Erice International School on Nuclear Physics – 44th course

Modified NJL models and their applications

Varese S. Timóteo University of Campinas – UNICAMP Limeira – SP, Brasil

> Erice, Sicily – Italy September 18 to 24, 2023

Outline

- Introduction / Motivation
- NJL model
- * Thermo-magnetic NJL coupling
- * Thermodynamics with the new coupling
- * Meson properties at zero temperature
- * Magnetization
- Final remarks

Collaborators

R. Farias (UFSM)

W. Tavares (UERJ)

G. Krein (UNESP)

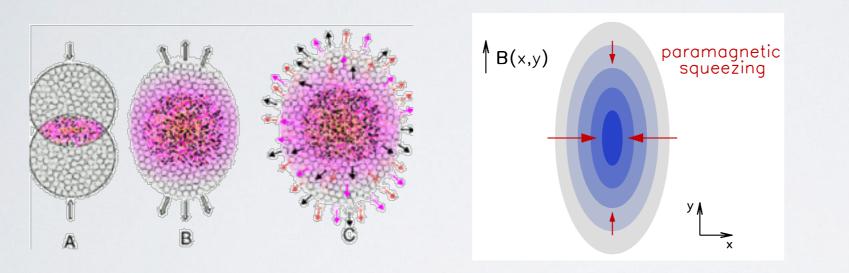
M. Benghi (UFSC)

S. Avancini (UFSC)

Financial Support

Introduction / Motivation

LHC / RHIC



Magnetars

neutron stars

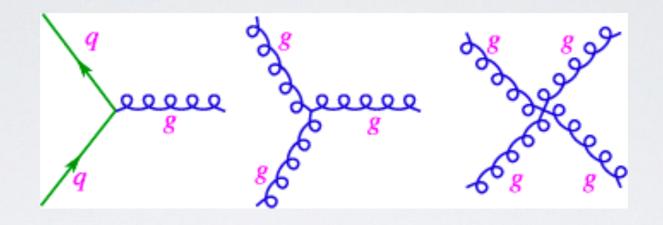
Phys. Rev. Lett. 112 (2014) 042301

G. S. Bali, F. Bruckmann, G. Endrődi, and A. Schäfer

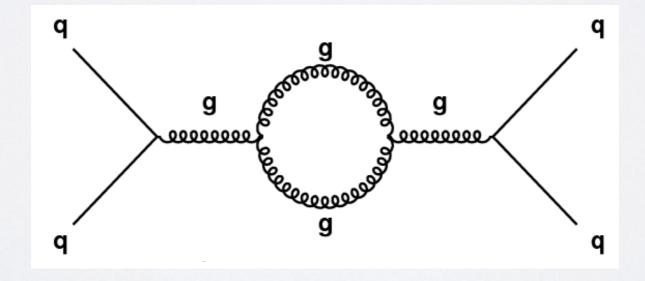
hadronic matter

QCD complications

Force carriers interact directly (increases the number of possible processes)



Couplings are strong (high order processes are not necessarily less important)



Effective Models

Models are less powerful than theories

They are used when the fundamental theory is too complicated

Many examples: meson exchange, van der Waals, quark-meson coupling, ...

Built to explain part of the features of a complex theory

QCD

Confinement Asymptotic freedom Symmetry breaking Mass generation

NJL

No confinement No asymptotic freedom Symmetry breaking Mass generation

Nambu–Jona-Lasinio Models

Buballa, Bernard, Klevansky, Ratti, Weise,...

SU(2)

$$\mathcal{L}_{NJL} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \bar{\psi} \left(\mathcal{D} - m \right) \psi + G \left[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\tau\psi)^2 \right]$$
SU(3) + PL

$$\mathcal{L} = \bar{q} \left[i\gamma_\mu D^\mu - \hat{m}_c \right] q + \mathcal{L}_{sym} + \mathcal{L}_{det} + \mathcal{U} \left(\Phi, \bar{\Phi}; T \right) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

$$\mathcal{L}_{sym} = \frac{G_s}{2} \sum_{a=0}^{8} \left[(\bar{q}\lambda_a q)^2 + (\bar{q}i\gamma_5\lambda_a q)^2 \right]$$

 $\mathcal{L}_{det} = -K \left\{ \det \left[\bar{q}(1+\gamma_5)q \right] + \det \left[\bar{q}(1-\gamma_5)q \right] \right\}$

NJL gap equation: simple view

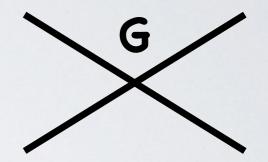
see review by Weise

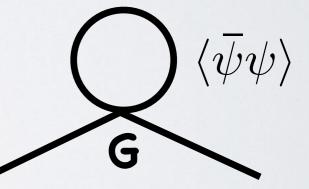
 $\mathcal{L}_{\mathrm{D}} = \bar{\psi} \, i\gamma^{\mu} \partial_{\mu} \, \psi \ - \ m \ (\bar{\psi}\psi)$

 $(i\gamma^{\mu}\partial_{\mu}-m)\psi = 0$

 $\mathcal{L}_{\rm NJL} = \bar{\psi} \, i\gamma^{\mu} \partial_{\mu} \, \psi \ + \ G \ (\bar{\psi}\psi)^2$

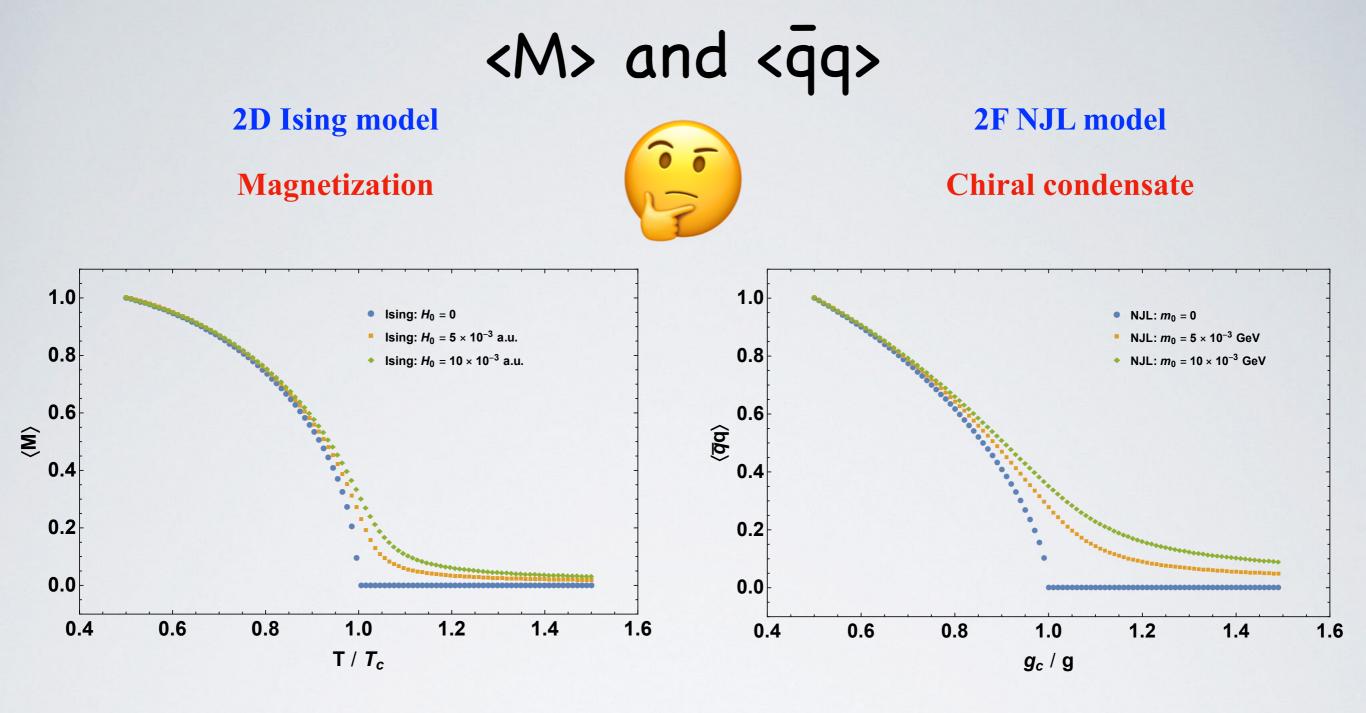
 $(i\gamma^{\mu}\partial_{\mu} + 2G\langle\bar{\psi}\psi\rangle)\psi = 0$





