

COMPARISON OF DIFFUSIVE AND BALLISTIC PROPAGATION OF COSMIC RAYS IN FLARES OF BLAZARS

Marcel Schroller, Julia Becker-Tjus, Mario Hörbe, Ilja Jaroschewski, Patrick Reichherzer,

Wolfgang Rhode, Fabian Schüssler | Erice 2022 | marcel.schroller@ruhr-uni-bochum.de

Motivation – AGN as Multi-Messenger Sources

- Active Galactic Nuclei (AGN) are one of the most luminous, observable sources
 - Engine of the cosmic rays with highest energies up to $E_{CR} = 10^{21} \text{eV}$?
- Modelling is challenging; ambiguous signatures need to be understood via numerical simulation.

Image courtesy: IceCube Collaboration

Motivation – AGN Classification

- Unification of AGN regarding
 - Luminosity
 - Radio emissivity
 - Angle between LOS and axis perpendicular to accretion disk
 - Subclass of interest today: Blazars as MM – sources!

Challenges I – AGN Jet Length Scales

- AGN jets are the largest coherent structures in the universe
 - Extend up to Megaparsecs ($\approx 10^{22}$ m) from central engine
- Contrast: MM-modelling needs to resolve small-scale $(\leq 10^{-4} \text{ pc} \approx 10^{12} \text{ m})$ environments!

Image courtesy: MIT Kavli Institute

Challenges II – Energy Ranges (Multiwavelength)

RUHR

UNIVERSITÄT BOCHUM

Challenges III: Ambiguity of Signals

Abdo et al. ApJ (2011)

RUB

RUHR

UNIVERSITÄT BOCHUM

Challenges IV – Time Variability

RUHR

UNIVERSITÄT BOCHUM

Transport in Turbulent Fields: Ballistic vs. Diffusive

Masterthesis P. Reichherzer (2019)

Transport in Turbulent Fields: Ballistic vs. Diffusive

RUHR

UNIVERSITÄT BOCHUM

Ref. CRPropa 3: Batista et al. JCAP (2016)

Setup: Scheme

RUHR UNIVERSITÄT BOCHUM

Setup: Parameter (excerpt)

Assumptions:

- Equipartition: $U_B = U_p + U_e$
- Purely Kolmogorov-type turbulent magnetic field in 3d with $l_c = 10^{-2}R$
- Injection monochromatic or power law w. spectral index $\alpha_p = 2$;

 $E_{min} = 10^8 \text{ GeV}$ $E_{max} = 10^{11} \text{ GeV}$

- Instantaneous injection
- Black body field of accretion disk Doppler de-boosted inside plasmoid
- Synchrotron radiation of ambient electrons

Image courtesy: Vladimir Kiselev & MS

Setup: Results (combined messengers)

Transport: Running Diffusion Coefficient

Transport: Diffusion Coefficients

Averaging $\kappa(t)$ for late times • (plateaus) to approximate the diffusion coefficient:

3.0

2.5

2.0 gyrations

0.5

2.5

1.0

0.5

0.0

-0.4

 $-0.2_{0.0}_{0.2}_{0.2}_{0.4}_{0.6}_{0.6}$

2.0 2

- $\kappa = \lim_{t \to \infty} \kappa(t) \approx < \kappa(t) >_{t \gg t_0}$
- Input for diffusive simulations (if applicable)

10⁸ GeV

Becker-Tjus et al. MDPI Physics (2022 arXiv:2202.01818)

100

100

-3 -2 -1 0

* [pc]

Propagation Effects: Comparison @ 10⁵ GeV

Propagation Effects: Comparison @ 10⁸ GeV

Becker-Tjus et al. MDPI Physics (2022) arXiv:2202.01818

Further Implications (Teaser): Spectra

Telegrapher's equation for transitional time scales:

Article

Propagation of Cosmic Rays in Plasmoids of AGN Jets-Implications for Multimessenger Predictions

Julia Becker Tjus ^{1,2,}*^(D), Mario Hörbe ^{1,2}, Ilja Jaroschewski ^{1,2}, Patrick Reichherzer ^{1,2,3}^(D), Wolfgang Rhode ⁴, Marcel Schroller ^{1,2} and Fabian Schüssler ³^(D)

 Prediction of spectral breaks from
 spatial and magnetic field configurations for AP neutrinos and gamma-rays from AGN jets!

