

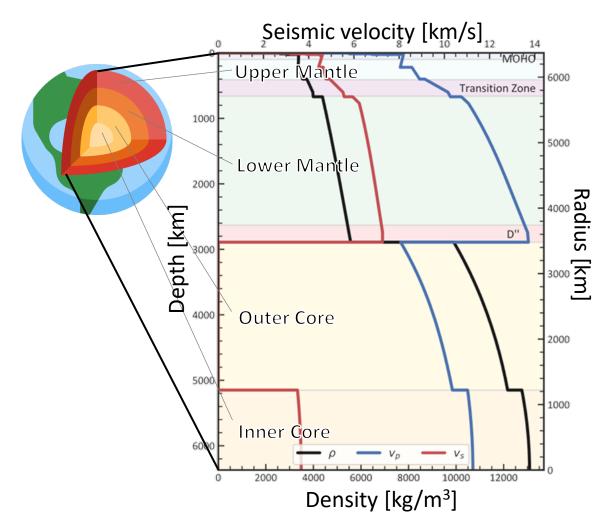
Università degli Studi di Padova

International School of Nuclear Physics - 43rd Course *Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics* Erice, Sicily, September 16-22, 2022

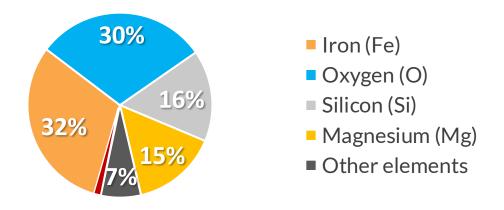
Geoneutrino experiments: status and prospects

Andrea Serafini

andrea.serafini@pd.infn.it


» The "Standard Model" of the Earth

- ve
- » Geoneutrinos in understanding Earth Sciences
- » Insights from current geoneutrino measurements
- » Future prospects in the geoneutrino field



The "Standard Model" of the Earth

Earth has a well-established **layered** structure, visible from its **density profile**:

The Bulk Earth's **mass composition** for **main elements** is well known:

About 0.02% of Earth's mass is composed of radioactive **Heat Producing Elements (HPEs).**

The most important for activity, abundances and half-life time (comparable to Earth's age) are:

- Uranium U ($M_U \sim 10^{-8} M_{Earth}$)
- Thorium Th ($M_{Th} \sim 10^{-8} M_{Earth}$)
- Potassium K (M_K~10⁻⁴ M_{Earth})

Elemental properties

hydrogen 1

Η

volatile lithium 3

volatile sodium

11

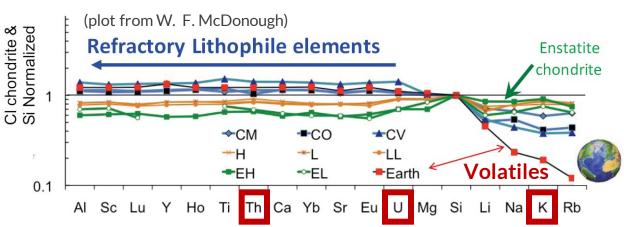
Na

19 **K**

37 Rb volatile caesium 55

CS volatile francium 87

Fr


*The condensation temperatures are the temperatures at which 50% of the element will be in the form of a solid (rock) under a pressure of 10^{-4} bar.

Chemical properties:

- Siderophiles: dissolve in iron
- Lithophiles: bind with oxygen
- Chalcophiles: combine with XVI
- Atmophile: do not combine

Condensation temperature* (T_C):

- Volatile (T_c < 1300 K)
- **Refractory** (T_c > 1300 K)

				eleme	ant		Autop	inic								2
				Z			Lithop	nile								He
beryllium	1			V	r		Siderop	ohile			boron	carbon	nitrogen	oxygen	fluorine	volatile neon
Be				Λ	`		Chalco	phile			B	ĉ	N	Ô	F	Ne
refractory				prope	rty		Synthe	tic			volatile	volatile	vo l atile	volatile	volatile	vo l atile
magnesium 12							0)				a l uminium 13	silicon 14	phosphorus 15	sulfur 16	ch l orine 17	argon 18
Mg											A	Si	Р	S	Cl	Ar
refractory calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nicke	copper	zinc	refractory ga ll ium	refractory germanium	refractory arsenic	volatile selenium	vo l atile bromine	vo l atile krypton
20	21	22	23	24	25	26	27	28	29	30 7 :-	31	32	33	34	35 D.4	36
Ca	SC	Ti refractory	V refractory	Cr	Mn	Fe	CO	Ni			Ga	Ge	As volatile	Se	Br volatile	Kr volatile
strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
Sr	Ý	Žr	Nb	Mo	Tc	Ru	Rh	Pd	Âg	Ĉď	În	Sn	Sb	Te	1	Xe
refractory	refractory	refractory	refractory	refractory	-	refractory	refractory	refractory	volatile	volatile	volatile	volatile	vo l atile	volatile	volatile	vo l atile
barium 56		hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	tha∎ium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
Ba	57 - 71	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
refractory radium		refractory rutherfordium	refractory dubnium	refractory seaborgium	refractory bohrium	refractory hassium	refractory meitnerium	refractory darmstadtium	volatile roentgenium	volatile copernicium	vo l atile nihonium	volatile flerovium	volatile moscovium	- livermorium	- tennessine	- oganesson
88 Do	89-103	104	105	106	107	108	109	110	111 Dei	112	113	114	115	116	117 T e	118 O c'
Ra	89-103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
					1											
		lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
		57	58	59 Du	60	61 D:22	62 C 100	63	64	65 T la	66	67	68	- ⁶⁹	70	71
		La	Ce	Pr	Nd refractory	Pm	Sm	EU	Gd	Tb refractory	Dy refractory	HO refractory	Er refractory	Tm refractory	Yb refractory	LU refractory
		actinium 89	90	protactinium 91	uraniuni 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102	lawrencium 103
nstati	te	Ac	Tĥ	Pa	Ũ	Ñр	Pu	Am	Cm	Bk	Ĉf	Ēs	Fm	Md	No	Lr
aandri			refractory	· ~	refractory	Ϋ́					<u> </u>					_ .