$$m = -2G \langle \bar{\psi}\psi \rangle$$

$$\langle \bar{\psi}\psi \rangle \sim \int d^4p \frac{1}{p^2 + m^2} \sim \int^{\Lambda} dp \, p \sqrt[2]{\frac{m}{p^2 + m^2}}$$



Rotational symmetry is broken

Collective Goldstone mode: spin waves

External mag. field h0 (explicit breaking)

Chiral symmetry is broken

Collective Goldstone mode: pions

Current quark mass m0 (explicit breaking)

Gap equations at finite temperature and magnetic field

$$M_{u} = m_{u} - 2G\langle \bar{u}u \rangle - 2K\langle dd \rangle \langle \bar{s}s \rangle$$
$$M_{d} = m_{d} - 2G\langle \bar{d}d \rangle - 2K\langle \bar{s}s \rangle \langle \bar{u}u \rangle$$
$$M_{s} = m_{s} - 2G\langle \bar{s}s \rangle - 2K\langle \bar{u}u \rangle \langle \bar{d}d \rangle$$

$$\langle \bar{q}q \rangle \rightarrow \langle \bar{q}q \rangle_{\rm vac} + \langle \bar{q}q \rangle_{\rm mag} + \langle \bar{q}q \rangle_{\rm Tmag}$$

Condensates

$$\langle \bar{\psi}_f \psi_f \rangle^{vac} = -\frac{MN_c}{2\pi^2} \left[\Lambda \epsilon_A - M^2 \ln\left(\frac{\Lambda + \epsilon_A}{M}\right) \right]$$

$$\langle \bar{\psi}_f \psi_f \rangle^{mag} = -\frac{M|q_f| BN_c}{2\pi^2} \left[\ln \Gamma(x_f) - \frac{1}{2} \ln(2\pi) + x_f - \frac{1}{2} \left(2x_f - 1 \right) \ln(x_f) \right]$$

$$\langle \bar{\psi}_f \psi_f \rangle^{Tmag} = \sum_{k=0}^{\infty} \alpha_k \frac{M|q_f| BN_c}{2\pi^2} \int_{-\infty}^{+\infty} \mathrm{d}p \, \frac{n(E_f)}{E_f}$$

$$\epsilon_A = \left(A^2 + M^2\right)^{1/2}$$
$$E_f = \left(p^2 + M^2 + 2|q_f|Bk\right)^{1/2}$$
$$x_f = \frac{M^2}{2|q_f|B}$$
$$n(E_f) = \frac{1}{1 + \exp(E_f/T)}$$

 $\mu = 0$

Grand canonical potential in MFA

$$\Omega = -T \ln \mathcal{Z} \qquad \qquad \mathcal{Z} = Tr \ e^{-\beta(H-\mu N)}$$

$$\Omega(T,\mu) = G_s \sum_{f=u,d,s} \left\langle \bar{q}_f q_f \right\rangle^2 + 4K \left\langle \bar{q}_u q_u \right\rangle \left\langle \bar{q}_d q_d \right\rangle \left\langle \bar{q}_s q_s \right\rangle + \mathcal{U}(\Phi,\bar{\Phi},T) + \sum_{f=u,d,s} \left(\Omega_{\text{vac}}^f + \Omega_{\text{med}}^f + \Omega_{\text{mag}}^f \right)$$

$$\Omega_{\rm vac}^f = -6 \int_{\Lambda} \frac{d^3 p}{(2\pi)^3} \sqrt{p^2 + M_f^2} \qquad \qquad \zeta'(-1, x_f) = \frac{d\zeta(z, x_f)}{dz} \Big|_{z=-1}$$

 $\mu = 0$

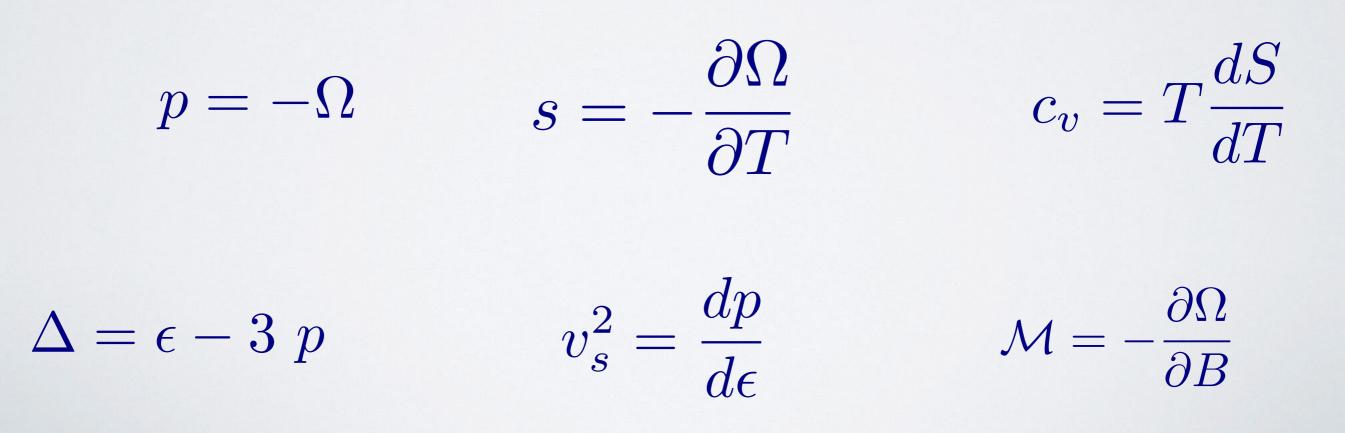
$$\Omega_{\text{mag}}^{f} = -\frac{3(|q_f|B)^2}{2\pi^2} \left[\zeta'(-1, x_f) - \frac{1}{2}(x_f^2 - x_f)\ln x_f + \frac{x_f^2}{4} \right]$$

$$\Omega_{\rm T,B}^{f} = -T \frac{|q_f B|}{2\pi} \sum_{k=0}^{+\infty} \alpha_k \int_{-\infty}^{+\infty} \frac{dp_z}{2\pi} \ln\left\{1 + \exp\left[-(E_f/T)\right]\right\}$$

