluxes. The 3 ellipses are schematic polar plots of the normalized angular distributions of the ⌫e

(blue), ⌫̄e (red), and ⌫x (green) fluxes at the point where the arrows originate.

in the weak interaction basis, where � =
p

2GFne. Finally, the e↵ective Hamiltonian due to
⌫ � ⌫ interactions is given by

⌦⌫⌫ =
p

2GF

Z
d3q

(2⇡)3
(%q � %̄q)(1 � vp · vq) , (2.4)

where the term (1�vp ·vq) leads to multi-angle e↵ects [12], i.e., neutrinos moving on di↵erent
trajectories experience di↵erent potentials.

The last term on right-hand-side in eq. (2.1) represents a collisional term acting on
neutrino flavor evolution if they are still undergoing collisions with matter or amongst them-
selves. Collisions occur at a rate proportional to G2

F . In the context of both MSW and
collective flavor conversions, the collisional term is expected to be negligible, as the con-
versions occur far from the neutrinosphere, where neutrinos are free-streaming. However,
the situation is less clear for fast conversions. A back-of-the-envelope calculation, using a
nucleon density nB = ⇢nuc/mN ⇡ 1.8 ⇥ 1038 cm�3 and the neutrino-nucleon scattering cross-
section � ⇠ G2

FE2
⇠ 10�42 cm�2 for E⌫ ⇠ 10 MeV, suggests that the scattering rate is

� = �nB ⇠ 107 s�1. We will find fast conversions can occur with a larger rate ⇠ 108 s�1

and therefore neglect the collisional e↵ects as a first approximation. We leave a dedicated
investigation of this to a future work.

Even after neglecting the collisions, a self-consistent solution of the flavor evolution
requires solving the complete space-time-dependent problem described by eq. (2.1). First
attempts at solution, by Fourier transforming eq. (2.1) along some of the space or time
directions, have been recently presented in [29–35]. However, with the tools available at
present, solving the full seven-dimensional problem remains a formidable challenge.

Interestingly, a major simplification suggests itself if one is interested in studying flavor
conversions only at small distances from the SN core. Most of the neutrinos are emitted
around a radius O(10) km from the center of the SN. For phenomena that take place very
close to this emission region, the curvature of the neutrinosphere is not relevant. We therefore
model the source region as a di↵use flat infinite plane, as shown in figure 1.
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• Duan, H., Fuller, G. M., & Qian, Y.-Z. 2010, ARNPS 60, 569
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well understoodnot as well understood

Observation of the electron neutrino burst or lack thereof could convey 
information about the mass hierarchy.

Dasgupta, Mirizzi, and Sen, JCAP 1702, 019 (2017)

Length and Time Scales Severe
e.g., length scale is O(1 cm) and typical CCSN radial resolution is O(100 m)

How do we couple this quantum evolution to the classical evolution?



Takeaways
Recent progress has been great!

Multiple groups have demonstrated the efficacy of the neutrino heating mechanism over a range of progenitor 
characteristics, in three dimensions.

Current three-dimensional models have allowed us to study associated phenomena such as gravitational wave emission.

There is a great deal of development to be done to arrive at (classical) definitive three-dimensional models.

Full three-dimensionality.
Full general relativity.
Full physics (weak interaction physics, magnetic fields, …).
Full phase space.

Quantum kinetics looms large as a potential requirement, the development of which will occupy our community for some time.

We have a detailed picture for core collapse supernova neutrinos, but that picture can change in quantitative and qualitative ways
given one or more considerations listed above.

And we need to run many models 
for a sufficiently long time.