Atmophile

element

helium

Earth evolution in a nutshell

1st differentiation

Primitive Mantle (PM) $[M_{PM} \sim 68\% M_{Earth}]$ Outer Core (OC) $[M_{OC} \sim 31\% M_{Earth}]$ Inner Core (IC) $[M_{IC} \sim 1\% M_{Earth}]$

Siderophile elements (chemical affinity with Fe) in the Core

Lithophile elements (chemical affinity with O) in the Lithosphere (e.g. U, Th, K) 2nd differentiation

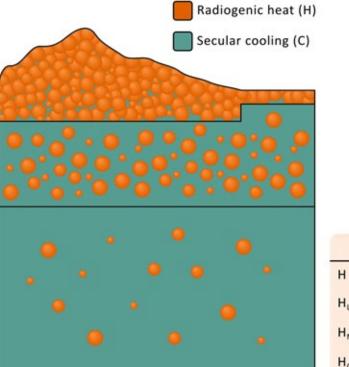
Lithosphere [M_{Lith} ~2% M_{Earth}]
 Mantle [M_{Mantle} ~66% M_{Earth}]
 OC+IC [M_{Core} ~32% M_{Earth}]

Convective and tectonic processes: formation of new crust (oceanic crust) and recycling of continental crust

Earth's heat budget

The **total heat power (Q)** of the Earth is well established and is 47 ± 2 TW. What has still to be understood is in which fraction this heat is due to:

C = Q - H

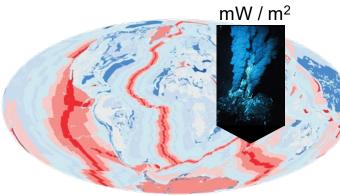

 $C_M = Q - H - C_C$

 $H_M = H - H_{LS} - H_C$

 $U_{R} = \frac{H - H_{cc}}{Q - H_{cc}}$

 $H_{1S} = H_{CC} + H_{OC} + H_{CLM}$

- Secular Cooling (C): cooling down caused by the initial hot environment of early formation's stages
- Radiogenic Heat (H): due to naturally occurring decays of U, Th and K (HPEs) inside our planet.



H_{CC} = radiogenic power of the continental crust

H_{cc} = radiogenic power of the continental crust

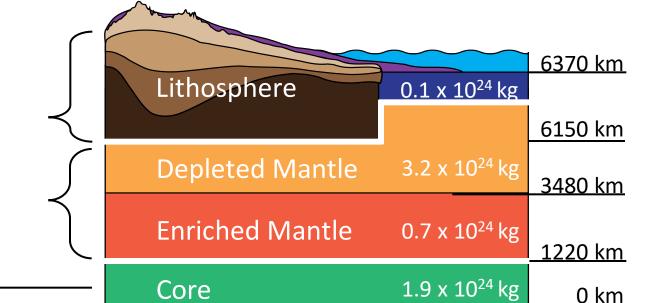
H_{CLM} = radiogenic power of the continental lithospheric mantle

	Range [TW]	Adopted [TW]		Range [TW]	Adopted [TW
1	[10 ; 37]	19.3 ± 2.9	С	[8 ; 39]	28 ± 4
LS	[6;11]	8.1 ^{+1.9}	CLS	~ 0	0
м	[0;31]	$11.0^{+3.3}_{-3.4}$	C _M	[1 ; 29]	17 ± 4
c	[0 ; 5]	0	Cc	[5 ; 17]	11 ± 2

- » The mass of the lithosphere (~ 2% of the Earth's mass) contains ~ 40% of the total estimated HPEs and it produces $H_{LS} \sim 8 \text{ TW}.$
- » Radiogenic power of the mantle H_M and the contributions to C from mantle (C_M) and core (C_C) are model dependent.

LITHOSPHERE

MANTLE


The main reservoirs of the Earth

Despite deep Earth's structure is well understood, its chemical composition is not.

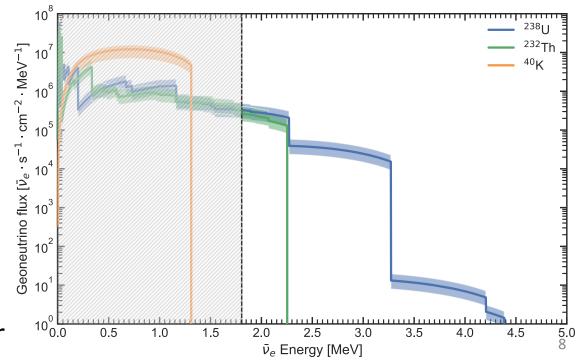
Samples from Lithosphere permit to study its compositions with a statistical significance.

Lithosphere rich in HPEs, directly measurable.

Mantle inaccessible to direct measurements.

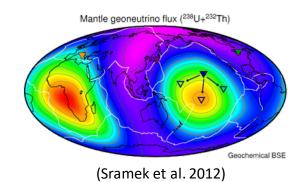
Core inaccessible and void of HPEs

	a(U) <i>[µg/g]</i>	a(Th) <i>[µg/g]</i>	a(K) <i>[10⁻²g/g]</i>
Lithosphere	$0.25\substack{+0.07 \\ -0.06}$	$1.08^{+0.37}_{-0.23}$	$0.28\substack{+0.07 \\ -0.06}$
Depleted Mantle	?	?	?
Enriched Mantle	?	?	?

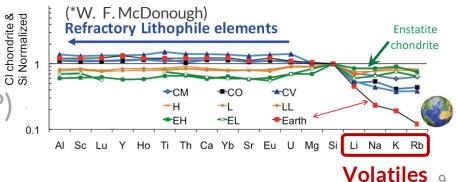

Geoneutrinos: anti-neutrinos from the Earth

²³⁸U, ²³²Th and ⁴⁰K in the Earth release heat together with $\bar{\nu}_e$ in a well-fixed ratio:

Decay	T _{1/2} [10 ⁹ γ]	$E_{max}(\overline{oldsymbol{ u}})$ [MeV]	$oldsymbol{\epsilon}_{oldsymbol{ar{ u}}}$ [10 ⁷ kg ⁻¹ s ⁻¹]	$oldsymbol{\epsilon}_{H}$ [10 ⁻⁵ W kg ⁻¹]
238 U \rightarrow 206 Pb + 8 α + 6 e^{-} + 6 $\bar{\nu}_{e}$	4.47	3.36	7.5	9.5
232 Th $\rightarrow ^{208}$ Pb + 6 α + 4 e^{-} + 4 $\overline{\nu}_{e}$	14.0	2.25	1.6	2.6
$^{40}\mathrm{K} ightarrow ^{40}\mathrm{Ca}$ + e ⁻ + $ar{ u}_e$ (89%)	1.28	1.31	23.7	2.9


» Earth emits (mainly) $\bar{\nu}_e$ ($\Phi \sim 10^7 \text{ cm}^{-2} \text{ s}^{-1}$) whereas Sun shines in ν_e ($\Phi \sim 10^{11} \text{ cm}^{-2} \text{ s}^{-1}$)

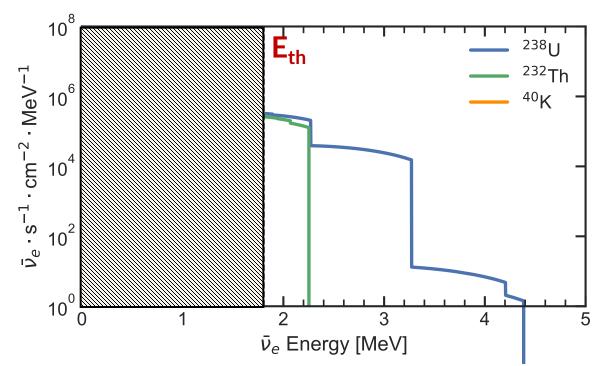
- » A fraction of geoneutrinos from U and Th (not from ⁴⁰K) are above threshold for inverse β on protons: $\bar{v}_e + p \rightarrow e^+ + n - 1.8 MeV$
- » Different components can be distinguished due to different energy spectra
- » Signal unit: 1 TNU = one event per 10³² free protons/year