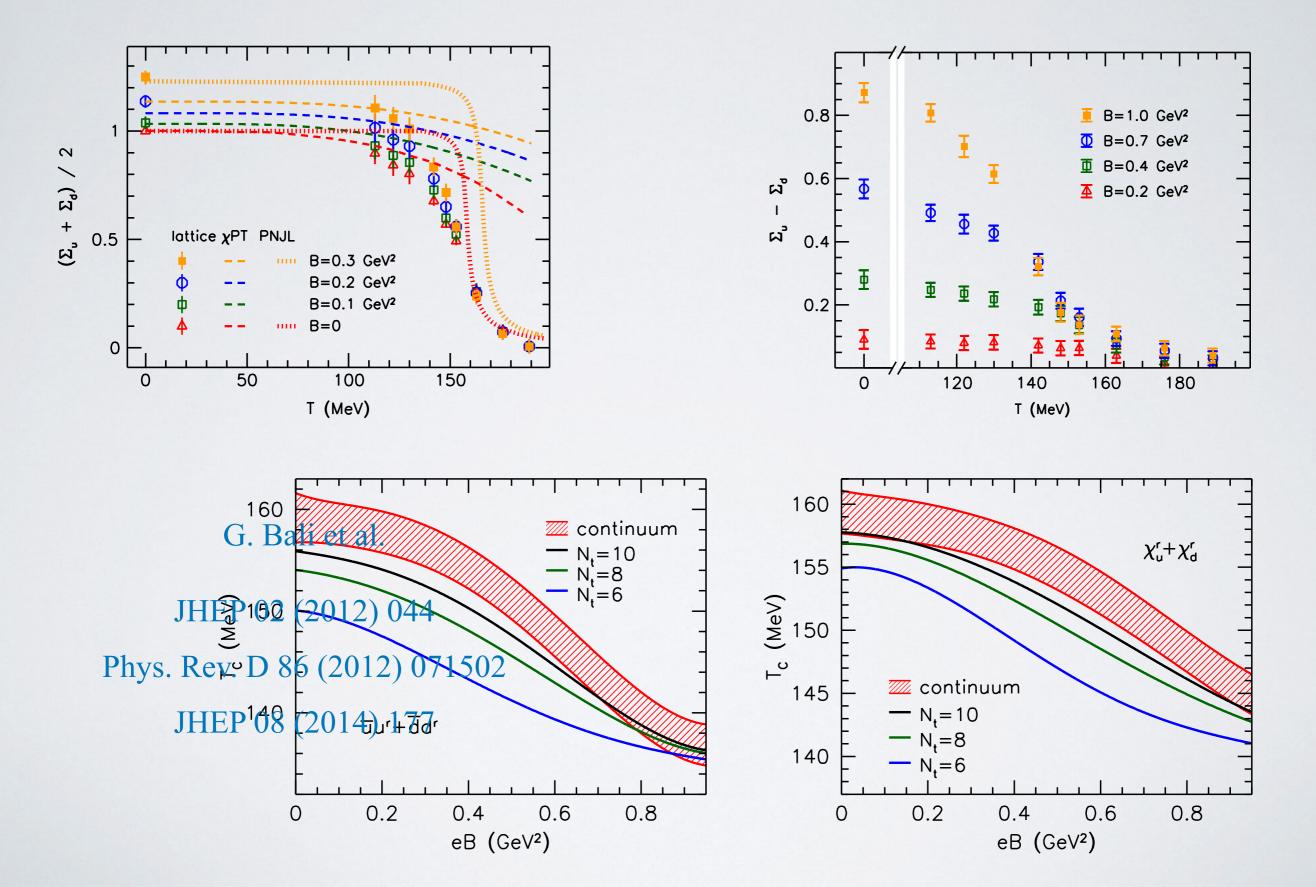
Thermodynamics

$\Omega = -T \ln \mathcal{Z} \qquad \qquad \mathcal{Z} = Tr \ e^{-\beta(H-\mu N)}$

