

Hadron and lepton properties from dispersion relations

Bastian Kubis

HISKP (Theorie) & BCTP Universität Bonn, Germany

International School of Nuclear Physics, 44th Course From quarks and gluons to hadrons and nuclei Erice, September 23, 2023

Outline

Part I: lepton properties

- anomalous magnetic moment of the muon
 - hadronic vacuum polarisation (HVP)
 - hadronic light-by-light scattering (HLbL)

Part II: hadron properties

- pion-pion (re)scattering and all that
- some illustrative examples

Part III: application

• in-depth analysis: π^0 -pole contribution to HLbL

Summary / Outlook

 \longrightarrow A. Denig's talk

Part I:

lepton properties: $(g-2)_{\mu}$

Hadronic contributions to $(g-2)_{\mu}$

● gyromagnetic ratio: magnetic moment ↔ spin

$$\vec{\mu} = g \frac{e}{2m} \vec{S} \qquad \qquad g_{\mu} = 2(1 + a_{\mu})$$

	a_{μ} [10 ⁻¹¹]	$\Delta a_{\mu} \ [10^{-11}]$	
experiment	116 592 059.	22.	BNL E821 2006 + Fermilab 2021, 2023
QED	116 584 718.931	0.030	
electroweak	153.6	1.0	Aoyama et al. 2020
had. VP (LO)	6931.	40.	>
had. VP (NLO)	-98.3	0.7	\geq
had. LbL	92.	19.	
total	116 591 810.	43.	
			hadrons

Hadronic contributions to $(g-2)_{\mu}$

● gyromagnetic ratio: magnetic moment ↔ spin

$$\vec{\mu} = g \frac{e}{2m} \vec{S} \qquad \qquad g_{\mu} = 2(1 + a_{\mu})$$

	a_{μ} [10 ⁻¹¹]	Δa_{μ} [10 ⁻¹¹]	
experiment	116 592 059.	22.	BNL E821 2006 + Fermilab 2021, 2023
QED	116 584 718.931	0.030	
electroweak	153.6	1.0	Aoyama et al. 2020
had. VP (LO)	6931.	40.	>
had. VP (NLO)	-98.3	0.7	$\sum_{i=1}^{n}$
had. LbL	92.	19.	Chadrons
total	116 591 810.	43.	

Hadronic vacuum polarisation

- how to control hadronic vacuum polarisation?
- characteristic scale set by muon mass
 this is not a perturbative QCD problem!
- dispersion relations to the rescue: use the optical theorem!

$$\propto \sigma_{\rm tot}(e^+e^- \rightarrow {\rm hadrons})$$

Hadronic vacuum polarisation

- how to control hadronic vacuum polarisation?
- characteristic scale set by muon mass

 —> this is not a perturbative QCD problem!
- dispersion relations to the rescue: use the optical theorem!

$$a_{\mu}^{\text{had VP}} \propto \int_{M_{\pi^0}^2}^{\infty} ds \, K(s) \sigma_{\text{tot}}(e^+e^- \to \text{hadrons})$$

- K(s): kinematical function, for large s: $K(s) \propto 1/s$, $\sigma_{tot}(e^+e^- \rightarrow hadrons) \propto 1/s$
- more than 75% of $a_{\mu}^{had VP}$ given by energies $s \leq 1 \, {\rm GeV^2}$ Jegerlehner, Nyffeler 2009
- well (??) constrained by data

BaBar, BESIII, CMD, KLOE, SND, ...

 \longrightarrow *largely* an experimental task

Hadronic light-by-light scattering

- hadronic light-by-light:
 - \triangleright subleading in $\alpha_{\rm QED}$
 - large relative uncertainty

• different contributions calculated or estimated (in 10^{-11}):

increasing systematic control over HLbL using dispersion-theoretical approach

Aoyama et al. 2020

Hadronic vacuum polarisation — why so simple?

• photon two-point function:

$$\gamma(k,\mu) \sim \Pi_{\mu\nu}(k) \sim \gamma(k,\nu)$$

- \triangleright one single independent momentum k
- ▷ symmetric rank-2 tensor: two structures $g_{\mu\nu}$, $k_{\mu}k_{\nu}$
- \triangleright scalar invariant can depend on one single invariant k^2
- gauge invariance: $k^{\mu}\Pi_{\mu\nu}(k) = 0 = k^{\nu}\Pi_{\mu\nu}(k)$

$$\Pi_{\mu\nu}(k) = \left(k^2 g_{\mu\nu} - k_{\mu} k_{\nu}\right) \Pi(k^2)$$

→ Lorentz + gauge invariance reduce HVP to one single function of a single variable!