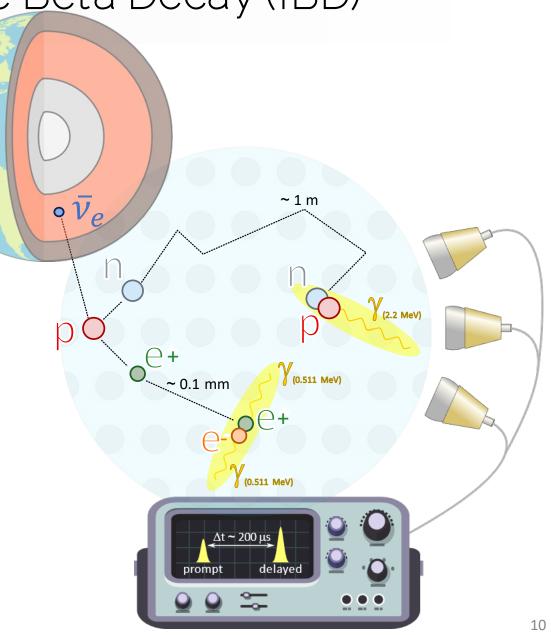


Open questions geoneutrinos can answer

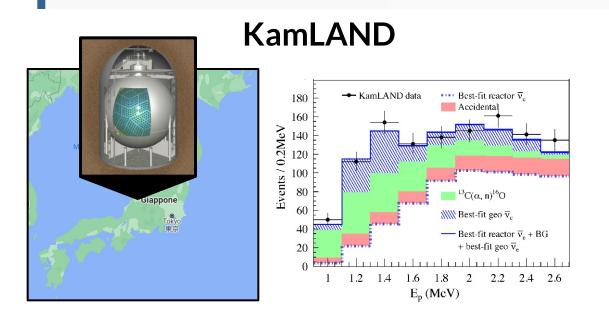
- » What is the radiogenic contribution to Earth's heat budget?
- » Are the fundamental ideas about Earth's chemical composition correct?
- » What's the distribution of reservoirs in the mantle?
- » Are there any radiogenic elements in the core?
- » What is the volatility slope of the Earth? (K/U ratio?)

 \mathbb{C}

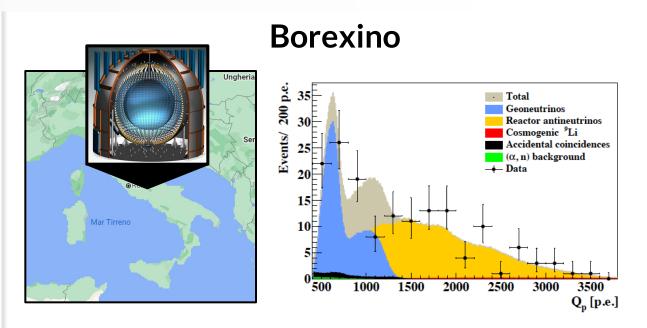



Detecting geoneutrinos: Inverse Beta Decay (IBD)

Geoneutrinos are **detected via IBD** in **~kton** Liquid Scintillation Detectors.


 $\bar{\nu}_e + p \rightarrow n + e^+ -$ 1.806 MeV

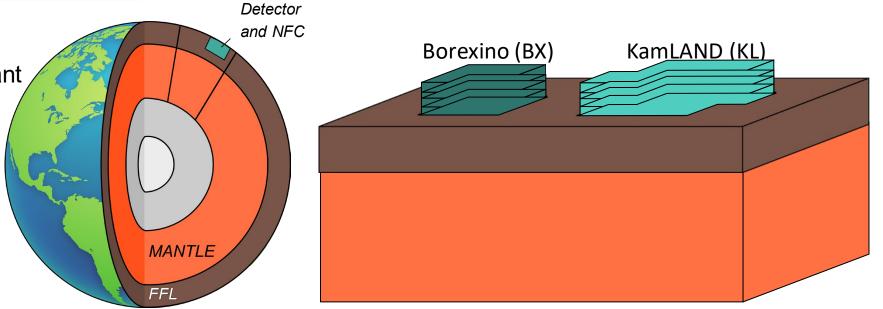
Detection requires the coincidence of 2 delayed light signals. It does not permit to observe ${}^{40}\text{K}-\bar{\nu}_e$


Borexino and KamLAND geoneutrino results

KamLAND is a **1 kton** liquid scintillator detector situated in **Japan**, in the Kamioka mine. It is surrounded by 1325 17" PMTs and 554 20" PMTs

Data-taking: 2002-2019*					
	U	Th	U+Th		
Events	$138.0^{+22.3}_{-20.5}$	$34.1^{+5.4}_{-5.1}$	$168.8^{+26.3}_{-26.5}$		
Signal [TNU]	$26.1^{+4.2}_{-3.9}$	$6.6^{+1.1}_{-1.0}$	$32.1^{+5.0}_{-5.0}$		

*new release 11th August 2022

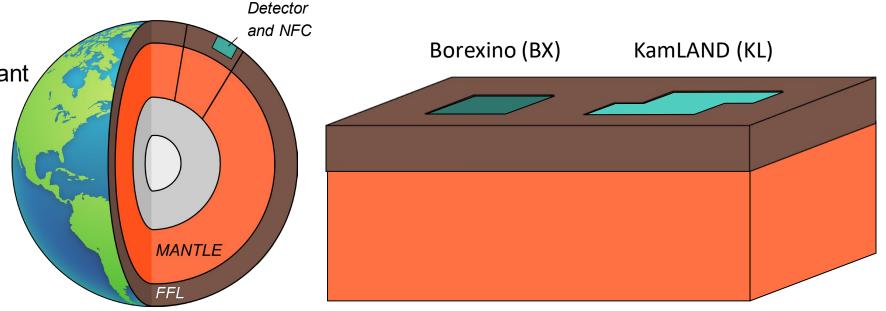

Borexino is **0.3 kton** liquid scintillator detector situated in **Italy**, at the Laboratori Nazionali del Gran Sasso. It is surrounded by ~2200 8" PMTs.

Data-taking: 2007-2019					
	U	Th	U+Th		
Events	$41.1^{+7.5}_{-7.1}$	$11.5^{+2.2}_{-1.9}$	$52.6^{+9.6}_{-9.0}$		
Signal [TNU]	$36.3^{+6.7}_{-6.2}$	$10.5^{+2.1}_{-1.7}$	$47.0^{+8.6}_{-8.1}$		

Extracting the mantle signal: the rationale

U and Th distributed in the Near Field Crust (NFC) gives a significant contribution to the signal (~ 50%).

The **Far Field Lithosphere (FFL)** is the superficial portion of the Earth including the Far Field Crust (FFC) and the Continental Lithospheric Mantle (CLM).

