First measurement of the residual strong interaction between open-charm and light-flavor mesons

> Daniel Battistini Technical University of Munich

International school of nuclear physics | Erice, Italy

D mesons in heavy-ion collisions

What is the impact of the rescattering on the heavy-ion observables (e.g. R_{AA})?

In heavy-ion collisions:

- quark–gluon plasma (QGP) formation
- system expansion and chemical freeze-out
- ▶ hadron gas \rightarrow D meson rescattering

Current knowledge:

- ► D⁻p: measured with femtoscopy → ALICE Coll., PRD 106 052010
- all other interactions: unknown

Modification of the heavy-ion observables:

relies on theory

The nature of exotic charm states

What is the nature of the exotic charm states?

Several non-conventional hadrons were discovered:

- slightly below the DD* thresholds
 → molecule candidates
- quark bags are also possible

Knowledge of the D meson interactions is required

 $T_{cc}^+ \ measurement \rightsquigarrow \ {}_{LHCb \ Coll, \ Nat. \ Com. \ 13 \ 3351}$

The study of hadron-hadron interactions

The study of hadron-hadron interactions

The study of hadron-hadron interactions

Goal: study the interaction between hadrons

The idea: the relative-momentum $k^* = \frac{|\mathbf{p}_1^* - \mathbf{p}_2^*|}{2}$ is modified by the interaction

Goal: study the interaction between hadrons

The idea: the relative-momentum $k^* = \frac{|\mathbf{p}_1^* - \mathbf{p}_2^*|}{2}$ is modified by the interaction

If the interaction is

▶ attractive \rightarrow smaller relative momentum

Goal: study the interaction between hadrons

The idea: the relative-momentum $k^* = \frac{|\mathbf{p}_1^* - \mathbf{p}_2^*|}{2}$ is modified by the interaction

If the interaction is

- attractive \rightarrow smaller relative momentum
- ▶ repulsive \rightarrow larger relative momentum

Compute k^* for all pairs in all events

Compute k^* for all pairs in all events

Compute k^* for all pairs in all events

Obtain a k^* distribution \rightarrow is it possible to extract some physics?

Not yet: a reference distribution is needed \rightarrow event mixing to "switch off" the interaction

If the correlation function = $1 \Rightarrow$ no interaction

The master formula of femtoscopy

Shape of the correlation function \rightarrow attractive/repulsive interaction

How to quantify? How to compare with theory?

Koonin-Pratt equation

Where:

- ► *S*: source function
- \triangleright r^* : relative distance of particles at production
- Ψ : 2-particle wave function

The source function

$$C(k^*) = \int \mathrm{d} \boldsymbol{r}^* \, S(\boldsymbol{r}^*) |\Psi(\boldsymbol{r}^*, \boldsymbol{k}^*)|^2$$

source \rightleftharpoons interaction

Two uses:

- ▶ known **interaction** → measure the **source**
- ▶ known **source** → measure the **interaction**

To "calibrate" the framework:

- assume a gaussian source
- ▶ pairs with known interaction \rightarrow source size

The study of the hadron-hadron interactions: scattering theory

The wave function is expressed as:

$$\psi(\mathbf{r}) = e^{ikz} + f(\theta) \frac{e^{ikr}}{r}$$

with $f(\theta)$: scattering amplitude

The cross section is

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |f(\theta)|^2$$

The study of the interaction

In general: solve numerically

$$C(k^*) = \int \mathrm{d} {oldsymbol r}^* \, S({oldsymbol r}^*) |\Psi({oldsymbol r}^*, {oldsymbol k}^*)|^2$$

Write the wave function as:

$$\Psi(k^*, r^*) pprox e^{ik^*r^*} + f(k^*) rac{e^{ik^*r^*}}{r^*}$$

and the effective range expansion

$$f(k^*) \approx \left(\frac{1}{a_0} + \frac{1}{2}d_0k^{*2} - ik^*\right)^{-1}$$

The scattering parameters are:

- \blacktriangleright a_0 : scattering length
- \blacktriangleright d_0 : effective range

Correlation function for an attractive potential

Shape of the CF \rightarrow interaction:

$$C \begin{cases} > 1 & \text{attraction: } a_0 > 0 \\ < 1 & \text{repulsion: } a_0 < 0 \\ \leqslant 1 & \text{bound state: } a_0 < 0 \end{cases}$$

The CF allows us to determine the nature of the interaction

The typical observables:

- scattering length
- effective range

Bound states

Formation of a bound state:

- non-trivial solution of the Schröd. eq.
- the wave function is depleted at intermediate r

Different sources probe different regions of the wavefunctions, according to

$$C(k^*) = \int \mathrm{d} oldsymbol{r}^*\,S(oldsymbol{r}^*)|\Psi(oldsymbol{r}^*,oldsymbol{k}^*)|^2$$

For large sources \rightarrow CF < 1

Experimental setup

Analyzed data:

- Run 2 data, collected by ALICE ALICE Coll., JJMP A 2014 29:24
- proton-proton collisions at $\sqrt{s} = 13 \,\mathrm{TeV}$
- high-multiplicity trigger (V0)

Particle identification (PID) and reconstruction:

- ▶ π^{\pm} , K[±]: ITS + TPC + TOF
- ▶ D⁺: via D⁺ \rightarrow K⁻ $\pi^+\pi^+$ + c.c.
- $\blacktriangleright \ \mathrm{D}^{*+} : \mathrm{via} \ \mathrm{D}^{*+} \to \mathrm{D}^0 (\to \mathrm{K}^- \pi^+) \pi^+ + \mathrm{c.c.}$