$\epsilon = \Omega + T \ s + \mu \ \rho$

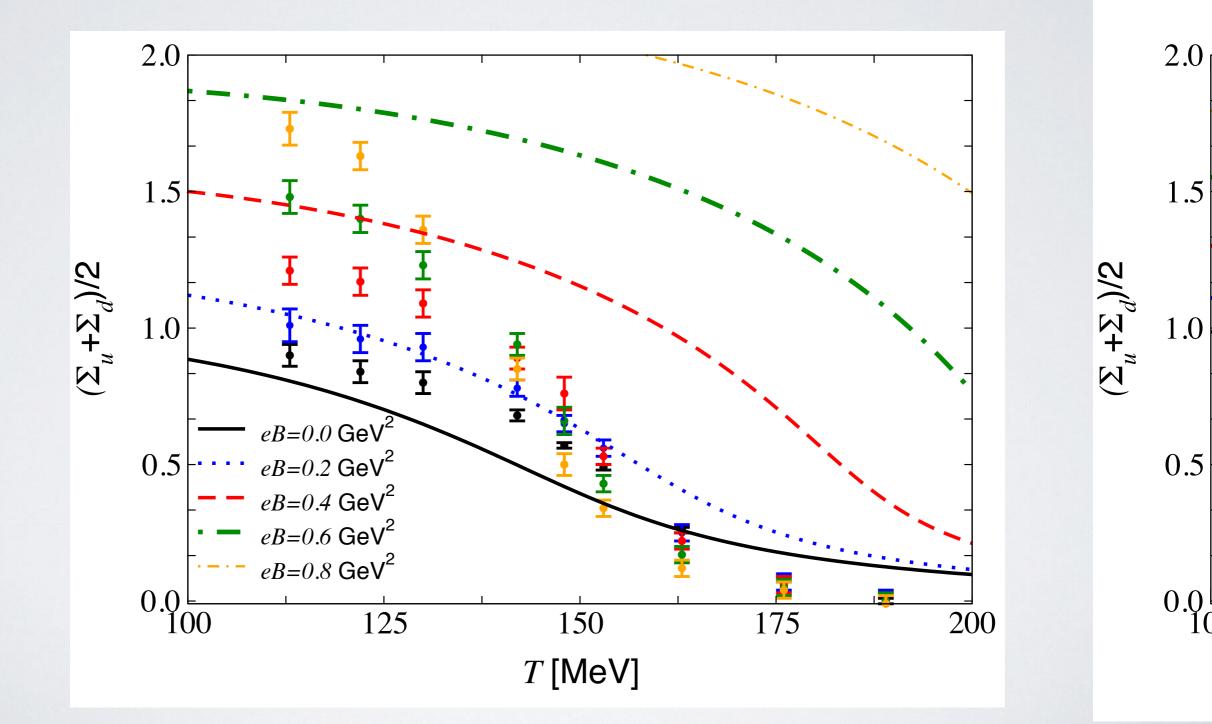


Some lattice QCD results

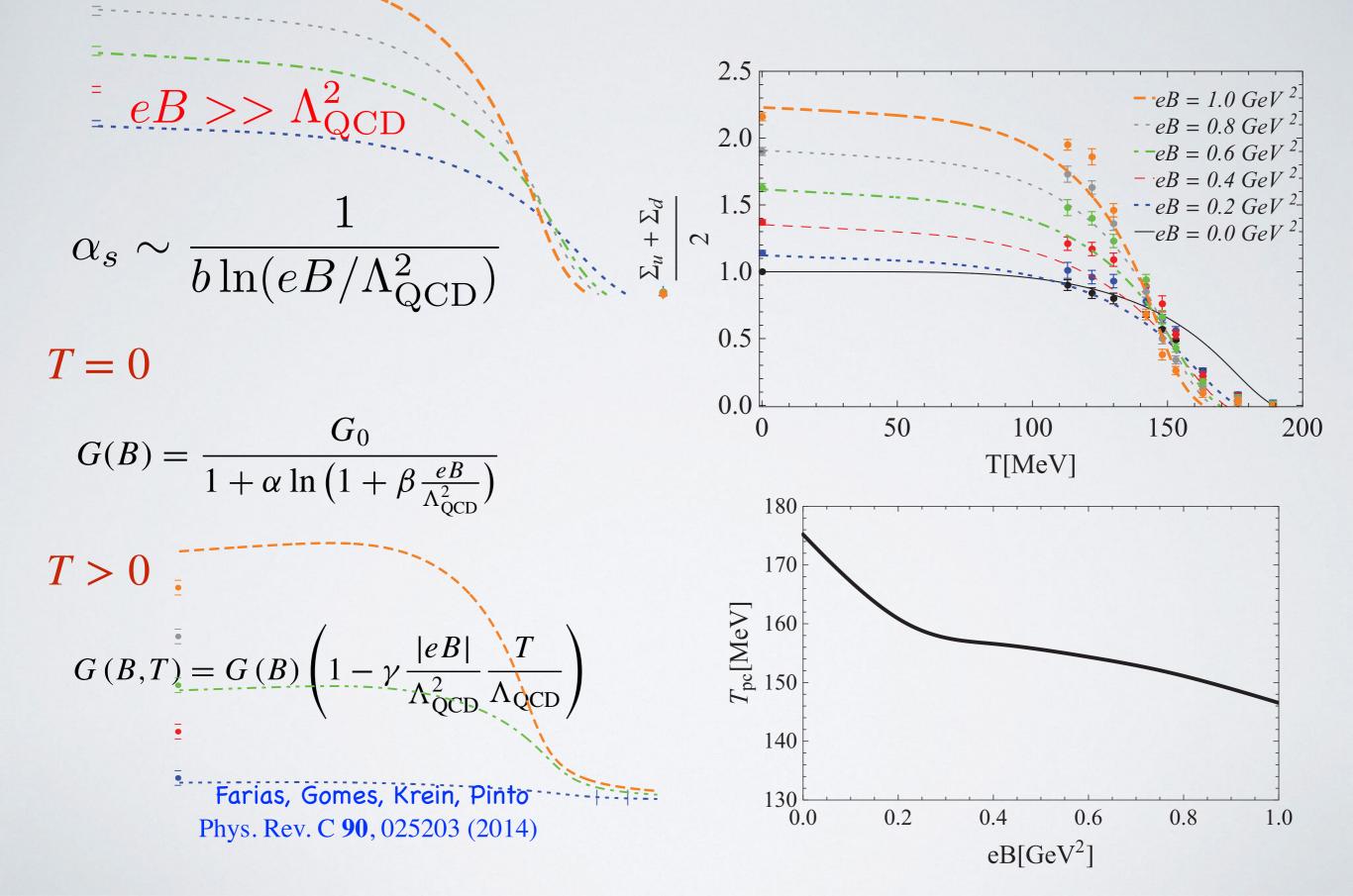


Constant coupling: SU(2) NJL model

G



Thermo-magnetic coupling: prototype



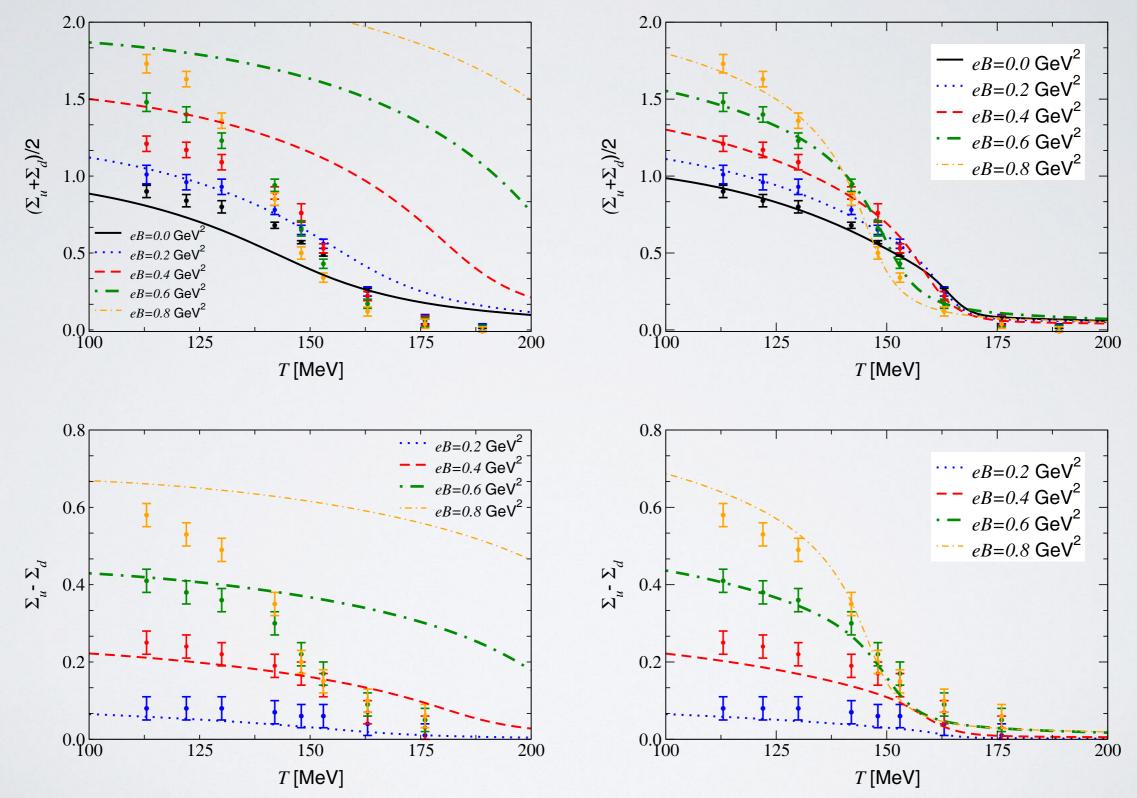
Matching the NJL model to lattice QCD

Build a thermo-magnetic coupling for the NJL model from lattice QCD results

For given values of T and eB:

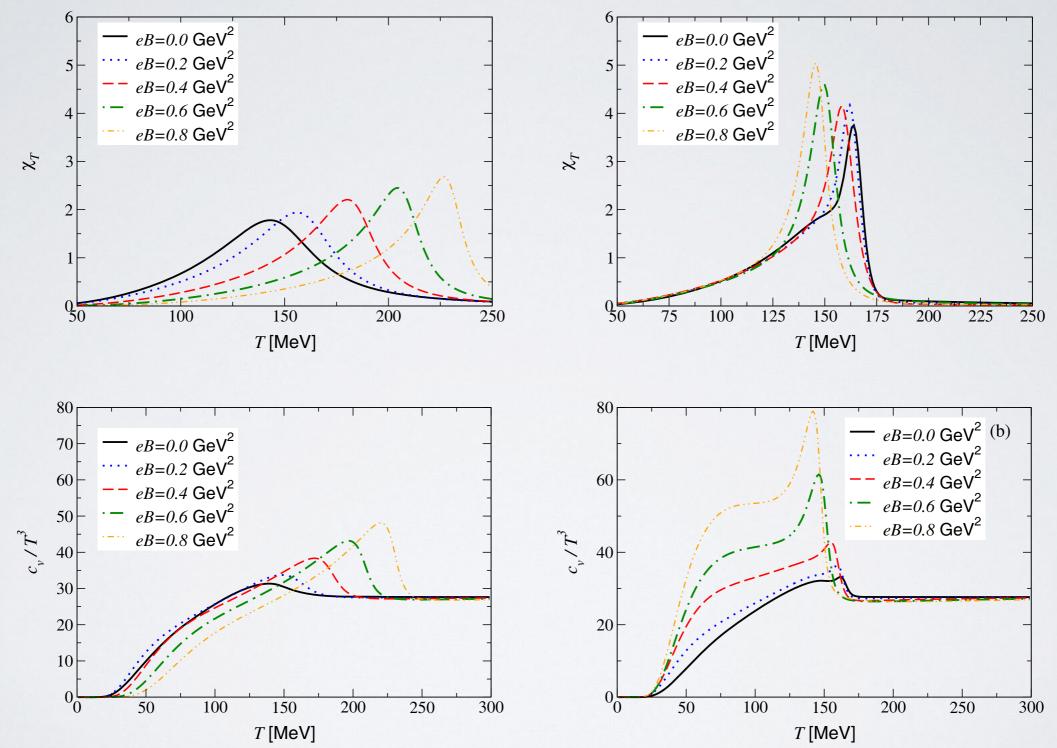
- start with an initial attempt for G(T, eB)
- for this G, make an initial guess for M
- solve the gap equation
- with M, compute the condensate averages
- compare to lattice QCD result for that T and eB
- repeat until the best G(T, eB) is found

Thermo-magnetic dependent coupling G(eB, T)

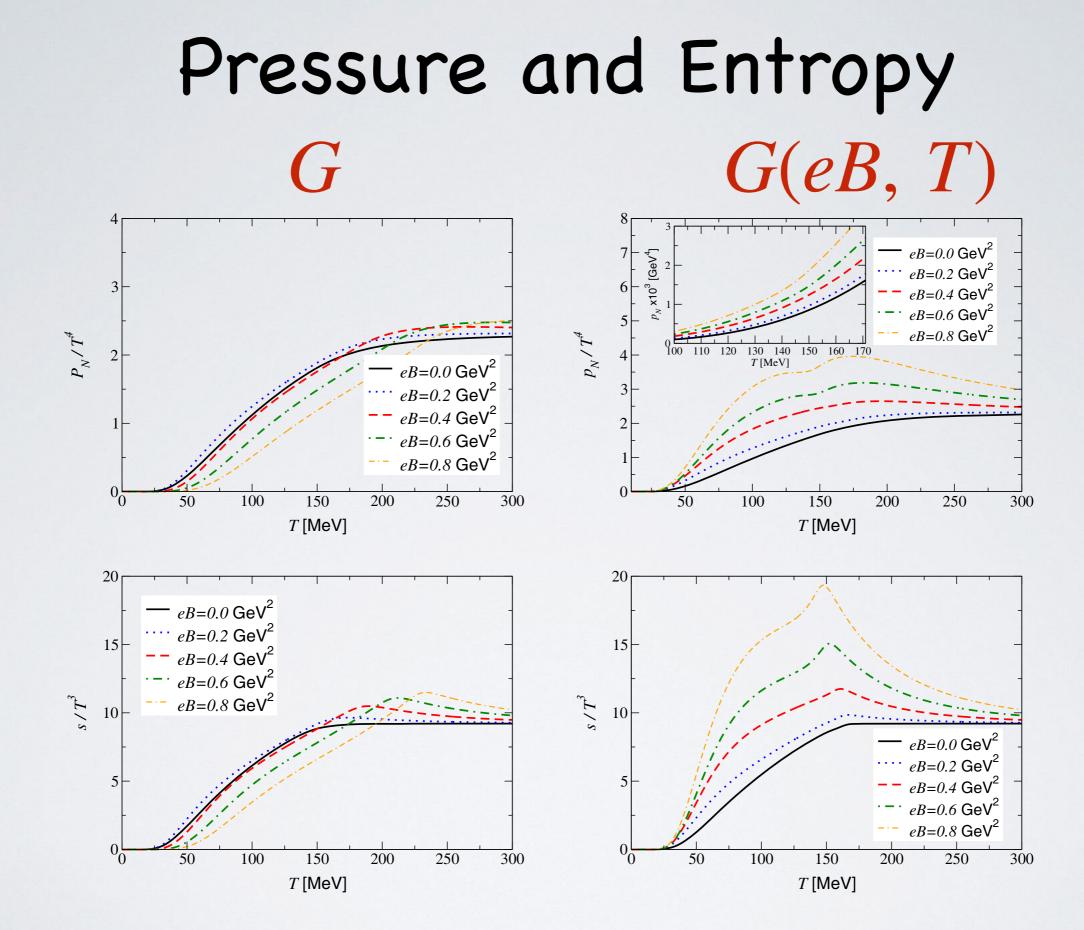


Eur. Phys. J. A 53 (2017) 101

Thermal Susceptibilities and Specific Heat G = G(eB, T)