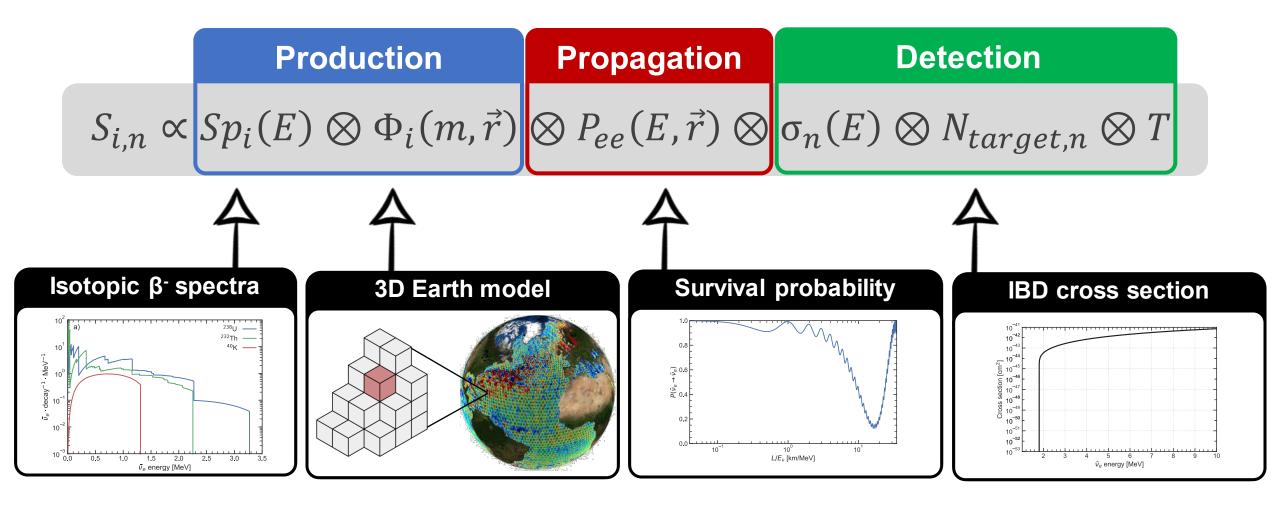


$$S_{Exp}^{i}(U+Th) = \underbrace{S_{NFC}^{i}(U+Th) + S_{FFC}^{i}(U+Th) + S_{CLM}^{i}(U+Th)}_{i} + \underbrace{S_{M}^{i}(U+Th)}_{i}$$

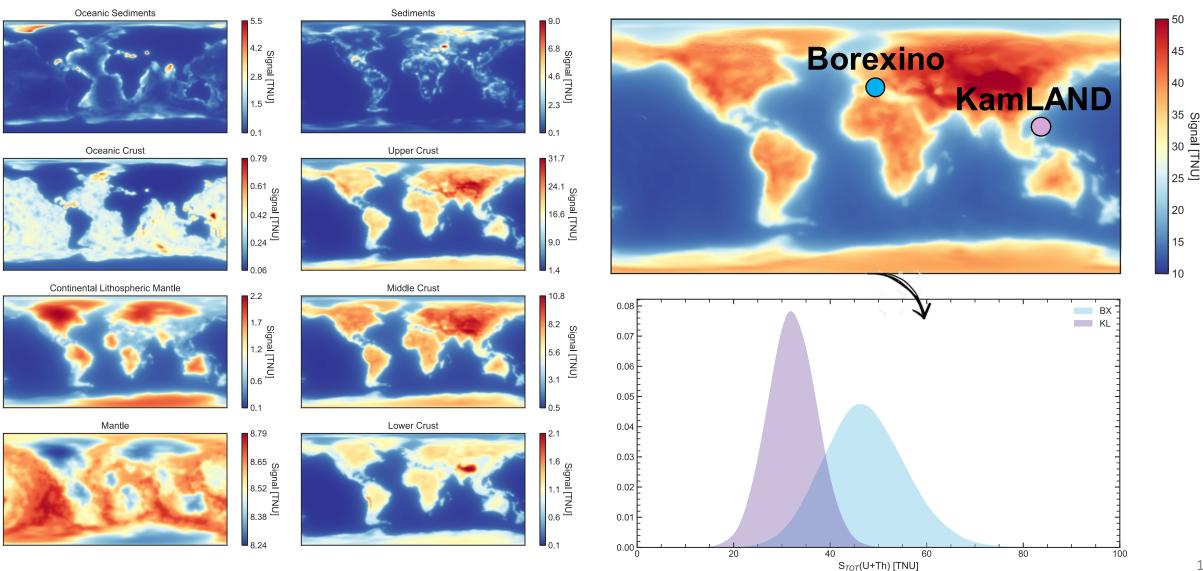
Extracting the mantle signal: the rationale

U and Th distributed in the **Near Field Crust (NFC)** gives a significant contribution to the signal (~ 50%).

The **Far Field Lithosphere (FFL)** is the superficial portion of the Earth including the Far Field Crust (FFC) and the Continental Lithospheric Mantle (CLM).

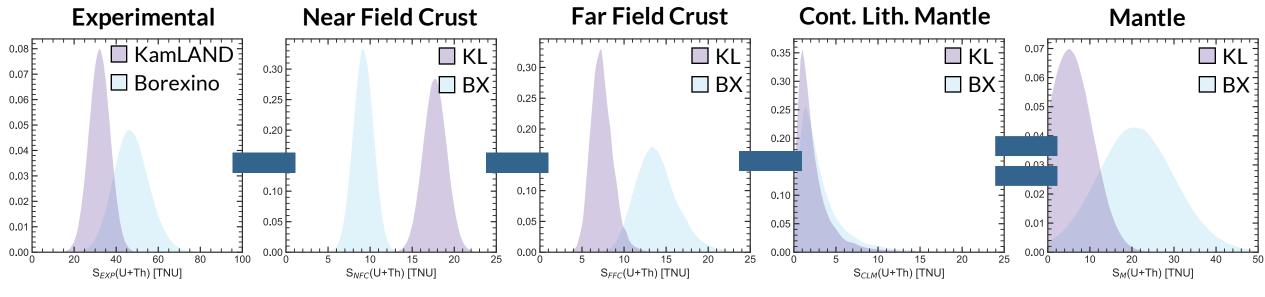


$S_{Exp}^{i}(U+Th) - S_{NFC}^{i}(U+Th) - S_{FFC}^{i}(U+Th) - S_{CLM}^{i}(U+Th) = S_{M}^{i}(U+Th)$


The geological models need to comply with the following constraints:

- FFC model needs to be the same for each *i*-th detector for avoiding biases.
- NFC should be built with geochemical and/or geophysical information typical of the local regions.
- **NFC** must be geometrically complementary to the FFC.