Becker-Tjus et al. MDPI Physics (2022) arXiv:2202.01818

Summary & Conclusion

- MM-Modelling and simulation of AGN jet signatures is notoriously difficult: Need to cover several orders of magnitude in extend, energy, temporal resolution and environmental scalings
- With the **extension** of **CRPropa**, the first step towards a consistent hadronic test particle simulation was achieved
 - This will shed light into mechanisms of the (possible) birthplace of UHE cosmic rays, gamma-rays and neutrinos.
 - First predictions of possible spectral breaks in UHE neutrino and gamma-ray spectra are deduced
 - Impact of transitions between streaming and diffusion on fluxes and secondary particle production is not neglible!
- Ultimately, the interconnection of **plasma-**, **astro- and particle physics** in AGN jets makes them perfect to study fundamental physics.

RUHR

Thank you for your attention!

Image courtesy: IceCube Collaboration

Setup: Results (Running Diffusion Coefficient)

Setup: Results (Diffusion Coefficients)

System: parameter comparison

i	P _i	Hoerbe et al. (V_i)	Schroller et al. (<i>W_i</i>)
1	Radius of plasmoid R	1e13 m	1e13 m
2	Spacing Δs	2*R	2*R
3	timestep Δt	33358 s	33358 s
4	# timesteps N_t	308557	308557
5	# spatial steps $N_{x,y,z}$	2	2

Magnetic field: former parameter

i	P _i		V _i	W _i
6	# of gridpoints	N _{Gr}	256	512
7	Spacing	Δs_B	R / (128)	R /(256 * 64)
8	Root Mean Value	B_0	1 G	1 G
9	Correlation length	l_c	10^(-2) R	10^(-2) R
10	Lmin	l_{min}	R / (64)	R / (256 * 32)
11	Lmax	l_{max}	R / (32)	R/(32)
12	# of spatial scalings	$N^B_{x,y,z}$	2	4
13	# of temporal scalings	N_t^B	308557	617114
14	Scaling: spacing	Δs^B	2 * R	R
15	Scaling: timesteps	Δt^B	33358 s	16679

RUHR

UNIVERSITÄT BOCHUM

Propagation and energy: comparison parameter

i	P _i		V _i	W _i
16	Propagation method	Р	СК	BP
17	Min. step size	Δx_{min}	10^(-2) R	10^(-5) R
18	Max step size	Δx_{max}	10^(-2) R	10^(-3) R
19	Precision	З	10^(-3)	10^(-3)
20	Injection energy	Ε	10^(8) GeV	10^(8) GeV
21	Max. trajectory length	d	10 pc	10 pc
22	Minimum energy	E _{min}	10^(2) GeV	10^(2) GeV
23	# of particles	Ν	10000	10000

RUHR

UNIVERSITÄT BOCHUM

Transport in turbulent fields: Criteria

Following [Reichherzer et al. MNRAS (2020)]:

The reduced rigidity
$$ho = rac{r_{
m g}}{l_{
m c}} = rac{E}{qcB\,l_{
m c}}$$

- Reduced rigidity ρ can be used as criterion to distinguish between the necessity to either propagate ballistically or diffusively:
 - Ballistic motion for $\rho > 1$
 - Diffusive propagation for $l_{min}/l_{max} \le \rho \le 1$

Motivation II – γ suppression vs. ν -emission

- Example: Observations of blazar PKS 1502+106:
 - Hint onto association of blazar to IceCube-event IC-190730A
- Long-term survey of gamma-ray and radio fluxes show some correlation
- At event time IC-190730A: Deficient gamma-ray flux while de-correlated, strong radio activity
- Question: Can we implement models, which reproduce this behavior?