Eur. Phys. J. A 53 (2017) 101

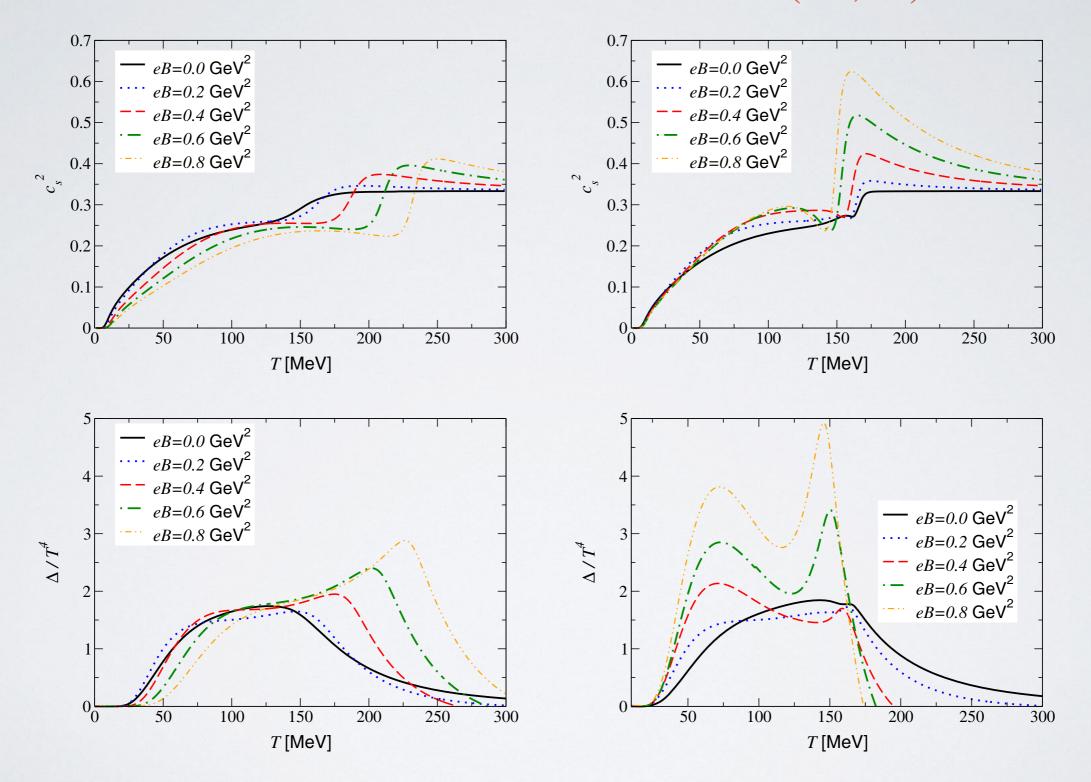


Eur. Phys. J. A 53 (2017) 101

Sound Velocity and Interaction Measure

G

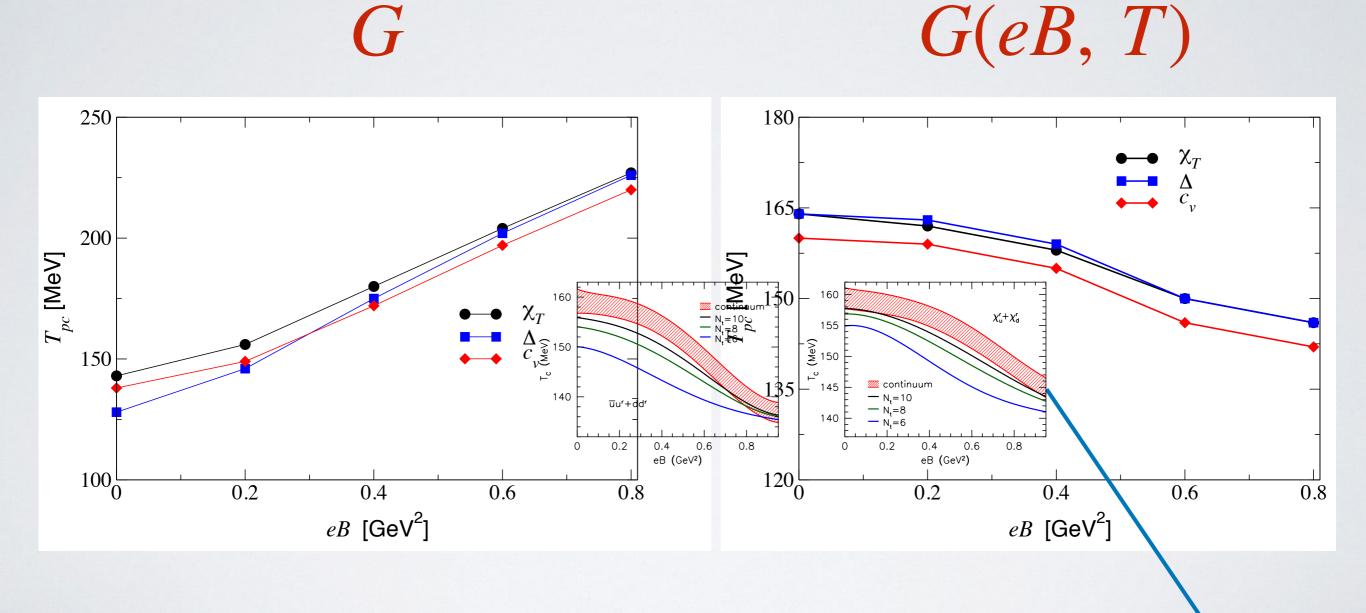
G(eB, T)



Eur. Phys. J. A 53 (2017) 101

Pseudo-critical temperature

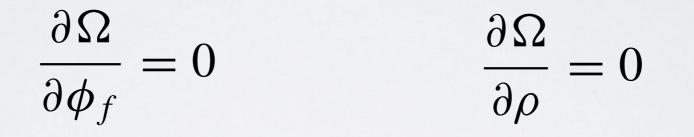
Eur. Phys. J. A 53 (2017) 101



Bali et al. JHEP 02 (2012) 044

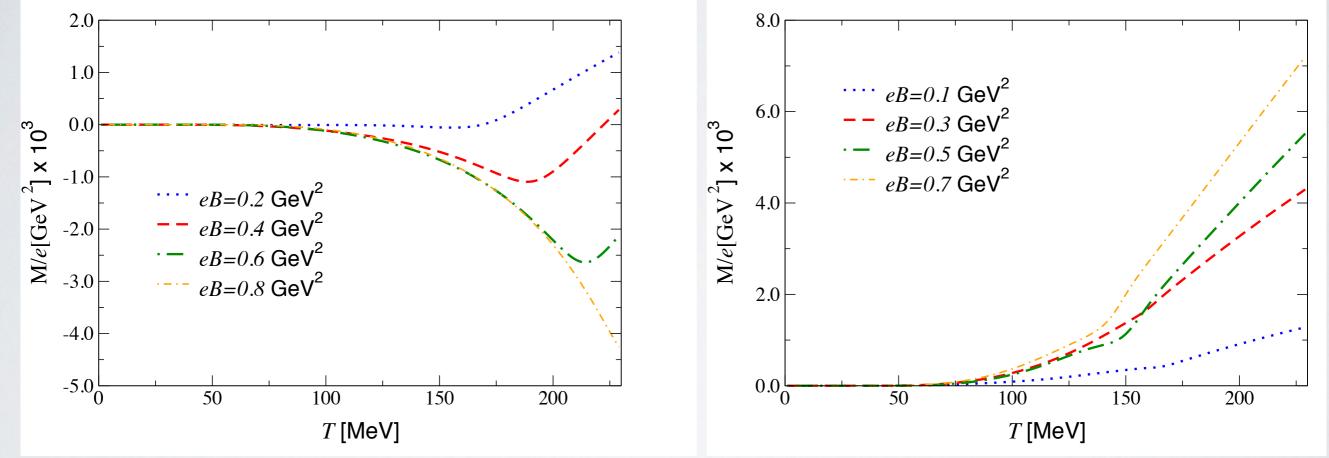
Magnetization

$$\mathcal{M} = -\frac{\partial \Omega}{\partial B} \bigg|_{\{\phi_f\},\rho} - \frac{\partial \Omega}{\partial \phi_f} \frac{\partial \phi_f}{\partial B} - \frac{\partial \Omega}{\partial \rho} \frac{\partial \rho}{\partial B}$$



$$\mathcal{M} = \sum_{f} \left(\frac{\partial P_f^{\text{mag}}}{\partial B} + \frac{\partial P_f^{\text{Tmag}}}{\partial B} \right)$$