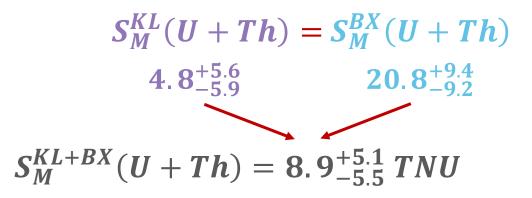
Modeling the geoneutrino signal


Modeling the geoneutrino signal for different reservoirs

15

Extracting the mantle signal

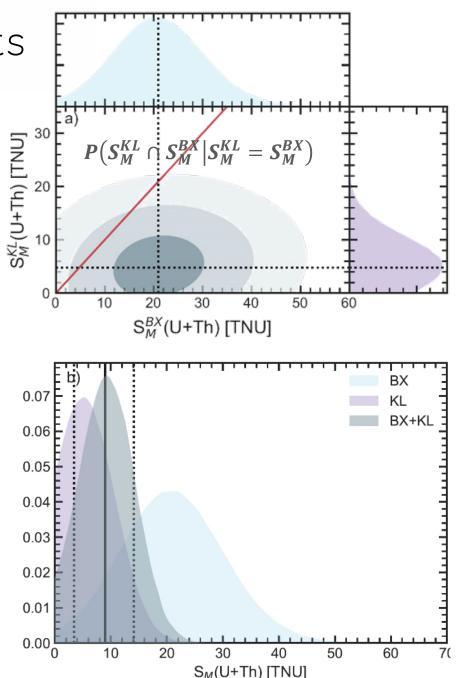
The mantle signals $S_M^{BX}(U + Th)$ and $S_M^{KL}(U + Th)$ can be inferred by subtracting the estimated lithospheric components from the experimental total signals using their reconstructed PDFs:

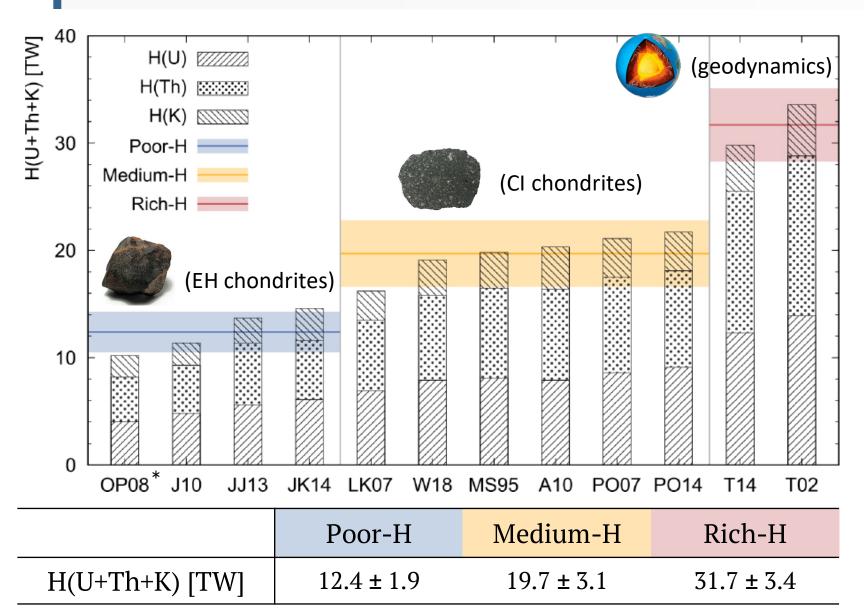

 $S_{Exp}^{i}(U+Th) - S_{NFC}^{i}(U+Th) - S_{FFC}^{i}(U+Th) - S_{CLM}^{i}(U+Th) = S_{M}^{i}(U+Th)$

 $S_{Exp}(U+Th)$ [TNU] $S_{NFC}(U+Th)$ [TNU] $S_{FFC}(U+Th)$ [TNU] $S_{CLM}(U+Th)$ [TNU] $S_{M}(U+Th)$ [TNU]

KL	32.1 ± 5.0	17.7 ± 1.4	$7.3^{+1.5}_{-1.2}$	$1.6^{+2.2}_{-1.0}$	$4.8^{+5.6}_{-5.9}$
BX	$47.0^{+8.6}_{-8.1}$	9.2 ± 1.2	$13.7^{+2.8}_{-2.3}$	$2.2^{+3.1}_{-1.3}$	20.8 ^{+9.4} _{-9.2} 16

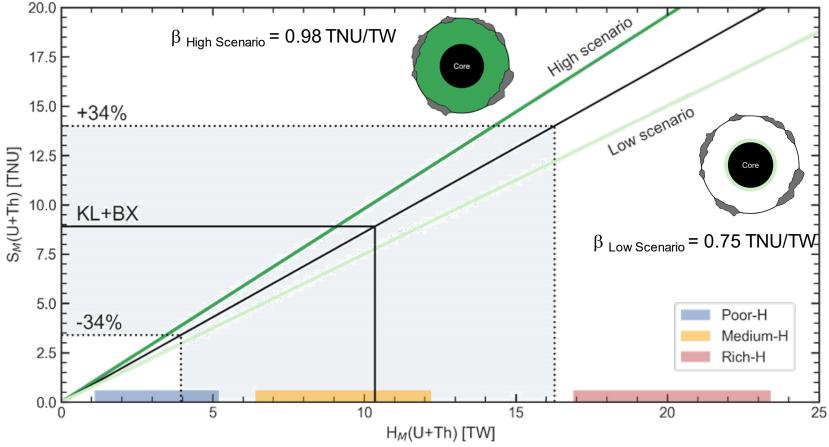
Combining KamLAND and Borexino results


The joint distribution $S_M^{KL+BX}(U + Th)$ can be inferred from the mantle signal's PDFs of the two experiments by requiring that:


Where correlations need to be properly accounted for:

- » $S_{FFC}^{KL}(U+Th) \propto S_{FFC}^{BX}(U+Th)$
- » $S_{CLM}^{KL}(U+Th) \propto S_{CLM}^{BX}(U+Th)$

are fully correlated, since they are derived from the same geophysical and geochemical model

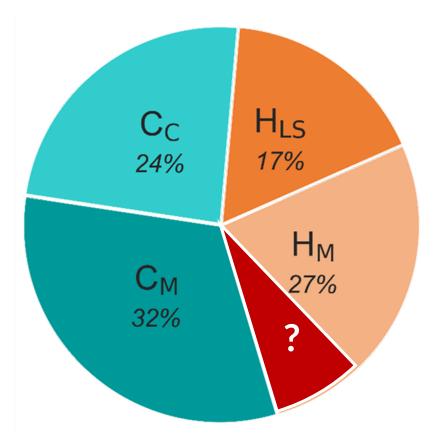

Bulk Silicate Earth Models

» The BSE describes the primordial, non-metallic Earth condition that followed planetary accretion and core separation, prior to its differentiation into a mantle and lithosphere.

» Different author proposed a range of BSE models based on different constraints (carbonaceous chondrites, enstatite chondrites, undepleted mantle, etc.)