Selection of $D^\pm \to decay\text{-vertex topology} + PID$

- prompt D (from charm)
- non-prompt D (from beauty)
- combinatorial background

Modeling the correlation function

Physics: extracted from C_{gen}

- Other terms \rightarrow background contributions
 - estimated with various techniques
- λ -parameters \rightarrow weight each term based on
 - purity
 - fraction

$$\lambda_i^{\mathrm{D}\pi} = p_i^{\mathrm{D}} f_i^{\mathrm{D}} p_i^{\pi} f_i^{\pi}$$

Results

Available theoretical models:

- → Huang *et al*, PRD 15 036016 → L. Liu *et al*, PRD 87 014508
- → Z.-H. Guo *et al*, EPJC 79 13 → X.-Y. Guo *et al*, PRD 98 014510
- →→ J. M. Torres-Rincon *et al*, arXiv 2307.02102

Correlation functions of

Deviation from Coulomb \rightarrow strong interaction

Use the Lednický-Lyuboshits model

- N. Lednický et al, Czech. J. Phys. B 36 1281 1287
- effective range approximation
- use effective range $d_0 = 0$

Isospin channels:

- ► D⁺ π^+ : pure (*I* = 3/2)
- ► D⁺ π^{-} : mixed ($I = 3/2 \oplus I = 1/2$)

Use a combined fit procedure where the scattering parameter $a_0^{D\pi}(I = 3/2)$ is shared

Tension with the theoretical models for both isospin channels

Conclusions

 $Femtoscopy \rightarrow hadron-hadron\ interactions$

- complementary tool to scattering experiments
- works also for charm hadrons!

Results of charm femtoscopy:

- shallow interactions
- ► $D\pi$ and $D^*\pi$ interactions are similar → heavy-quark spin symmetry
- tension with theory

Conclusions:

- small effect on heavy-ion observables
- is the source larger for charm?

Additional material

The source function

To determine the source size:

- use a potential for the pp interaction
- ▶ solve the Schrödinger equation $\rightarrow \Psi$
- ▶ fold with the source $\rightarrow C(k^*; r^*)$
- fix the source size with a fit

Differentially in trasnverse mass $m_{\rm T}$

Depends on the collision system:

- ▶ proton-proton \rightarrow small source: $\langle r^* \rangle \approx 1$ fm
- ▶ lead-lead \rightarrow large source: $\langle r^* \rangle \approx 8$ fm

It's different for pp and p Λ or is it?

The contribution of resonances

Not all particles are primary

short-living resonances \rightarrow enlargment of the source

To describe the effective source size r_{eff}^* :

- angular distributions from EPOS
- yields from the statistical hadronization model

The contribution of resonances

Not all particles are primary

short-living resonances \rightarrow enlargment of the source

To describe the effective source size r_{eff}^* :

- angular distributions from EPOS
- yields from the statistical hadronization model

The source core is the same for pp and $\ensuremath{p\Lambda}$

Assume a universal source

The framework is calibrated: new particle pairs can be studied

Determination of the source

To determine $r_{\rm eff}^*$ for a new pair of particles:

use the pp data (most precise)

The procedure:

- compute the average $m_{\rm T}$ for the pair of interest
- compute the $r_{\rm core}$ corresponding to that $m_{\rm T}$
- include the resonances
- compute the effective size r_{eff}^* of the source

```
Once the effective source is known, the interaction can be accessed
```


ALICE 3: a next generation experiment

↔ ALICE Coll., arXiv:2211.02491

Planned for the Run 5 and Run 6

The study of exotic charm states will be possible Test the formation of DD^* and $D\bar{D}^*$ bound states:

- \triangleright T⁺_{cc} could be a D⁰D^{*} molecule
- ► $\chi_{c1}(3872)$ could be a $D\bar{D}^*$ molecule

Upgrade projection:

- pythia 8 event generator
- proton-proton collisions at $\sqrt{s} = 14 \text{ TeV}$
- assume a gaussian potential (with bound state)
- scan different source radii

The T_{cc}^+ : a DD^{*} molecule candidate

- Binding energy $\approx 360 \text{ keV}$
- Scattering length = −7.16 + i1.85 fm → LHCb Coll, Nat. Com. 13 3351

Tune the potential \rightarrow mass and width of T_{cc}^+

Test 4 different source sizes

- ▶ proton-proton: $r^* \approx 1$ fm
- ▶ lead-lead: $r^* \approx 5 \text{ fm}$

Bound state \rightarrow flip of the CF below 1

The $\chi_{c1}(3872)$: molecule candidates

- ▶ $D^0 \bar{D}^{*0}$ (dominant)
- ▶ D⁺ D^{*−}

Assume a $D^0 \; \bar{D}^{*0}$ molecule

▶ Binding energy \approx 40 keV

Features of the CF:

- cusp at 120 MeV/c (due to $D^+ \bar{D}^{*-}$ coupling)
- inversion of the CF for large systems
- source size dependence

The $\chi_{c1}(3872)$: molecule candidates

- ▶ $D^0 \bar{D}^{*0}$ (dominant)
- ▶ D⁺ D^{*−}
- Assume a $D^+ \; \bar{D}^{*-}$ molecule (subdominant)
 - ▶ Binding energy $\approx 8 \text{ MeV}$

Features of the CF:

- ▶ no cusp ($D^0 \bar{D}^{*0}$ coupling below threshold)
- ► no inversion of the CF for large systems \approx no bound state
- almost no source size dependence

