

Reactor Neutrino Experiments: Status and Outlook

J. Pedro Ochoa-Ricoux

University of California at Irvine 43rd International School of Nuclear Physics Erice, September 2022

Contents

- Basic Principles
- Status
 - Current-generation experiments
 - Oscillation Results
 - Data vs. Prediction
- Outlook
 - JUNO
 - Other projects
- Summary & Conclusions

Disclaimer: I am a Daya Bay and JUNO collaborator

Copyright University of California, Lawrence Berkeley National Lab

Basic Principles

Reactor Antineutrinos

 Nuclear reactors are a flavor-pure, widely available, cost-effective, extremely intense and well-understood source of electron antineutrinos:

- A 1 GW_{th} core produces in one minute more neutrinos than the NuMI and BNB beams produced in all of 2018

Types of Nuclear Reactors

• Nuclear reactors fall into two main categories:

Low-Enriched Uranium (LEU)-fueled power reactors

- Commercial reactors
- Several GW of thermal power
- $\bar{\nu}_e$'s originate from fission products of 4 isotopes: ²³⁵U, ²³⁹Pu, ²⁴¹Pu and ²³⁸U
 - Fuel evolves as ²³⁵U is consumed and ^{239,241}Pu is produced

Highly-Enriched Uranium (**HEU**)fueled reactors

Research reactors 50-100 MW of thermal power Almost all fissions are 235U

Antineutrino Detection

- The medium of choice for most of these experiments has been scintillator (plastic or liquid)
- The primary detection channel has been the Inverse Beta Decay (IBD) reaction:

 Coincidence between prompt positron and delayed neutron signals allows for powerful background rejection

– Energy of positron preserves information about energy of incoming $\bar{\nu}_e$:

$$E_{\bar{\nu}_e} \approx E_{\text{prompt}} + 0.78 \text{ MeV}$$

Oscillation Probability

- Reactor experiments are an excellent ground to measure neutrino oscillations
- Electron antineutrino survival probability:

$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L,E) = \left[1 - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \frac{\Delta m_{21}^2 L}{4E} - \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \frac{\Delta m_{31}^2 L}{4E} + \sin^2 \theta_{12} \sin^2 \frac{\Delta m_{32}^2 L}{4E}\right)\right]$$

- Access to 4/6 oscillation parameters: $\theta_{12}, \theta_{13}, \Delta m_{21}^2,$ and $\Delta m_{31}^2 (\Delta m_{32}^2)$

- Independent of $heta_{23}$ and δ_{CP}

 Physics goals drive choice of baseline

A Rich History

 Reactor antineutrino experiments have a very rich history of contributions to neutrino physics:

Phys. Rev. Lett. 100, 221803 (2008)

Current-Generation Reactor Neutrino Experiments

θ₁₃ Experiments

The current generation of reactor experiments fall roughly into two categories:

1) Experiments designed to measure the θ_{13} mixing angle:

- < 2 km baseline means only need "small" detectors (tens or hundreds of tons)</p>
- Looking for small (<10%) disappearance, so <u>key is keeping systematics</u> <u>under control</u>
- Near/far relative comparison allows to essentially cancel uncertainties in flux prediction and correlated detection efficiencies

θ₁₃ Experiments

(using Daya Bay as an illustration)

SBL Experiments

2) Short-Baseline (SBL) Experiments

• Primary goal: search for a sterile neutrino with O(10 m) baselines

Motivation: anomalies in neutrino physics that can be explained by sterile neutrino mixing with $\Delta m_{41}^2 \sim 1 \text{ ev}^2$, including the reactor antineutrino anomaly (explained later)

⁽chart courtesy of B. Roskovec)

SBL Experiments

• Wide range of detection media and approaches:

Segmentation/movability allows to make a **relative** measurement within/with the same detector

(from B. Littlejohn's seminar at FNAL)

Makes measurement largely independent of reactor prediction models! Recent Oscillation Results Highlights

Three-Neutrino Oscillation Measurements

- The most precise measurements of θ_{13} come from reactor experiments
- As an example, these are the latest results from Daya Bay (released in May 2022) $\times 10^3$

250

200

10

 10^{4}

10'

- 3158 days of data
- From spectral distortion simultaneously extract $\sin^2(2\theta_{13})$ and Δm_{32}^2

- Excellent fit to standard three-neutrino framework
- $853^{+0.0024}_{-0.0024}$

10.5281/zenodo.6683712

Global Landscape

• Current reactor measurements of θ_{13} will likely remain the most precise for a long time:

• Reactor experiments also have excellent sensitivity to Δm_{32}^2 :

Great agreement between very different experimental approaches!

JUNO will further carry the torch (see later)

SBL Experiments

- Almost all SBL experiments have released results by now
- As an example, these are the 2021 results from PROSPECT

• There is a $\sim 2.7\sigma$ claim of a positive signal from Neutrino-4:

Non-Standard Flavor Mixing Landscape

Reactor Antineutrino "Anomalies": Data vs. Model Comparisons

Characterizing Reactor $\bar{\nu}_e$ Emission

- Existing data can be also be used to characterize the emission of antineutrinos from nuclear reactors and to compare with prediction models:
 - Important for fundamental physics, non-proliferation applications, and as a stringent test of nuclear data inputs
- Two methods to predict the reactor $\bar{\nu}_e$ rate and spectral shape:
 - Ab-initio method:
 - Bottom-up calculation using fission yields, Q values and decay branching ratios from nuclear data bases
 - Conversion method:

The "Rate Anomaly"

• Historically, the comparison of the observed vs. predicted $\bar{\nu}_e$ rate came first:

- This is the <u>"reactor antineutrino anomaly</u>": a ~5% deficit in total rate with respect to the Huber Mueller (HM) model at short baselines
- Causes of the anomaly?
- Experimental systematics? Extremely unlikely...
- New Physics (oscillations to a ~eV sterile neutrino)? Maybe...
- Unaccounted systematics and/or biases in the prediction? Likely...

