Beam-produced Heavy Neutral Lepton simulation in GENIE

John Plows

International School of Nuclear Physics, 43rd Course: Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics

21/Sep/2022

• Implement HNL into GENIE v3 event generator

• Goals:

OXFORD

- 1. User flexibility: ease of use <u>and</u> integration with simulation
- 2. Generality: for use with many beamlines, detectors
- 3. Transparency: new physics is self-consistent

HNL decay

What are HNL?

- Naturally motivated extension to Standard Model
 - Light neutrinos $v_{1,2,3}$ have <u>at least 2 non-zero masses</u>
 - Admixture with regular "flavour" eigenstates v_{α} as $v_{\alpha} = \sum_{i=1,2,3} U_{\alpha i} v_i + \sum_{j \in J} U_{\alpha j} N_j$

- HNL: mass eigenstates of mass $\mathcal{O}(\leq \text{TeV}/c^2)$
 - Can explain:
 - Active neutrino mass!
 - Dark matter candidate!
 - Matter-antimatter asymmetry!

(see *Phys. Lett. B* 631 (2005) 4, *PPNP* 104 (2019) 1)

 O(100 MeV/c² – TeV/c²) HNL decay to visible signatures in detectors

- Assume <u>one heavy neutrino</u> eigenstate N_4 as in <u>*Phys. Rev. D* 100 (2019) 052006</u>
 - Parameter space: $\{M_{N_4}, |U_{e4}|^2, |U_{\mu4}|^2, |U_{\tau4}|^2\} \equiv \{M_{N_4}, |U_{\alpha4}|^2\}$
- Effective field theory describing low-energy HNL (GeV range) as in <u>EP/C 81</u> (2021) 78
 - HNL interact directly with mesons, valid up to \sim EW scale
 - Lagrangian available in <u>FeynRules model database</u>

experiment/	lab	lab beam type detec		detector	detector decay	distance	N _{pot}	timescale	
proposal			technology	transverse	volume	from	-		
				dimensions	length	dump			
NA62-K	CERN	p, 400 GeV	spectrometer	$A = \pi r^2, r = 1 \text{ m}$	~ 80 m	~100 m	5 · 10 ¹⁹	by (2032-2038)	
NA62-dump	CERN	p, 400 GeV	spectrometer	$A = \pi r^2, r = 1 \text{ m}$	~ 80 m	~100 m	5 · 10 ¹⁹	by (2032-2038)	
SHADOWS	CERN	p, 400 GeV	spectrometer	2.5×2.5 m ²	~ 20 m	~ 10 m	5 · 10 ¹⁹	by (2032-2038)	
SHiP	CERN	p, 400 GeV	spectrometer	5×10 m ²	~ 50 m	~ 45 m	$2 \cdot 10^{20}$	•	
T2K	J-PARC	p, 30 GeV	composite w/ GArTPC	$\sim 3.3 {\rm m}^2$	~ 1.7 m	280 m	$3.8 \cdot 10^{21}$	2010-2021	
T2K-II	J-PARC	p, 30 GeV	composite w/ GArTPC	$\sim 3.3 {\rm m}^2$	~ 3.6 m	280 m	$+10 \cdot 10^{21}$	2022-2026	
Hyper-K	J-PARC	p, 30 GeV	composite w/ GArTPC	~ 3.3 m ²	~ 3.6 m	280 m	$2.70 \cdot 10^{22}$	by 2038	
SBND	FNAL	p, 8 GeV	LArTPC	16 m ²	5 m	110 m	$10 \cdot 10^{20}$	2023-2027	
MicroBooNE	FNAL	p, 8/120 GeV	LArTPC	6 m ²	10.4 m	463 m/100 m	$1.5 \cdot 10^{21} / 2.2 \cdot 10^{21}$	2015-2021	
ArgoNeuT	FNAL	p, 120 GeV	LArTPC	0.2 m ²	0.9 m	318 m	$1.25 \cdot 10^{20}$	2009-2010	
DUNE ND	FNAL	p, 120 GeV	LAr/GAr TPC	$\sim 12 \text{ m}^2$	~5 m	574 m	$\gtrsim 1.47 \cdot 10^{22}$	~2030-2040	
DarkQuest	FNAL	p, 120 GeV	spectrometer	$2 \times 4 \text{ m}^2$	20 m	5 m	$1 \cdot 10^{18}$	2024-2025	