Hadronic light-by-light: dispersive approach

Colangelo, Hoferichter, Procura, Stoffer 2014, 2015

• HLbL tensor $\Pi^{\mu\nu\lambda\sigma}$: Lorentz invariance

 \longrightarrow 138 (136) scalar functions Eichmann et al. 2014

• gauge invariance: Bardeen, Tung 1968; Tarrach 1975

$$\Pi^{\mu\nu\lambda\sigma} = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i$$

 $\longrightarrow 7$ distinct structures, 47 related by crossing

Hadronic light-by-light: dispersive approach

Colangelo, Hoferichter, Procura, Stoffer 2014, 2015

• HLbL tensor $\Pi^{\mu\nu\lambda\sigma}$: Lorentz invariance \rightarrow 138 (136) scalar functions Eichmann et al. 2014 $\Pi^{\mu\nu\lambda\sigma}$ • gauge invariance: Bardeen, Tung 1968; Tarrach 1975 $\Pi^{\mu\nu\lambda\sigma} = \sum^{J^4} T_i^{\mu\nu\lambda\sigma} \Pi_i$ \rightarrow 7 distinct structures, 47 related by crossing hadrons master formula: μ $a_{\mu}^{\text{HLbL}} = -e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}(q_{1}, q_{2}; p) \hat{\Pi}_{i}(q_{1}, q_{2}, -q_{1} - q_{2})}{q_{1}^{2}q_{2}^{2}(q_{1} + q_{2})^{2}[(p + q_{1})^{2} - m_{\mu}^{2}][(p - q_{2})^{2} - m_{\mu}^{2}]}$ • \hat{T}_i : known kernels

 $\hat{\Pi}_i$: dispersively \leftrightarrow measurable form factors / scatt. amplitudes

Part II:

hadron properties: form factors & (re)scattering

 \rightarrow A. Pilloni's talk

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

& Cauchy's theorem:

B. Kubis, Hadron and lepton properties from dispersion relations - p. 10

 \longrightarrow A. Pilloni's talk

analyticity (\simeq causality)

& Cauchy's theorem:

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

B. Kubis, Hadron and lepton properties from dispersion relations - p. 10

 \longrightarrow A. Pilloni's talk

analyticity (\simeq causality)

& Cauchy's theorem:

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

 \longrightarrow A. Pilloni's talk

analyticity (\simeq causality)

& Cauchy's theorem:

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

 \longrightarrow A. Pilloni's talk

analyticity (\simeq causality) & Cauchy's theorem:

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$
$$\longrightarrow \frac{1}{2\pi i} \int_{4M_{\pi}^2}^{\infty} \frac{\operatorname{disc} T(z)dz}{z-s}$$
$$= \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{\operatorname{Im} T(z)dz}{z-s}$$

 \rightarrow A. Pilloni's talk analyticity (\simeq causality) & Cauchy's theorem: Im(z) $T(s) = \frac{1}{2\pi i} \oint_{z \in \mathbb{Z}} \frac{T(z)dz}{z-s}$ S× $\blacktriangleright \operatorname{Re}(z)$ $\longrightarrow \frac{1}{2\pi i} \int_{4M^2}^{\infty} \frac{\operatorname{disc} T(z)dz}{z-s}$ $4M_{\pi}^2$ $=\frac{1}{\pi}\int_{AM^2}^{\infty}\frac{\mathrm{Im}\,T(z)dz}{z-s}$ • disc $T(s) = 2i \operatorname{Im} T(s)$ given by unitarity (\simeq prob. conservation): e.g. if T(s) is a $\pi\pi$ partial wave \longrightarrow T(s)T(s) $\frac{\operatorname{disc} T(s)}{2i} = \operatorname{Im} T(s) = \frac{2q_{\pi}}{\sqrt{s}}\theta(s - 4M_{\pi}^2)|T(s)|^2$

 \rightarrow A. Pilloni's talk analyticity (\simeq causality) & Cauchy's theorem: Im(z) $T(s) = \frac{1}{2\pi i} \oint_{\partial O} \frac{T(z)dz}{z-s}$ SX $\blacktriangleright \operatorname{Re}(z)$ $\longrightarrow \frac{1}{2\pi i} \int_{4M_{z}^{2}}^{\infty} \frac{\operatorname{disc} T(z)dz}{z-s}$ $4M_{\pi}^2$ $=\frac{1}{\pi}\int_{4M^2}^{\infty}\frac{\mathrm{Im}\,T(z)dz}{z-s}$ • disc $T(s) = 2i \operatorname{Im} T(s)$ given by unitarity (\simeq prob. conservation): inelastic intermediate states ($K\bar{K}, 4\pi$) T(s)T(s)suppressed at low energies \longrightarrow will often be neglected

Warm up: pion vector form factor

 $\frac{1}{2i}\operatorname{disc} F_{\pi}^{V}(s) = \operatorname{Im} F_{\pi}^{V}(s) = F_{\pi}^{V}(s) \times \theta(s - 4M_{\pi}^{2}) \times \sin \delta_{1}^{1}(s) e^{-i\delta_{1}^{1}(s)}$

 \longrightarrow final-state theorem: phase of $F_{\pi}^{V}(s)$ is just $\delta_{1}^{1}(s)$ Watson 1954

Warm up: pion vector form factor

 $\frac{1}{2i}\operatorname{disc} F_{\pi}^{V}(s) = \operatorname{Im} F_{\pi}^{V}(s) = F_{\pi}^{V}(s) \times \theta(s - 4M_{\pi}^{2}) \times \sin \delta_{1}^{1}(s) e^{-i\delta_{1}^{1}(s)}$