Mantle radiogenic power from U and Th

Since $H_{LS}(U + Th) = 8.1^{+1.9}_{-1.6}$ TW is independent from the BSE model, the discrimination capability of the combined geoneutrino measurement among the different BSE models can be studied in the space $S_M(U + Th)$ vs $H_M(U + Th)$:


$$S_M(U+Th) = \beta \cdot H_M(U+Th)$$

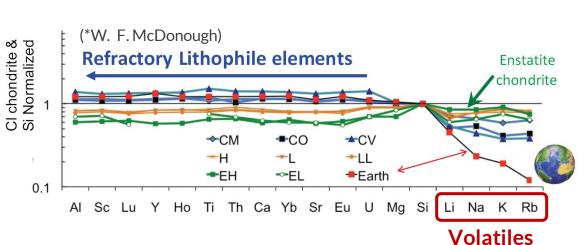
	Poor-H	Medium-H	Rich-H	KL+BX
H _M (U+Th) [TW]	$3.2^{+2.0}_{-2.1}$	9.3 <u>+</u> 2.9	$20.2^{+3.2}_{-3.3}$	$10.3^{+5.9}_{-6.4}$

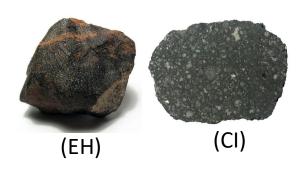
Understanding the Earth's heat budget with geoneutrinos

Assuming a K contribution to the radiogenic heat of 17% from geochemical arguments, the combined geoneutrino analysis of **KL and BX** results **constrains**:

	Expected	Combined KL + BX
Q [TW]		47 <u>+</u> 2
H _{LS} [TW]		$8.1^{+1.9}_{-1.6}$
H _M [TW]	$11.3^{+3.3}_{-3.4}$	$12.5^{+7.1}_{-7.7}$
H [TW]	19.3 ± 2.9	20. $8^{+7.3}_{-7.9}$
C [TW]	27 ± 4	26 ± 8

J.


Geoneutrinos and geoscience: an intriguing joint-venture Bellini et al.


Riv. Nuovo Cim. 45, 1–105 (2022).

⁴⁰K in Earth Science

- 1. Our planet seems to contain **10%-30% K respect to** the enstatitic (EH) and carbonaceous (CI) **chondrites** meteorites, respectively.
- 2. Two theories on the fate of the mysterious "missing K" include loss to space during accretion or segregation into the core, but no experimental evidence has been able to confirm or rule out any of the hypotheses, yet.
- 3. Being moderately volatile, K is representative of the depletion of **volatile elements** on Earth. Volatiles' abundances are required to understand deep H_2O cycle and ${}^{40}K{}^{-40}Ar$ system in the Earth.

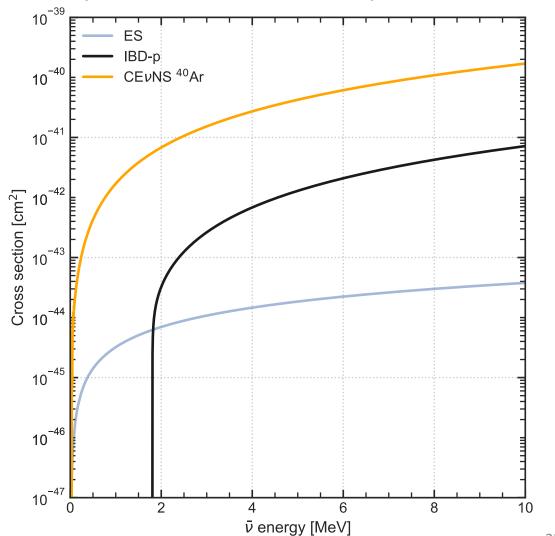
A direct measurement of the still undetected ⁴⁰K geoneutrinos would be a breakthrough in the comprehension of the Earth's origin and composition.

Possible detection channels for ⁴⁰K (anti)neutrinos

Inverse Beta Decay (IBD) $\bar{\nu}_e + {}_{Z+1}^A Y \rightarrow {}_Z^A X + e^+$

The currently employed reaction has an energy threshold at 1.8 MeV. Its current detection relies on a double coincidence rejecting most backgrounds.

Elastic Scattering on electrons (ES) $\bar{\nu}_X + e^- \rightarrow \bar{\nu}_X + e^-$

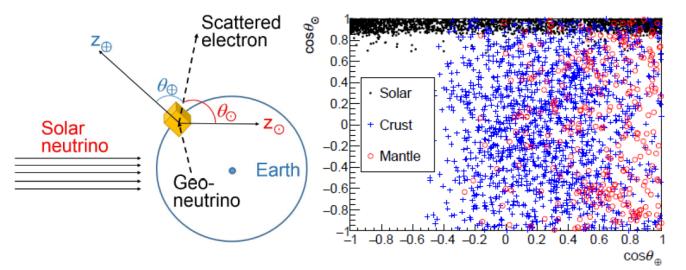

It has no energy threshold (apart from our capability to detect electron recoil). It does not allow to distinguish flavors, or to separate neutrinos from antineutrinos (in the absence of directional information).

Coherent neutrino-nucleus scattering (CEvNS)

 $\bar{\nu}_X + {}^A_Z N \rightarrow \bar{\nu}_X + {}^A_Z N$

It has no energy threshold (apart from our capability to detect nuclear recoil... which is almost always too small). It does not allow to distinguish flavors, or to separate neutrinos from antineutrinos

Geo- $\overline{\nu}_e$ ($\Phi \sim 10^7 \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$) - Solar ν_e ($\Phi \sim 10^{11} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$)



Electron scattering directionality*

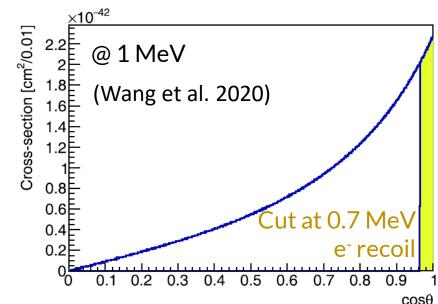
And the second s

Hunting potassium geoneutrinos with liquid scintillator Cherenkov neutrino detectors. Wang et al. Chinese Physics C (2020)

Solar neutrinos and terrestrial antineutrinos come from different directions:

Without assuming additional backgrounds:

 \rightarrow 5 σ ⁴⁰K significance with 10y of data taking and 40 kton.