WARWICK

John Plows - HNL in GENIE

GENIE GHEP Event Record [print level: 3]														
 Idx	N	ame	Ist	PD	G	Mot	 her	Daugh	 ter	Px	Py	Pz	E	m
0 1 2		HNL pi+ mu-	0 1 1	200002000 21 1	0 1 3	-1 0 0	-1 -1 -1	2 -1 -1	1 -1 -1	-0.008 -0.089 0.081	-0.294 -0.145 -0.149	4.931 2.484 2.448	4.949 2.494 2.456	0.300 0.140 0.106
	Fin-Init:								I	-0.000	-0.000	0.000	0.000	
	Vertex:		HNL	.@(x =	-0	.3624	5 m, y	' =	-0.426	15 m, z =	5.542	70 m, t =	3.689499e	-09 s)
Err flag [bits:15–>0] : 0000000000000000 1st set: Err mask [bits:15–>0] : 111111111111111 Is unphysical: NO Accepted: YES														
sig(Ev) = 0.00000e+00 cm^2 dsig(Ev;{K_s})/dK = 0.00000e+00 cm^2/{K} Weight = 0.00286														

7

4 main physics points:

- 1. Production of initial state using dynamic flux prediction
 - 2. Production of (signal) final state
 - 3. Decay vertex assignment
 - 4. Calculation of POT for signal event

Production in beamline

- Assume <u>all parents decay to HNL</u>, $\sum_{\alpha} |U_{\alpha 4}|^2 = 1$
- Calculate kinematics <u>under constraint</u>: p_{N_4} intersects detector \Rightarrow probability of <u>emission in suitable angular region</u>: P_E
- Account for <u>collimation effect</u>: Lorentz boost more efficient

8

<u>JHEP 2020 (2020) 111</u>

10

John Plows - HNL in GENIE

WARWICK

- Choose signal channel(s)
 - Module keeps track of total and individual decay widths for calculations

• <u>Polarisation reweighting</u>: by spin conservation

 $\frac{-N_{4}}{d\Gamma} + \frac{N_{4}}{N_{4}} \cdot \text{Cancels out for Majorana HNL}}$ $\frac{d\Gamma}{d\cos\theta_{P}} \propto 1 \mp \hbar \cdot \cos\theta_{P}$

where P is the direction of the polarisation vector in HNL rest frame and h the polarisation modulus (see <u>arXiv: 1805.06419 [hep-ph]</u>)

</param_set>

• HNL is produced at point D with momentum p_{N_4} defining a 3D trajectory $\epsilon: r(u) = r_D + u \cdot p_{N_4}$

- Exponentially decaying distribution in $\ell_{\rm elapsed}/\ell_{\rm max}$

OXFORD WARWICK

POT calculation

- A central question: how many signal events does a detector expect to see?
 - Cannot calculate *a priori* a $N_{POT} \mapsto N_{signal}$ map
- Solution: work our way backwards!

WARWICK

Future directions

- The module is quite general, built for wide variety of use cases
- Pull request already open on Github

- Can still expand utility of module!
 - 1. Include heavier parents (such as D, D_s) and decay channels \Rightarrow increase valid mass range
 - 2. Polarisation for 3-body decays (see for example <u>*Phys. Rev. D* 105 (2022) 015019</u>)
 - 3. Support for multiple Lagrangians? (user-input decay widths?)
- + always open to suggestions and comments! :-)

Backup

How are HNL made?

- $M > M_{EW}$: <u>Drell-Yan</u>, <u>g + g fusion</u>, <u> $W + \gamma$ </u> or <u>W + W</u> fusion (e.g. at colliders)
- *M_P* < *M* < *M_{EW}*: Decays of particle (lepton, meson) *P* (at <u>colliders</u>, <u>neutrino</u> <u>beams</u>, <u>atmospheric production</u>...)
- 0 < M: Production by upscattering (from SM neutrino nuclear interactions through <u>mixing alone</u> or including <u>transition "v-N dipole"</u>)
- 0 < *M*: Oscillations: <u>SM --> HNL</u>
- In this implementation, we consider <u>production from meson decay in</u> <u>neutrino beams, through mixing alone</u>
 - GENIE also handles HNL production through neutrino upscattering + decay via new "dark boson" Z_D (DarkNeutrino module, available in GENIE v3.2.0)