 \longrightarrow final-state theorem: phase of $F_{\pi}^{V}(s)$ is just $\delta_{1}^{1}(s)$ Watson 1954

• solution: \longrightarrow E. Passemar's talk; derivation \longrightarrow spares!

$$F_{\pi}^{V}(s) = P(s)\Omega(s) , \quad \Omega(s) = \exp\left\{\frac{s}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{1}^{1}(s')}{s'(s'-s)}\right\}$$

P(s) polynomial, $\Omega(s)$ Omnès function

Omnès 1958

 $\triangleright \pi\pi$ phase shifts from Roy equations

Ananthanarayan et al. 2001, García-Martín et al. 2011

 \triangleright P(0) = 1 from symmetries (gauge invariance)

• below 1 GeV: $F_{\pi}^{V}(s) \approx (1 + 0.1 \,\mathrm{GeV}^{-2}s)\Omega(s)$

slope due to inelastic resonances ρ' , ρ'' ...

Hanhart 2012

Pion vector form factor vs. Omnès representation

 $\pi\pi$ P-wave phase shift / effective form factor phase incl. ρ' , ρ'' Schneider et al. 2012

Pion vector form factor vs. Omnès representation

Data on pion form factor in $\tau^- o \pi^- \pi^0 \nu_{ au}$ Belle 2008

• divide $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$ form factor by Omnès function:

 \longrightarrow linear below 1 GeV: $F_{\pi}^{V}(s) \approx (1 + 0.1 \,\mathrm{GeV}^{-2}s)\Omega(s)$

 \longrightarrow above: inelastic resonances ρ' , ρ'' ...

What are left-hand cuts?

Example: pion-pion scattering

• right-hand cut due to unitarity: $s \ge 4M_\pi^2$

What are left-hand cuts?

Example: pion-pion scattering

- right-hand cut due to unitarity: $s \ge 4M_{\pi}^2$
- crossing symmetry: cuts also for $t, u \ge 4M_{\pi}^2$

What are left-hand cuts?

Example: pion-pion scattering

- right-hand cut due to unitarity: $s \ge 4M_\pi^2$
- crossing symmetry: cuts also for $t, u \ge 4M_{\pi}^2$
- partial-wave projection: $T(s,t) = 32\pi \sum_i T_i(s)P_i(\cos\theta)$ $t(s,\cos\theta) = \frac{1-\cos\theta}{2}(4M_{\pi}^2 - s)$

 \longrightarrow cut for $t \ge 4M_{\pi}^2$ becomes cut for $s \le 0$ in partial wave

$\pi\pi$ scattering constrained by analyticity and unitarity

Roy equations = coupled system of partial-wave dispersion relations + crossing symmetry + unitarity

• twice-subtracted fixed-*t* dispersion relation:

$$T(s,t) = c(t) + \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \left\{ \frac{s^2}{s'^2(s'-s)} + \frac{u^2}{s'^2(s'-u)} \right\} \operatorname{Im} T(s',t)$$

• subtraction function c(t) determined from crossing symmetry

$\pi\pi$ scattering constrained by analyticity and unitarity

Roy equations = coupled system of partial-wave dispersion relations + crossing symmetry + unitarity

• twice-subtracted fixed-t dispersion relation:

$$T(s,t) = c(t) + \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \left\{ \frac{s^2}{s'^2(s'-s)} + \frac{u^2}{s'^2(s'-u)} \right\} \operatorname{Im} T(s',t)$$

- subtraction function c(t) determined from crossing symmetry
- project onto partial waves $t_J^I(s)$ (angular momentum J, isospin I) \longrightarrow coupled system of partial-wave integral equations

$$t_{J}^{I}(s) = k_{J}^{I}(s) + \sum_{I'=0}^{2} \sum_{J'=0}^{\infty} \int_{4M_{\pi}^{2}}^{\infty} ds' K_{JJ'}^{II'}(s,s') \operatorname{Im} t_{J'}^{I'}(s')$$
Rov 1971

- subtraction polynomial $k_J^I(s)$: $\pi\pi$ scattering lengths can be matched to chiral perturbation theory Colangelo et al. 2001
- kernel functions $K^{II'}_{JJ'}(s,s')$ known analytically

$\pi\pi$ scattering constrained by analyticity and unitarity

- elastic unitarity —> coupled integral equations for phase shifts
- modern precision analyses:
 - $\triangleright \pi\pi$ scattering Ananthanarayan et al. 2001, García-Martín et al. 2011
 - ▷ πK scattering Büttiker et al. 2004, Peláez, Rodas 2020
- example: $\pi\pi I = 0$ S-wave phase shift & inelasticity

• strong constraints on data from analyticity and unitarity!