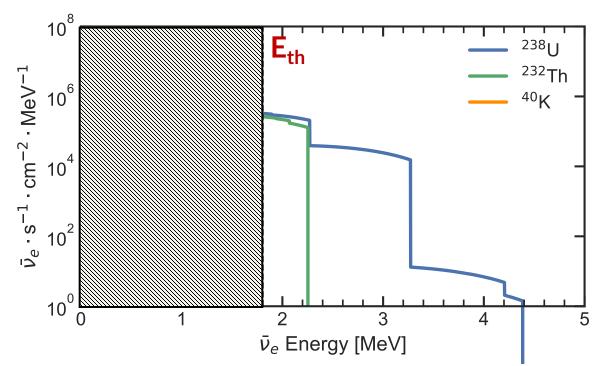

Main limitation is scintillator density

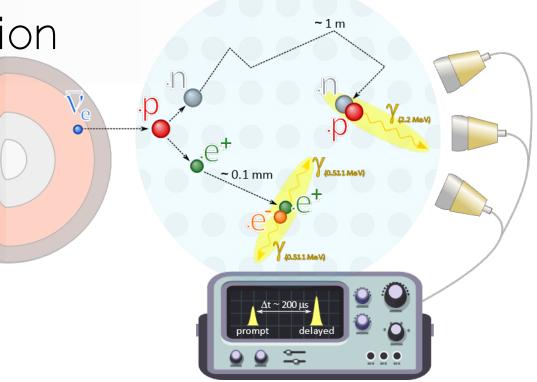
ightarrow degrades angular resolution

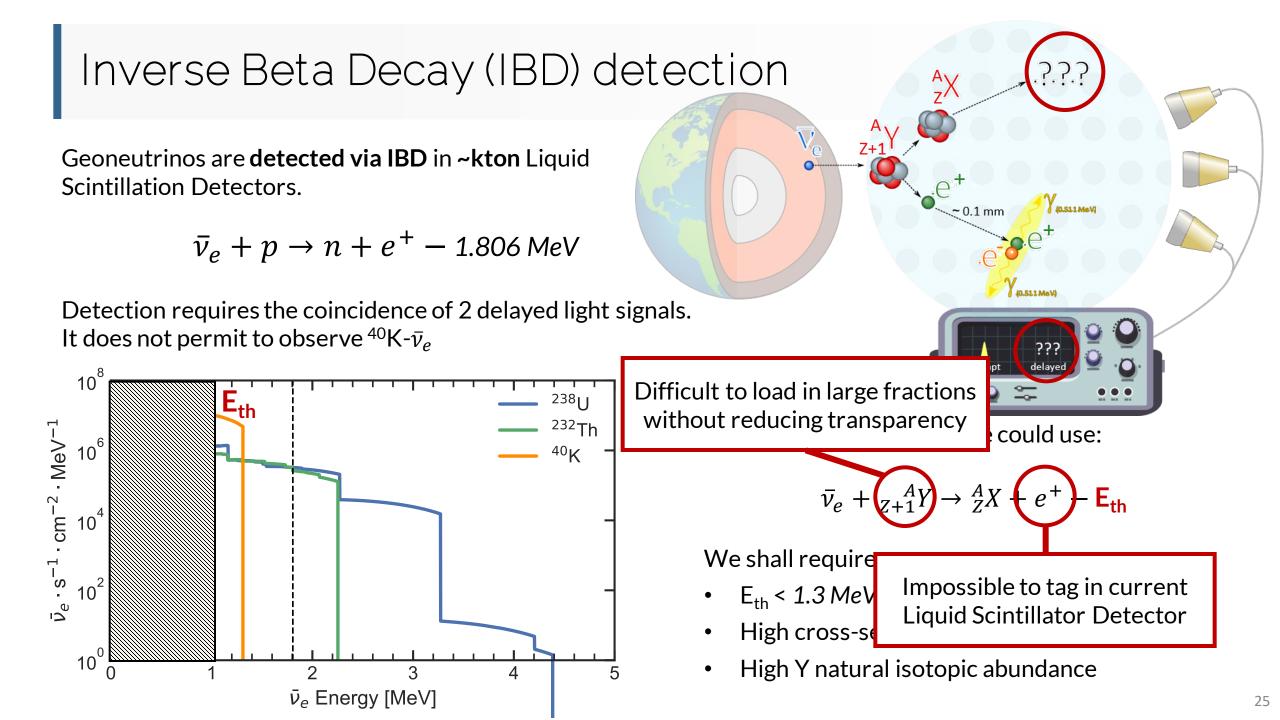
 \rightarrow gaseous detector? (Leyton et al. 2017)

* even IBD retains some directional info, but doesn't permit to observe ⁴⁰K

- ES interaction retains **information of** incoming antineutrino **direction**.
- Using a slow scintillator and Cherenkov light it could be possible to recover both e⁻ direction and energy.

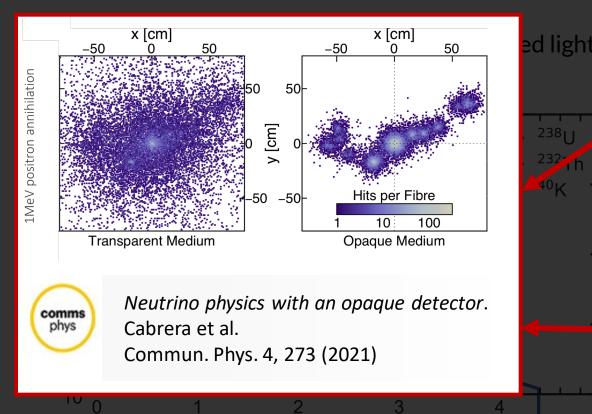


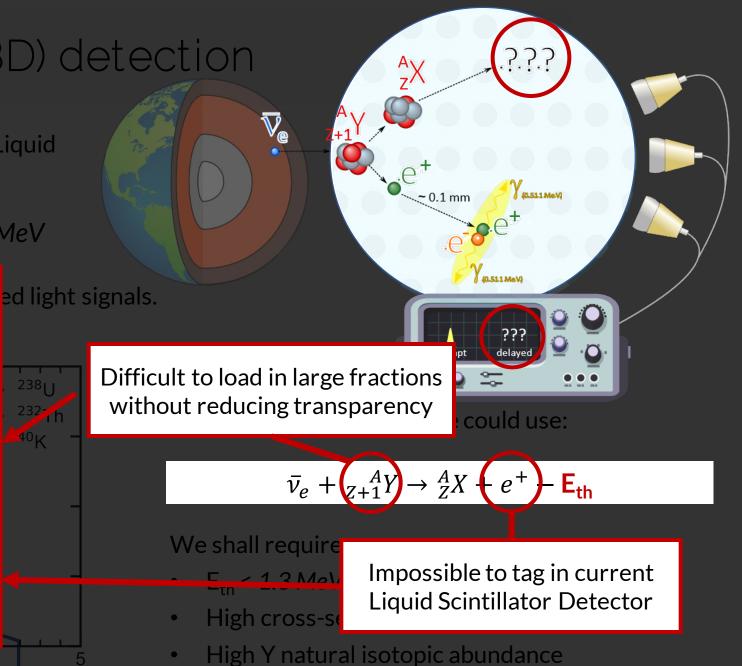

Inverse Beta Decay (IBD) detection


Geoneutrinos are **detected via IBD** in **~kton** Liquid Scintillation Detectors.