dk2nu flux input

- Fermilab-wide common format: see <u>related document</u>
- User supplies "flat" trees containing:
 - HNL production vertex in NEAR coordinates
 - Parent 3-momentum in NEAR coordinates
 - Parent PDG
 - SM neutrino energy in parent rest frame
 - "Importance weight" (≡ multiplier for very similar hadron kinematics, used to reduce simulation events in g4numi)
- See also \$GENIE/src/contrib/beamhn1 for details how to make these trees

HNL production channels: summary

20

WARWICK

Geometry description + location of decay vertex + knowledge of $p_{parent} \Rightarrow$ constraint on deviation (emission) angle θ

Estimate <u>acceptance correction</u> due to collimation effect by calculating min/max deviation ζ_{\mp} and mapping back to restframe emission angle θ^*

Intersection points

• ROOT's TGeoManager handles the intersection calculations

JHEP **2021** (2021) 182

<param_set name="ParameterSpace"> <param type="double" name="HNL-Mass"> 0.200 </param> <!-- GeV --> <param type="vec-double" name="HNL-LeptonMixing" delim=";"> 1.0e-7 ; 1.0e-7 ; 0.0 </param> <param type="bool" name="HNL-Majorana"> false </param>

<param_set name="InterestingChannels">

<!-- 2-body decays --</pre>

<param type="bool" name="HNL-2B_mu_pi"> true </param>
<param type="bool" name="HNL-2B_e_pi"> true </param>
<param type="bool" name="HNL-2B_nu_pi0"> false </param>
<!-- 3-body decays -->

<param type="bool" name="HNL-3B_nu_nu_nu"> true </param>
<param type="bool" name="HNL-3B_nu_mu_mu"> false </param>
<param type="bool" name="HNL-3B_nu_e_e"> false </param>
<param type="bool" name="HNL-3B_nu_mu_e"> false </param>
<param type="bool" name="HNL-3B_e_pi_pi0"> false </param>
<param type="bool" name="HNL-3B_mu_pi_pi0"> false </param>
<param type="bool" name="HNL-3B_mu_pi0_pi0"> false </param>
</param type="bool" name="HNL-3B_mu_pi0_pi0"> false </param>
</param type="bool" name="HNL-3B_mu_pi0_pi0"> false </param>
</param>
</param type="bool" name="HNL-3B_mu_pi0_pi0"> false </param>
</param type="bool"

<param_set name="CoordinateXForm">

<param type="vec-double" name="Near2Beam_R" delim=";"> 0.0 ; 0.0 ; -0.05830 </param> <!-- rad -->
<!-- Euler angles, extrinsic x-z-x = 1-2-3, RM * BEAM = USER, RM = Rx(1) * Rz(2) * Rx(3). -->
<!-- Describes rotation of BEAM wrt NEAR frame -->
<param type="vec-double" name="Near2User_T" delim=";">0.0 ; -60.0 ; 1000.0 </param> <!-- m -->
<!-- USER origin in NEAR coordinates -->
<param type="vec-double" name="Near2User_R" delim=";">0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
<!-- USER origin in NEAR coordinates -->
<param type="vec-double" name="Near2User_R" delim=";">0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
<!-- Euler angles, extrinsic x-z-x -->
<!-- Euler angles, extrinsic x-z-x -->
<!-- Describes rotation of USER wrt NEAR frame -->
<param type="vec-double" name="DetCentre_User" delim=";">0.0 ; 0.0 ; 0.0 ; 0.0 </param> <!-- m -->
</param type="vec-double" name="Near2User_R" delim=";">0.0 ; 0.0 ; 0.0 ; 0.0 </param>

User configuration (abridged)

Relevant physics assumptions and needs (which decay channels to simulate, where the detector is, HNL mass + couplings, etc) are accessible from a single configuration file

User may change these in between runs without recompiling code ⇒ build once, run for lots of different physics! (different detector setups, sizes, signal channel combinations, Dirac or Majorana neutrinos, ...)

####