Final-state universality: $\eta,~\eta' ightarrow \pi^+\pi^-\gamma$

• $\eta^{(\prime)} \rightarrow \pi^+ \pi^- \gamma$ driven by the chiral anomaly, $\pi^+ \pi^-$ in P-wave \rightarrow final-state interactions the same as for vector form factor

• ansatz:
$$\mathcal{F}_{\pi\pi\gamma}^{\eta(\prime)} = A \times P(s) \times \Omega(s), \ P(s) = 1 + \alpha^{(\prime)}s, \ s = M_{\pi\pi}^2$$

• divide data by pion form factor $\longrightarrow P(s)$ Stollenwerk et al. 2012

$\eta,\,\eta' ightarrow\pi^+\pi^-\gamma$ with left-hand cuts

• include a_2 : leading resonance in $\pi \eta^{(\prime)}$

• induces curvature in P(s)

$\eta,\,\eta' ightarrow\pi^+\pi^-\gamma$ with left-hand cuts

Part III:

π^0 -pole contribution

B. Kubis, Hadron and lepton properties from dispersion relations - p. 18

Hadronic light-by-light: the π^0 pole

• largest individual HLbL contribution:

 π^{0} -pole term singly / doubly virtual transition form factors (TFFs) $F_{\pi^{0}\gamma^{*}\gamma^{*}}(q^{2},0)$ and $F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2})$

 normalisation fixed by Wess–Zumino–Witten (WZW) anomaly (= full leading-order ChPT prediction):

$$F_{\pi^0\gamma^*\gamma^*}(0,0) = \frac{1}{4\pi^2 F_{\pi}}$$

 \longrightarrow measured at 0.75% (F_{π} : pion decay constant) PrimEx 2020

- two-loop integral with constant form factors does not converge
 - \longrightarrow no full prediction from e.g. chiral perturbation theory
 - \rightarrow sensible high-energy behaviour required!

Pion-pole contribution to a_{μ}

• 3-dimensional integral representation: Jegerlehner, Nyffeler 2009

- $w_{1/2}(Q_1, Q_2, \tau)$: kinematical weight functions, $\tau = \cos \theta$
- $F_{\pi^0\gamma^*\gamma^*}(-Q_1^2,-Q_2^2)$: space-like on-shell π^0 TFF

Pion-pole contribution to a_{μ}

• weight functions $w_{1/2}(Q_1, Q_2, \tau = 0)$:

- concentrated for $Q_i \leq 0.5 \,\mathrm{GeV}$
 - \longrightarrow pion-pole contribution dominantly from low-energy region
 - → pion transition form factor can be determined model-independently and with high precision using dispersion relations

Dispersive analysis of $\pi^0 o \gamma^* \gamma^*$

• isospin decomposition:

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = F_{vs}(q_1^2, q_2^2) + F_{vs}(q_2^2, q_1^2)$$

analyse the leading hadronic intermediate states:

Hoferichter et al. 2014

isovector photon: 2 pions

- \propto pion vector form factor well known from $e^+e^- \rightarrow \pi^+\pi^-$
- $\times \gamma^* \rightarrow 3\pi$ P-wave amplitude

Khuri–Treiman formalism

Dispersive analysis of $\pi^0 o \gamma^* \gamma^*$

• isospin decomposition:

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = F_{vs}(q_1^2, q_2^2) + F_{vs}(q_2^2, q_1^2)$$

• analyse the leading hadronic intermediate states:

isovector photon: 2 pions

 \propto pion vector form factor

 $\times \gamma^* \rightarrow 3\pi$ P-wave amplitude

▷ isoscalar photon: 3 pions

well known from $e^+e^- \to \pi^+\pi^-$

Khuri–Treiman formalism

Dispersive analysis of $\pi^0 o \gamma^* \gamma^*$

• isospin decomposition:

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = F_{vs}(q_1^2, q_2^2) + F_{vs}(q_2^2, q_1^2)$$

• analyse the leading hadronic intermediate states:

isovector photon: 2 pions

 \propto pion vector form factor

 $\times \gamma^* \rightarrow 3\pi$ P-wave amplitude

- well known from $e^+e^- \rightarrow \pi^+\pi^-$
 - Khuri–Treiman formalism

isoscalar photon: 3 pions

dominated by narrow resonances ω, ϕ

•
$$\gamma^*(q) \to \pi^+(p_+)\pi^-(p_-)\pi^0(p_0)$$
 amplitude:

 $\langle 0|j_{\mu}(0)|\pi^{+}(p_{+})\pi^{-}(p_{-})\pi^{0}(p_{0})\rangle = -\epsilon_{\mu\nu\rho\sigma} p_{+}^{\nu}p_{-}^{\rho}p_{0}^{\sigma} \mathcal{F}(s,t,u;q^{2})$

s,t,u: pion-pion invariant masses, $s+t+u=q^2+3M_\pi^2$

"reconstruction theorem": neglect discontinuities in F-waves...