Simulation: Visualization

Example: AGN of 3C 279:

- $z = 0.53620 \pm 0.00040$
- Distance SMBH apparent base of jet:
 d ≈ 0.5 pc ≈ 1.8 ⋅ 10¹⁶ m
- Start of propagation/simulation:
 r₀ = 10¹⁴ m

Fig. 4: Nucleus of 3C 279 with base of jet. The orange star approximates the starting point of the 'simulation. [https://www.mpg.de/14651902/jet-des-quasars-3c279-mit-eht. Accessed at 28.09.2021]

Setup: Parameter (excerpt)

Parameter	Symbol	Value
Plasmoid Radius	R	10 ¹³ m
Plasmoid Propagation Start	$r_{\rm start}$	10 ¹⁴ m
Plasmoid Propagation End	r _{end}	$r_{\text{start}} + 10 \text{ pc}$
Plasmoid Lorentz Factor	Γ	10
Magnetic Field Initial RMS Value	B_0	1 G
Proton (primary) Initial Energy	$E_{p, inj}$	10 ⁸ GeV
Proton Target Density (up-scaled)	$n_{0, \text{plasma}}$	10^{15} m^{-3}
Electron Minimal Lorentz Factor	$\gamma_{e,\min}$	10
Electron Maximal Lorentz Factor	$\gamma_{e, \max}$	10^{6}
Electron Spectral Index	α_e	2.6
Energy Density Ratio U_p/U_e	X	1/100
Accretion Disc Inner Radius	$3R_s$	$8.86 \cdot 10^{11} \text{ m}$
Accretion Disc Outer Radius	$R_{\rm acc}$	10 ¹⁴ m
Accretion Disc Temperature	T_0	10 eV/k_b

Hörbe et al. MNRAS (2020)

Assumptions:

- Equipartition: $U_B = U_p + U_e$
- Purely turbulent field with $l_c = 10^{-2}R$
- Injection monochromatic (Tab. 1) or power law w. spectral index $\alpha_p = 2$;

 $E_{min} = 10^8 \text{ GeV}$

 $E_{max} = 10^{11} \text{ GeV}$

- Instantaneous injection
- Black body field of accretion disk Doppler de-boosted inside plasmoid
- Synchrotron radiation of ambient electrons

Correlation between γ -rays and Neutrinos

- Investigation of particle readouts of photons and neutrinos at equal points in time
 - Can we observe a correlated emission of both messengers?

Fig 7.:The correlation between neutrino and gamma-ray emission at equal points in time, which are color-coded by the bar on the right-hand side. Gamma-rays are absorbed by the dense photon fields, while neutrinos escape.

RUHR

UNIVERSITÄT BOCHUM

Fig 8.: The correlation between neutrino and gamma-ray emission at equal points in time, which are color-coded by the bar on the right-hand side. In this unphysical view-case, the Breit-Wheeler pair production of secondary γ -rays with background photons is disabled for visualization.

RUHR UNIVERSITÄT BOCHUM

Setup: Results (Running Diffusion Coefficient)

Trajectory data can be used to calculate the running diffusion coefficient at instance t_i:

$$\kappa(t_i) = \frac{\langle r(t_i) - r(t_0) \rangle_{particles}^2}{2t_i}$$

01.09.21 Zusatz

A7: Density-dependence of the temporal structure in the multimessenger spectrum of blazars

Parameter setup for AGNPropa (working example):

- Environment, interactions and scalings are (conservatively) chosen from literature
- Primary protons are either injected monochromatic with $E_{\rm p}=10^8\,{\rm GeV}$ or power-law-like distributed with $\alpha_{\rm p}=2$
- Detailed justification and in-depth explanation in Hoerbe et al. MNRAS (2020) and references therein
- Table on the right-hand-side illustrates the model with a selection of parameters

Parameter	Symbol	Value
Plasmoid radius	R	10 ¹³ m
Propagation distance (Plasmoid's rest-frame)	D	10 pc
Plasmoid Lorentz factor	Г	10
Magnetic field: Initial RMS value	B ₀	1 G
Accretion disk: Inner radius	3 <i>R</i> _S	8.86 · 10 ¹¹ m
Accretion disk: Outer radius	R _{acc}	10 ¹⁴ m
Accretion disk: Temperature (Black body)	T ₀	10 eV/k _b
Accretion disk: Outer radius Accretion disk: Temperature (Black body)	R _{acc}	10 ¹⁴ m 10 eV/k _b