The "Shape Anomaly"

• With recent reactor experiments it became possible to also make a precise comparison of the observed vs. predicted spectral shape of reactor $\bar{\nu}_e$'s:

The "Evolution Anomaly"

PRL 118, 251801 (2017)

Isotopic Yields and Spectra

 The evolution with fuel composition allows to extract the individual yields and spectra for the two main isotopes: ²³⁵U and ²³⁹Pu

Comments: have to make conservative assumptions about the contributions from ²³⁸U and ²⁴¹Pu. RENO and NEOS-II have released consistent yields in PRL 122, 232501 (2019) and 10.5281/zenodo.6680618, respectively

Consistent Picture

• Get a consistent story from HEU experiments:

²³⁵U Yield Data/Prediction

- And from recent re-evaluation of the ²³⁵U /²³⁹Pu ratio of cumulative fission beta spectra at Kurchatov Institute (KI):
 - Almost constant offset of about
 ~5% with respect to ILL!
 - No indication of a "5 MeV bump"

²³⁵U Spectral Measurement

(STEREO)

Putting it All Together

- Main conclusions:
 - Convergence of multiple lines of evidence suggests that ²³⁵U beta spectrum from ILL (which underlies all conversion predictions) is largely responsible for reactor antineutrino anomaly
 - Shape anomaly remains unexplained and is caused by a yet unknown issue affecting both conversion and summation predictions
 - All in all, sterile neutrino
 hypothesis not ruled out,
 but weakened

 r_X = ratio of measured over predicted rate for isotope X with respect to the HM prediction

r₂₃₅ arXiv:2203.07214 The Future

The JUNO Experiment

 There is a large, next-generation reactor neutrino experiment under construction in China: the Jiangmen Underground Neutrino Observatory (JUNO)

- 53 km from 8 reactors in two major nuclear power plants (NPPs)
- 35 m diameter sphere with 20 ktons of liquid scintillator (LS) surrounded by 17,612 large (20-inch) and 25,600 small (3-inch) photomultiplier tubes (PMTs)
- Energy resolution of 3% at 1 MeV

unprecedented for a detector of this type!

Pushing the Limits

- Most obvious (although not unique) requirement for achieving the target energy resolution: seeing enough photons.
 - No approach can singlehandedly provide all the light needed. Have to attack the problem from different angles:

	KamLAND	JUNO	Relative Gain	use KamLAND as reference
Total light level	250 p.e. / MeV	>1200 p.e. / MeV	5 🔸	
Photocathode coverage	34%	~78%	~2	I lots of PMTs
Light yield	1.5 g/l PPO	2.5 g/l PPO	~1.5	····· optimized LS
Attenuation length / R	15/16 m	20/35 m	~0.8	•••••
PMT QE×CE	20%×60% ~ 12%	~30%	~2	more efficient

- Also need to control the non-stochastic term of the energy resolution to ≤1%
 - Have a comprehensive calibration program including two complementary types of PMTs

JUNO's Oscillation Goals

- Why such a good energy resolution? To measure the fine structure in the oscillated reactor neutrino spectrum at 52.5 km
 - Extract the neutrino mass ordering (3σ in ~6 years)
 - Measure four oscillation parameters ($\leq 0.5\%$ precision in 6 years for $\sin^2 \theta_{12}$, Δm_{21}^2 and Δm_{31}^2)

Other Goals and Status

JUNO also has a very rich program in other areas:

Detector construction is already ongoing and expected to be completed by 2023

(for more details please see A. Garfagnini's talk on JUNO later today)

Other Future Experiments

Future SBL Experiments

• There are also at least four new SBL experiments/upgrades in preparation:

CEvNS at Reactors

An exciting new program using CEvNS at reactors is in its first stages

> CEvNS: a neutrino scatters off a nucleus whose nucleons recoil in phase

- Pro: very high cross-section (can be orders of magnitude higher than IBD)
- Con: very difficult to detect (only signal is low-energy recoiling nucleus)
- Main challenge: achieving a low enough detection threshold (and background)

arXiv:2203.07214

3.5

Energy Threshold (keVnr)

CEvNS at Reactors

- Can do great physics:
 - Measure CEvNS cross-sections at low momentum transfer and search for deviations from SM prediction
 - Search for hidden sector particles and interactions
 - Develop small detectors for reactor monitoring

Example: sensitivity to axion searches for different experiments

The race is on!

- Vibrant effort in many reactors throughout the world with different technologies
- First detection of CEvNS from reactors expected soon

(for more details please see J. Hempfling's talk on CONUS later today)

Global Landscape of Reactor Neutrino Experiments

arXiv:2203.07214 and arXiv:2203.07361

Summary & Conclusions

Summary & Conclusions

- Nuclear reactors are excellent neutrino sources
- Cutting-edge neutrino physics continue to be done with reactor neutrinos:
- Leading precision in oscillation parameters, searches for sterile neutrinos, high-precision measurements of reactor antineutrino flux and spectral shape, among others.
- A bright future is on the horizon for this subfield of neutrino physics:
- A vibrant next-generation experimental program is under preparation that includes a very large multi-purpose detector, new/upgraded SBL experiments, and a new window to search for physics beyond the Standard Model
- Expect some exciting results and, hopefully, some surprises