 → decomposition into crossing-symmetric isobars

$$\mathcal{F}(s,t,u;q^2) = \mathcal{F}(s,q^2) + \mathcal{F}(t,q^2) + \mathcal{F}(u,q^2)$$

• normalisation fixed from Wess–Zumino–Witten anomaly:

$$\mathcal{F}(0,0,0;0) = \mathbf{F}_{3\pi} = \frac{1}{4\pi^2 F_{\pi}^3}$$

• (s-channel) P-wave projection: $f_1(s,q^2) = \mathcal{F}(s,q^2) + \hat{\mathcal{F}}(s,q^2)$ $\hat{\mathcal{F}}(s,q^2)$: contribution from crossed channels $\mathcal{F}(t/u,q^2)$

Unitarity relation for $\mathcal{F}(s, q^2 = \text{fixed})$:

 $\operatorname{disc} \mathcal{F}(s,q^2) = 2i \left\{ \underbrace{\mathcal{F}(s,q^2)}_{\stackrel{}{\xrightarrow{}}} + \underbrace{\hat{\mathcal{F}}(s,q^2)}_{\stackrel{}{\xrightarrow{}}} \right\} \times \theta(s - 4M_\pi^2) \times \sin \,\delta_1^1(s) \, e^{-i\delta_1^1(s)}$

right-hand cut

left-hand cut

Unitarity relation for $\mathcal{F}(s, q^2 = \text{fixed})$:

 $\operatorname{disc} \mathcal{F}(s, q^{2}) = 2i \{ \underbrace{\mathcal{F}(s, q^{2})}_{\text{right-hand cut}} \} \times \theta(s - 4M_{\pi}^{2}) \times \sin \delta_{1}^{1}(s) e^{-i\delta_{1}^{1}(s)}$ $\operatorname{disc} \left[\swarrow \left[\swarrow \left[1 \right] \right] = \operatorname{cond} \left[1 \right$

right-hand cut only —> Omnès problem

$$\mathcal{F}(s,q^2) = \Omega(s) \, \boldsymbol{a}(q^2) \,, \qquad \Omega(s) = \exp\left\{\frac{s}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'} \frac{\delta_1^1(s')}{s'-s}\right\}$$

 \longrightarrow amplitude given in terms of pion vector form factor

Unitarity relation for $\mathcal{F}(s, q^2 = \text{fixed})$:

• inhomogeneities $\hat{\mathcal{F}}(s,q^2)$: angular averages over the $\mathcal{F}(t)$, $\mathcal{F}(u)$

$$\mathcal{F}(s,q^2) = \Omega(s) \left\{ \frac{a(q^2)}{\pi} + \frac{s^2}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s',q^2)}{|\Omega(s')|(s'-s)|} \right\}$$
$$\hat{\mathcal{F}}(s,q^2) = \frac{3}{2} \int_{-1}^{1} dz \, (1-z^2) \mathcal{F}(t(s,z),q^2)$$

Unitarity relation for $\mathcal{F}(s, q^2 = \text{fixed})$:

• inhomogeneities $\hat{\mathcal{F}}(s,q^2)$: angular averages over the $\mathcal{F}(t)$, $\mathcal{F}(u)$

$$\mathcal{F}(s,q^2) = \Omega(s) \left\{ \frac{a(q^2)}{\pi} + \frac{s^2}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s',q^2)}{|\Omega(s')|(s'-s)|} \right\}$$
$$\hat{\mathcal{F}}(s,q^2) = \frac{3}{2} \int_{-1}^{1} dz \, (1-z^2) \mathcal{F}(t(s,z),q^2)$$

crossed-channel scatt. between s-, t-, u-channel (left-hand cuts)

Dispersive representation $\gamma^* ightarrow 3\pi$

- parameterisation of subtraction function $a(q^2)$
 - \longrightarrow to be fitted to $e^+e^- \rightarrow 3\pi$ cross section data:

$$a(q^2) = \frac{F_{3\pi}}{3} + \frac{q^2}{\pi} \int_{\text{thr}}^{\infty} ds' \frac{\text{Im}\,\mathcal{A}(s')}{s'(s'-q^2)} + C_n(q^2)$$

• $\mathcal{A}(q^2)$ includes resonance poles:

$$\mathcal{A}(q^2) = \sum_{V} \frac{c_V}{M_V^2 - q^2 - i\sqrt{q^2}\Gamma_V(q^2)} \qquad V = \omega, \phi, \omega', \omega''$$

$$c_V \text{ real}$$

• conformal polynomial (inelasticities)

$$C_n(q^2) = \sum_{i=1}^n c_i \left(z(q^2)^i - z(0)^i \right), \qquad z(q^2) = \frac{\sqrt{s_{\text{inel}} - s_1} - \sqrt{s_{\text{inel}} - q^2}}{\sqrt{s_{\text{inel}} - s_1} + \sqrt{s_{\text{inel}} - q^2}}$$

• exact implementation of $\gamma^* \rightarrow 3\pi$ anomaly:

$$\frac{F_{3\pi}}{3} = \frac{1}{\pi} \int_{s_{\text{thr}}}^{\infty} ds' \frac{\text{Im}\,a(s')}{s'}$$

Fit results $e^+e^- ightarrow 3\pi$ data up to 1.8 GeV

 \longrightarrow updated in Hoferichter, Hoid, BK, Schuh 2023 to include isospin breaking

- black / gray bands represent fit and total uncertainties
- vacuum polarisation removed from the cross section