 $P = -\Omega$



Meson properties under strong magnetic fields T = 0

$$(ig_{\pi_0 qq})^2 i D_{\pi_0}(k^2) = \frac{2iG}{1 - 2G\Pi_{\rm PS}(k^2)} \qquad D_{\pi_0}(k^2) = \frac{1}{k^2 - m_{\pi_0}^2}$$

$$\mathcal{L}_{\pi qq} = ig_{\pi qq} \bar{\psi} \gamma_5 \vec{\tau} \cdot \vec{\pi} \psi \qquad S_q(x, x') = e^{i\Phi_q(x, x')} \sum_{n=0}^{\infty} S_{q,n}(x - x') , \ q = u, d$$
$$\beta_q = |q_q| R$$

$$\frac{1}{i}\Pi_{\rm PS}(k_{\parallel}^2) = -i\left(\frac{M-m}{2MG}\right) - \sum_{q=u,d}\beta_q N_c \frac{k_{\parallel}^2}{(2\pi)^3} \sum_{n=0}^{\infty} g_n I_{q,n}(k_{\parallel}^2) \qquad I_{q,n}(k_{\parallel}^2) = \int d^2 p_{\parallel} \frac{1}{[p_{\parallel}^2 - M^2 - 2\beta_q n][(p+k)_{\parallel}^2 - M^2 - 2\beta_q n]}$$

$$1 - 2G \Pi_{\text{PS}}(k^2)|_{k^2 = m_{\pi_0}^2} = 0 \qquad I(k_{\parallel}^2, B) = I_{\text{vac}}(k_{\parallel}^2) + I(k_{\parallel}^2, B)$$
$$m_{\pi_0}^2(B) = -\frac{m}{M(B)} \frac{1}{4iGN_cN_fI(m_{\pi_0}^2, B)} \qquad I(m_{\pi_0}^2, B) = \frac{1}{4(2\pi)^3} \sum_{q=u,d} \beta_q \sum_{n=0}^{\infty} g_n I_{q,n}(k_{\parallel}^2 = m_{\pi_0}^2)$$

Phys. Rev. D 93 (2016) 014010 Physics Letters B 767 (2017) 247-252

Simple G(eB) at T = 0

- fit to lattice QCD condensates (few values of eB)
- interpolation to generate a larger set
- fit of the larger set to a shifted gaussian

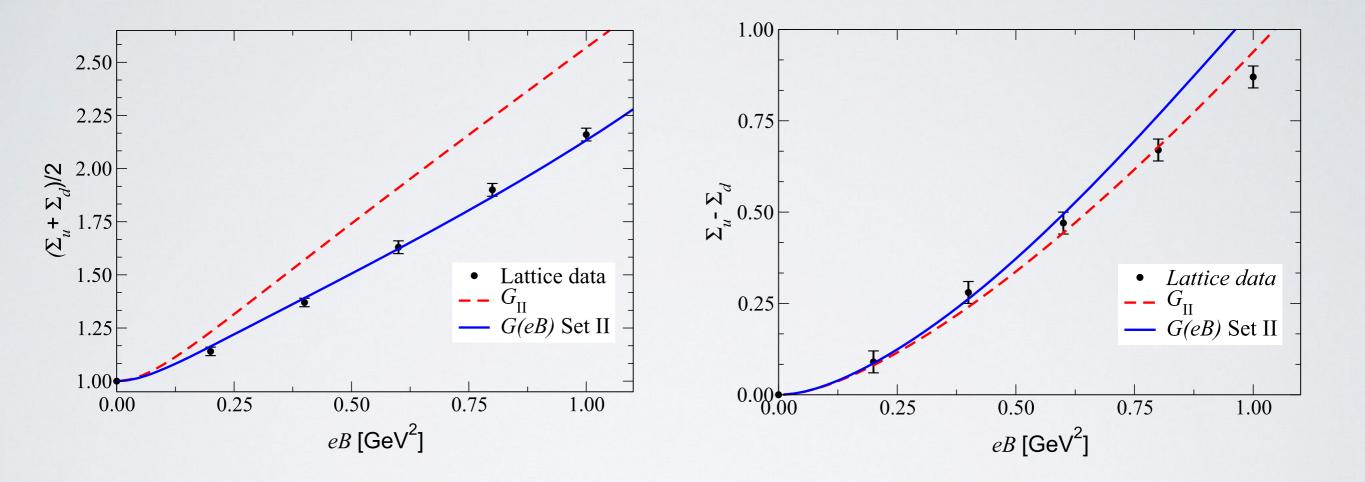
$$G(eB) = \alpha + \beta e^{-\gamma (eB)^2}$$

 $\alpha = 1.44373 \text{ GeV}^{-2}, \ \beta = 3.06 \text{ GeV}^{-2} \text{ and } \gamma = 1.31 \text{ GeV}^{-4}$