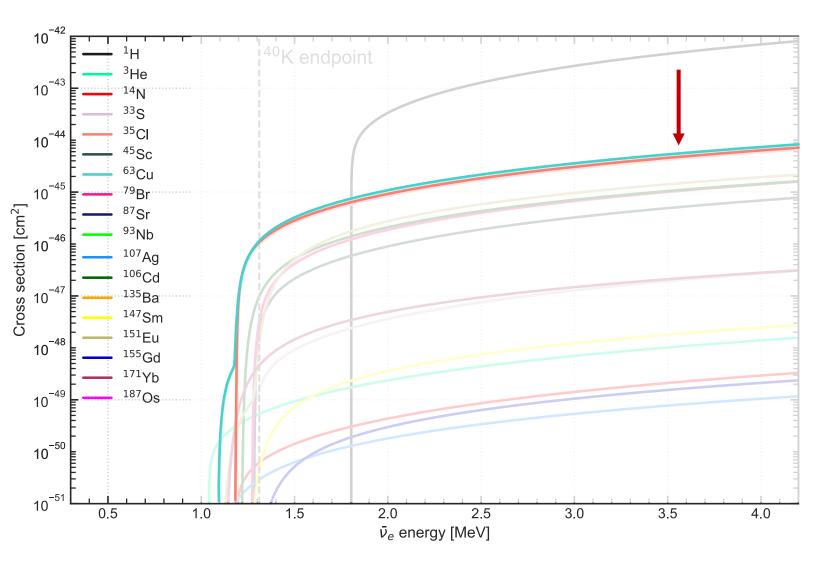
 $\bar{\nu}_e + p \rightarrow n + e^+ - 1.806 \, \text{MeV}$

Detection requires the coincidence of 2 delayed light signals. It does not permit to observe ${}^{40}{\rm K}{\rm -}\bar{\nu}_e$

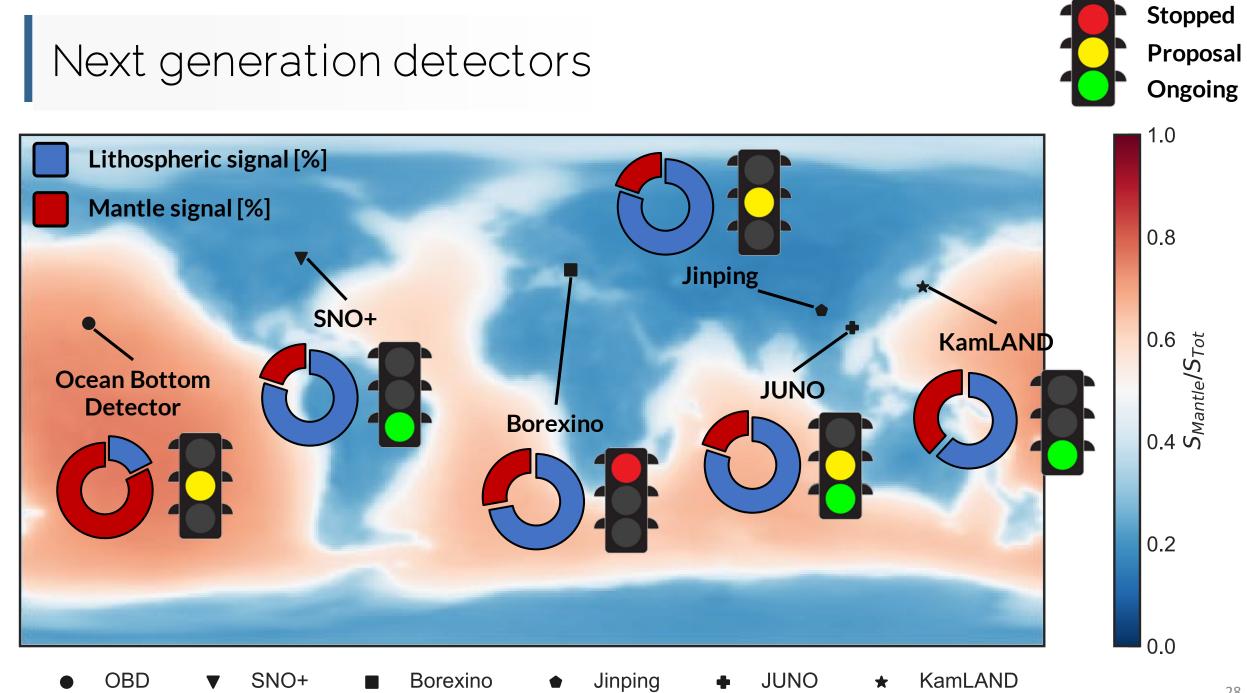


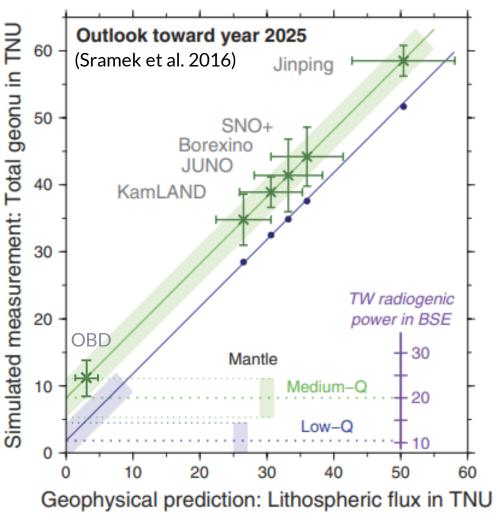

Inverse Beta Decay (IBD) detection

Geoneutrinos are **detected via IBD** in **~kton** Liquid Scintillation Detectors.


 $\bar{\nu}_e + p \rightarrow n + e^+ - 1.806 \text{ MeV}$

 $\bar{\nu}_e$ Energy [MeV]


IBD cross-sections weighted by isotopic abundance


 $\bar{\nu}_e + {}^{35}Cl \rightarrow {}^{35}S + e^+ - 1.189 \text{ MeV}$ $\bar{\nu}_e + {}^{63}Cu \rightarrow {}^{63}Ni^* + e^+ - 1.176 \text{ MeV}$

³⁵Cl has both a **low threshold** and a **good weighted cross-section**

⁶³Cu seems to be as promising as
³⁵Cl, and additionally lands to an excited level in the final state
(possible double coincidence capability)

Multi site detection

In the next decade, several other experiments will join KamLAND and Borexino:

 \rightarrow bigger detectors, lower statistical uncertainties

 \rightarrow different sites, more handles to disentangle mantle signal

An equally large effort is required to geophysical/geochemical modeling:

 \rightarrow lithospheric signal is usually ~80% of the total signal

→mantle signal estimates (and uncertainties) highly dependent on models!

Final remarks

- » Geoneutrinos are a promising tool to explore the inaccessible Earth:
 - synergy between experimental physics and geochemical/geophysical modeling
 - comprehension of radiogenic production of our planet
 - handle to discriminate Bulk Silicate Earth models
- » ${}^{40}\text{K}-\bar{\nu}_e$ detection would be a breakthrough in Earth Science:
 - missing piece to heat budget of our planet
 - indicative of volatiles' behavior during Earth formation and evolution
 - new methodologies identified for their detection
- » New generation detectors are on their way:
 - more statistics, lower uncertainties, multi site detection

We can glimpse a bright future for the geoneutrino field!

Thank you!