From $e^+e^-
ightarrow 3\pi$ to $e^+e^-
ightarrow \pi^0\gamma^*$

• amplitude for $e^+e^- \rightarrow 3\pi \propto \mathcal{F}(s,q^2) + \mathcal{F}(t,q^2) + \mathcal{F}(u,q^2)$

$$\mathcal{F}(s,q^2) = \Omega(s) \left\{ \frac{a(q^2)}{\pi} + \frac{s}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \mathcal{F}(s',q^2)}{|\Omega(s')|(s'-s)|} \right\}$$

subtraction function $a(q^2)$ adjusted to reproduce $e^+e^- \rightarrow 3\pi$

From $e^+e^-
ightarrow 3\pi$ to $e^+e^-
ightarrow \pi^0\gamma^*$

• amplitude for $e^+e^- \to 3\pi \propto \mathcal{F}(s,q^2) + \mathcal{F}(t,q^2) + \mathcal{F}(u,q^2)$ $\mathcal{F}(s,q^2) = s \int_{-\infty}^{\infty} ds' \sin \delta_1^1(s') \hat{\mathcal{F}}(s',q^2) \int_{-\infty}^{\infty} ds' \sin \delta_1^$

$$\mathcal{F}(s,q^2) = \Omega(s) \left\{ \frac{a(q^2)}{\pi} + \frac{s}{\pi} \int_{4M_\pi^2} \frac{ds}{s'} \frac{\sin \delta_1^2(s') \mathcal{F}(s',q^2)}{|\Omega(s')|(s'-s)|} \right\}$$

subtraction function $a(q^2)$ adjusted to reproduce $e^+e^- \rightarrow 3\pi$

• fit to $e^+e^- \rightarrow 3\pi$ data combine with $e^+e^- \rightarrow \pi^+\pi^-$ form factor \rightarrow prediction for $e^+e^- \rightarrow \pi^0\gamma^{(*)}$

Comparison to $e^+e^- ightarrow \pi^0\gamma$ data

Hoferichter, Hoid, BK, Leupold, Schneider 2018

- "prediction"—no further parameters adjusted
- timelike π^0 transition form factor data very well reproduced

Asymptotics and pQCD constraints (1)

- so far: dispersion relation based on (dominant) 2π , 3π \rightarrow high precision at low energies
- double-spectral-function representation:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{4M_{\pi}^{2}}^{\infty} dx \int_{s_{\text{thr}}}^{\infty} dy \frac{\rho^{\text{disp}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$
$$\rho^{\text{disp}}(x,y) = \frac{q_{\pi}^{3}(x)}{12\pi\sqrt{x}} \text{Im} \left[F_{\pi}^{V*}(x)f_{1}(x,y) \right] + [x \leftrightarrow y]$$

Asymptotics and pQCD constraints (1)

- so far: dispersion relation based on (dominant) 2π , 3π \rightarrow high precision at low energies
- double-spectral-function representation:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{4M_{\pi}^{2}}^{\infty} dx \int_{s_{\text{thr}}}^{\infty} dy \frac{\rho^{\text{disp}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$
$$\rho^{\text{disp}}(x,y) = \frac{q_{\pi}^{3}(x)}{12\pi\sqrt{x}} \text{Im} \left[F_{\pi}^{V*}(x)f_{1}(x,y) \right] + [x \leftrightarrow y]$$

• asymptotically: pion wave function $\phi_{\pi}(x) = 6x(1-x) + \dots$

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = -\frac{2F_\pi}{3} \int_0^1 dx \frac{\phi_\pi(x)}{xq_1^2 + (1-x)q_2^2} + \mathcal{O}(Q^{-4})$$

implies asymptotically

Brodsky, Lepage 1979–1981

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}\left(-Q^{2},-Q^{2}\right)\sim\frac{2F_{\pi}}{3Q^{2}},\qquad F_{\pi^{0}\gamma^{*}\gamma^{*}}\left(-Q^{2},0\right)\sim\frac{2F_{\pi}}{Q^{2}}$$

 \rightarrow rewrite this as double-spectral representation $\rho^{pQCD}(x, y)$ Khodjamirian 1999; Hoferichter et al. 2018

Asymptotics and pQCD constraints (2)

- dispersion-theoretical $\rho^{\text{disp}}(x,y)$ at low energies $x,y \leq s_m$
- doubly-asymptotic $\rho^{pQCD}(x, y)$ for $x, y > s_m$ \longrightarrow does not contribute to singly-virtual TFF

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{0}^{s_{m}} dx \int_{0}^{s_{m}} dy \frac{\rho^{\text{disp}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})} + \frac{1}{\pi^{2}} \int_{s_{m}}^{\infty} dx \int_{s_{m}}^{\infty} dy \frac{\rho^{\text{pQCD}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$

• pQCD piece alone: $F_{\pi^0\gamma^*\gamma^*}(-Q^2, -Q^2) = \frac{2F_{\pi}}{3Q^2} + \mathcal{O}(Q^{-4})$

dispersive part: $\frac{1}{\pi^2} \int_0^{s_m} dx \int_0^{s_m} dy \frac{\rho^{\text{disp}}(x,y)}{(x+Q^2)(y+Q^2)} = \mathcal{O}(Q^{-4})$