$$G(0) = \alpha + \beta$$

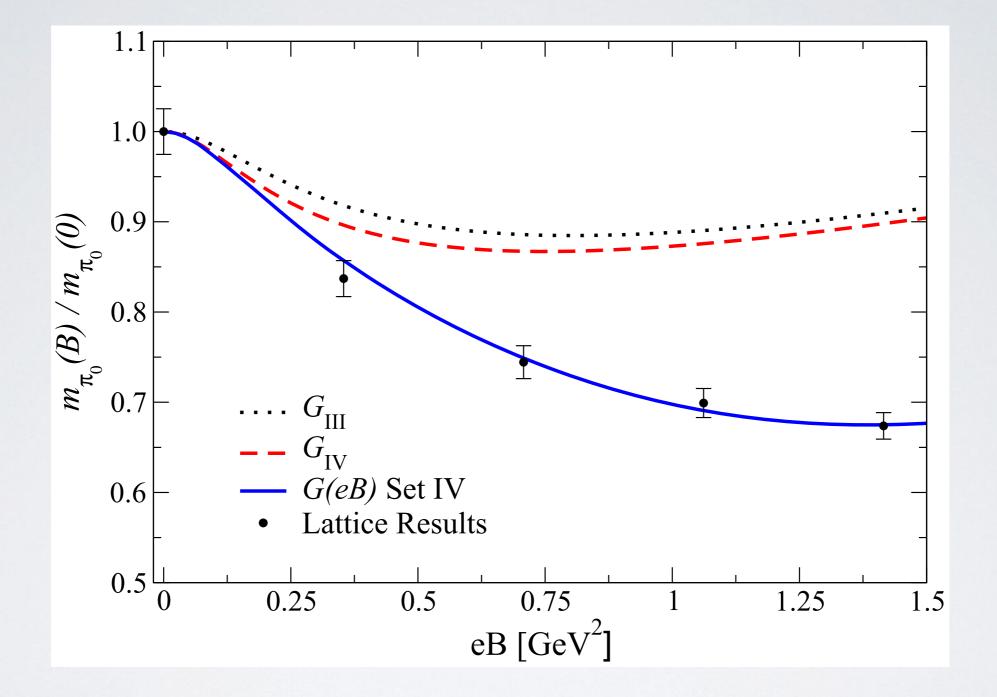
Physics Letters B 767 (2017) 247-252

Condensates at T = 0



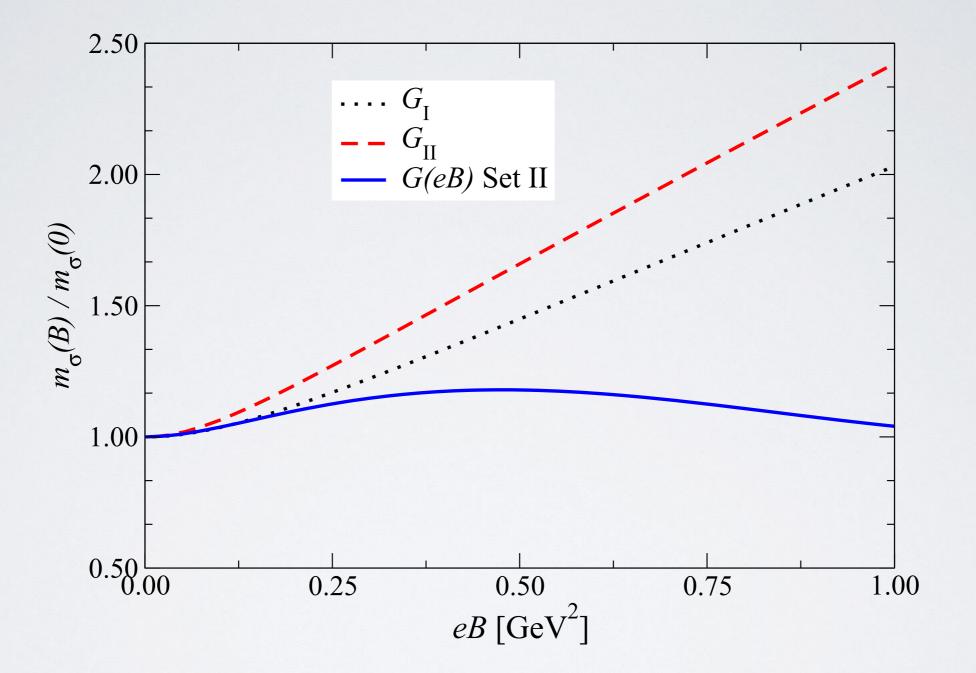
Physics Letters B 76

 π_0 mass at T=0



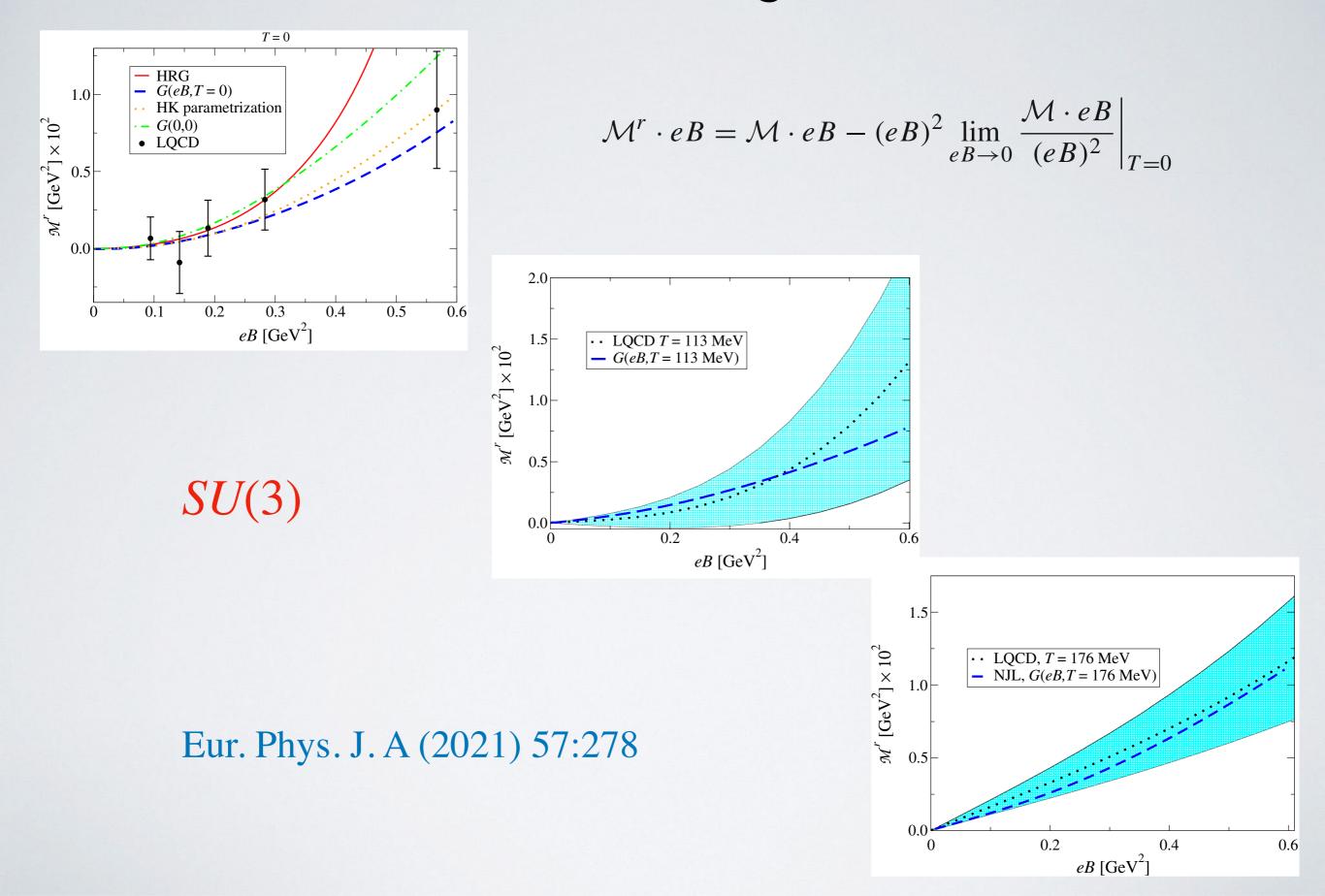
Physics Letters B 767 (2017) 247-252

 σ mass at T=0



Physics Letters B 767 (2017) 247-252

Renormalized Magnetization



Final remarks

- * NJL models with fixed coupling fails to describe lattice QCD calculations
- * Thermo-magnetic coupling seems to be adequate to improve NJL results
- * Thermodynamic quantities are all affected by the variation of the coupling
- Sign of magnetization changes when $G \rightarrow G(eB, T)$
- Pion mass at T = 0 matches lattice QCD calculations with G(eB)