Asymptotics and pQCD constraints (2)

- dispersion-theoretical $\rho^{\text{disp}}(x,y)$ at low energies $x,y \leq s_m$
- doubly-asymptotic $\rho^{pQCD}(x, y)$ for $x, y > s_m$ \longrightarrow does not contribute to singly-virtual TFF

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{0}^{s_{m}} dx \int_{0}^{s_{m}} dy \frac{\rho^{\text{disp}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})} + \frac{1}{\pi^{2}} \int_{s_{m}}^{\infty} dx \int_{s_{m}}^{\infty} dy \frac{\rho^{\text{pQCD}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$

- pQCD piece alone: $F_{\pi^0\gamma^*\gamma^*}(-Q^2, -Q^2) = \frac{2F_{\pi}}{3Q^2} + \mathcal{O}(Q^{-4})$ dispersive part: $\frac{1}{\pi^2} \int_0^{s_m} dx \int_0^{s_m} dy \frac{\rho^{\text{disp}}(x, y)}{(x+Q^2)(y+Q^2)} = \mathcal{O}(Q^{-4})$
- anomaly and Brodsky–Lepage: $\rho^{\text{disp}}(x, y)$ fulfils two sum rules \longrightarrow add effective pole: $\rho^{\text{eff}} = \frac{g_{\text{eff}}}{4\pi^2 F_{\pi}} \pi^2 M_{\text{eff}}^4 \delta(x - M_{\text{eff}}^2) \delta(y - M_{\text{eff}}^2)$ find $g_{\text{eff}} \sim 10\%$ (small), $M_{\text{eff}} \sim 1.5 \dots 2.0 \text{ GeV}$ (reasonable)

Uncertainties in the π^0 -pole contribution

Normalisation

• uncertainty on $\pi^0
ightarrow \gamma\gamma \pm 1.5\%$

Dispersive input

- different $\pi\pi$ phase shift inputs:
 - ▷ Bern vs. Madrid Colangelo et al. 2011, García-Martín et al. 2011
 - ▷ effective form factor phase (incl. ρ' , ρ'') Schneider et al. 2012
- cutoff in Khuri–Treiman integrals $1.8 \dots 2.5 \, \mathrm{GeV}$

Brodsky–Lepage limit uncertainty

• allow for $\frac{+20\%}{-10\%}$, 3σ band around data

BaBar 2009, Belle 2012

PrimEx 2020

Onset of pQCD asymptotics

• vary $s_m = 1.7(3) \text{GeV}^2$

Results: singly-virtual

Results: singly-virtual

Results: singly-virtual

Hoferichter, Hoid, BK, Leupold, Schneider 2018

Result: $(g-2)_{\mu}$ from π^0 pole

Final result for the π^0 -pole contribution $[10^{-11}]$

63.0 \pm 0.9chiral anomaly / $\pi^0 \rightarrow \gamma \gamma$ \pm 1.1dispersive input+ 2.2Brodsky–Lepage- 1.4onset of pQCD contribution s_m \pm 0.6onset of pQCD contribution s_m = 63.0 + 2.7Hoferichter, Hoid, BK, Leupold, Schneider 2018

- model-independent, data-driven determination
 with all physical low- and high-energy constraints implemented
- perfectly consistent with
 - ▷ Padé approxim. $63.6(2.7) \times 10^{-11}$ Masjuan, Sánchez-Puertas 2017
 - ▷ lattice $62.3(2.3) \times 10^{-11}$ Gérardin et al. 2019
 - ▷ Dyson–Schw. $62.6(1.3) \times 10^{-11}$ Eichmann et al. 2019

"White Paper" summary HLbL

hadronic state	$a_{\mu}^{\mathrm{HLbL}} \left[10^{-11} \right]$	
pseudoscalar poles	$93.8\substack{+4.0 \\ -3.6}$	η, η' : Masjuan, Sánchez-Puertas 2017
pion box	-15.9(2)	Colangelo et al. 2017
S-wave $\pi\pi$ rescatt.	-8(1)	Colangelo et al. 2017
kaon box	-0.5(1)	
scalars+tensors $\gtrsim 1 { m GeV}$	$V \sim -1(3)$	2
axial vectors	$\sim 6(6)$	hadrons
short distance	$\sim 15(10)$	
heavy quarks	$\sim 3(1)$	μ
total	92(19)	Aoyama et al. 2020

 \longrightarrow further need for improvement to reach 10% accuracy for $a_{\mu}^{\rm HLbL}$

Summary: dispersion relations for HLbL

Dispersive analyses of π^0 , $\eta^{(\prime)}$ transition form factors:

• QCD constraints + high-precision data on

 $e^+e^- \rightarrow \pi^+\pi^-(\pi^0)$ var. / $\eta \rightarrow \pi^+\pi^-\gamma$ KLOE / $\eta' \rightarrow \pi^+\pi^-\gamma$ BESIII allow for high-precision dispersive predictions of π^0 , $\eta^{(\prime)} \rightarrow \gamma^*\gamma^{(*)}$

Main challenges for HLbL at 10% accuracy:

• matching low and high energies

various

Form factors constrained by analyticity and unitarity

For illustration, let's briefly derive the Omnès solution!

- use $F_{\pi}^{V}(s) = P(s)\Omega(s)$: $\Omega(s)$ free of zeros, $\Omega(0) = 1$
- begin with the following simple manipulations:

 $\begin{aligned} \operatorname{disc} \Omega(s) &= 2i \,\Omega(s + i\epsilon) \times \sin \delta(s) \, e^{-i\delta(s)} \\ \Omega(s + i\epsilon) - \Omega(s - i\epsilon) &= \Omega(s + i\epsilon) \times (1 - e^{-2i\delta(s)}) \\ \Omega(s + i\epsilon) &= \Omega(s - i\epsilon) \times e^{2i\delta(s)} \\ \operatorname{disc} \log \Omega(s) &= 2i \,\delta(s) \end{aligned}$

Form factors constrained by analyticity and unitarity

For illustration, let's briefly derive the Omnès solution!

- use $F_{\pi}^{V}(s) = P(s)\Omega(s)$: $\Omega(s)$ free of zeros, $\Omega(0) = 1$
- begin with the following simple manipulations:

 $\begin{aligned} \operatorname{disc} \Omega(s) &= 2i \,\Omega(s + i\epsilon) \times \sin \delta(s) \, e^{-i\delta(s)} \\ \Omega(s + i\epsilon) - \Omega(s - i\epsilon) &= \Omega(s + i\epsilon) \times (1 - e^{-2i\delta(s)}) \\ \Omega(s + i\epsilon) &= \Omega(s - i\epsilon) \times e^{2i\delta(s)} \\ \operatorname{disc} \log \Omega(s) &= 2i \,\delta(s) \end{aligned}$

• this allows to write a dispersion relation for disc $\log \Omega(s)$:

$$\log \Omega(s) = \frac{s}{2\pi i} \int_{4M_{\pi}^2}^{\infty} ds' \frac{\operatorname{disc} \log \Omega(s')}{s'(s'-s)} = \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \frac{\delta(s')}{s'(s'-s)}$$
$$\Omega(s) = \exp\left\{\frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \frac{\delta(s')}{s'(s'-s)}\right\}$$

Pion loop contributions / $\pi\pi$ intermediate states

Colangelo, Hoferichter, Procura, Stoffer 2017 [figs. courtesy of M. Hoferichter] Decompose light-by-light scattering tensor $\Pi_{\mu\nu\lambda\sigma}$ into

• form factor scalar QED part \longrightarrow preserves gauge invariance

Pion loop contributions / $\pi\pi$ intermediate states

Colangelo, Hoferichter, Procura, Stoffer 2017 [figs. courtesy of M. Hoferichter] Decompose light-by-light scattering tensor $\Pi_{\mu\nu\lambda\sigma}$ into

• form factor scalar QED part \longrightarrow preserves gauge invariance

• + remainder $\bar{\Pi}_{\mu\nu\lambda\sigma}$ expanded in $\gamma^*\gamma^* \to \pi\pi$ helicity partial waves

organised according to left-hand-cut structure

S-wave rescattering \rightarrow

$$a_{\mu}^{\pi\pi,S}$$
-wave $= -8(1) \times 10^{-11}$

Pion loop contributions / $\pi\pi$ intermediate states

Colangelo, Hoferichter, Procura, Stoffer 2017 [figs. courtesy of M. Hoferichter] Decompose light-by-light scattering tensor $\Pi_{\mu\nu\lambda\sigma}$ into

• form factor scalar QED part \rightarrow preserves gauge invariance

- + remainder $\Pi_{\mu\nu\lambda\sigma}$ expanded in $\gamma^*\gamma^* \to \pi\pi$ helicity partial waves
- contains automatically
 - ▷ polarisability effects Engel, Patel, Ramsey-Musolf 2012
 - $\triangleright \pi\pi$ resonances: $f_0(500) [f_2(1270)]$
 - \triangleright can be extended to $K\bar{K} (\longrightarrow f_0(980))$ Danilkin, Deineka, Vanderhaeghen 2019; Danilkin, Hoferichter, Stoffer 2021

Transition form factor $\eta
ightarrow \gamma^* \gamma$

Transition form factor $\eta'
ightarrow \gamma^* \gamma$

$$F_{\eta'\gamma^*\gamma}(q^2, 0) = F_{\eta'\gamma\gamma} + \frac{q^2}{12\pi^2} \int_{4M_{\pi}^2}^{\infty} dt \, \frac{q_{\pi}^3(t)[F_{\pi}^V(t)]^* F_{\eta'\pi\pi\gamma}(t)}{t^{3/2}(t-q^2)} \\ + \Delta F_{\eta\gamma^*\gamma}^{I=0}(q^2, 0) \, [\text{VMD}] + [\text{consistent isospin breaking}]$$