First measurement of the residual strong interaction between open-charm and light-flavor mesons

Daniel Battistini

Technical University of Munich
International school of nuclear physics | Erice, Italy

ITI

MAX-PLANCK-INSTITUT

D mesons in heavy-ion collisions

What is the impact of the rescattering on the heavy-ion observables (e.g. R_{AA})?
In heavy-ion collisions:

- quark-gluon plasma (QGP) formation
- system expansion and chemical freeze-out
- hadron gas $\rightarrow \mathrm{D}$ meson rescattering

Current knowledge:
$\rightarrow \mathrm{D}^{-} \mathrm{p}$: measured with femtoscopy
\leadsto ALICE Coll., PRD 106052010

- all other interactions: unknown

Modification of the heavy-ion observables:

- relies on theory

The nature of exotic charm states

What is the nature of the exotic charm states?

Several non-conventional hadrons were discovered:

- slightly below the DD^{*} thresholds
\rightarrow molecule candidates
- quark bags are also possible

$\mathrm{T}_{\mathrm{cc}}^{+}$: quark bag or... molecular state?
Knowledge of the D meson interactions is required

The study of hadron-hadron interactions

The study of hadron-hadron interactions

The study of hadron-hadron interactions

The Idea of femtoscopy

Goal: study the interaction between hadrons
The idea: the relative-momentum $k^{*}=\frac{\left|\boldsymbol{p}_{1}^{*}-\boldsymbol{p}_{2}^{*}\right|}{2}$ is modified by the interaction

The Idea of femtoscopy

Goal: study the interaction between hadrons
The idea: the relative-momentum $k^{*}=\frac{\left|\boldsymbol{p}_{1}^{*}-\boldsymbol{p}_{2}^{*}\right|}{2}$ is modified by the interaction

If the interaction is

- attractive \rightarrow smaller relative momentum

The Idea of femtoscopy

Goal: study the interaction between hadrons
The idea: the relative-momentum $k^{*}=\frac{\left|\boldsymbol{p}_{1}^{*}-\boldsymbol{p}_{2}^{*}\right|}{2}$ is modified by the interaction

If the interaction is

\rightarrow attractive \rightarrow smaller relative momentum

- repulsive \rightarrow larger relative momentum

Building the correlation function

Compute k^{*} for all pairs in all events

Building the correlation function

Compute k^{*} for all pairs in all events

Building the correlation function

Compute k^{*} for all pairs in all events

Building the correlation function

Obtain a k^{*} distribution \rightarrow is it possible to extract some physics?

Building the correlation function

Not yet: a reference distribution is needed \rightarrow event mixing to "switch off" the interaction

Building the correlation function

If the correlation function $=1 \quad \Rightarrow \quad$ no interaction

The master formula of femtoscopy

Shape of the correlation function \rightarrow attractive/repulsive interaction
How to quantify? How to compare with theory?

- Koonin-Pratt equation

$$
C\left(k^{*}\right)=\underbrace{\frac{N_{\text {same }}\left(k^{*}\right)}{N_{\text {mixed }}\left(k^{*}\right)}}_{\text {experiment }}=\underbrace{\int \mathrm{d} \boldsymbol{r}^{*} S\left(\boldsymbol{r}^{*}\right)\left|\Psi\left(\boldsymbol{r}^{*}, \boldsymbol{k}^{*}\right)\right|^{2}}_{\text {theory }}
$$

Where:

- S : source function
- r^{*} : relative distance of particles at production
- Ψ : 2-particle wave function

$$
\begin{array}{r}
C\left(k^{*}\right)=\int \mathrm{d} \boldsymbol{r}^{*} S\left(r^{*}\right)\left|\Psi\left(r^{*}, k^{*}\right)\right|^{2} \\
\text { source } \rightleftarrows \text { interaction }
\end{array}
$$

Two uses:

- known interaction \rightarrow measure the source
- known source \rightarrow measure the interaction

To "calibrate" the framework:

- assume a gaussian source

- pairs with known interaction \rightarrow source size

The wave function is expressed as:

$$
\psi(\mathbf{r})=e^{i k z}+f(\theta) \frac{e^{i k r}}{r}
$$

with $f(\theta)$: scattering amplitude
The cross section is

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=|f(\theta)|^{2}
$$

In general: solve numerically

$$
C\left(k^{*}\right)=\int \mathrm{d} \boldsymbol{r}^{*} S\left(r^{*}\right)\left|\Psi\left(r^{*}, k^{*}\right)\right|^{2}
$$

Write the wave function as:

$$
\Psi\left(\boldsymbol{k}^{*}, \boldsymbol{r}^{*}\right) \approx e^{i \boldsymbol{k}^{*} r^{*}}+f\left(k^{*}\right) \frac{e^{i k^{*} r^{*}}}{r^{*}}
$$

and the effective range expansion

$$
f\left(k^{*}\right) \approx\left(\frac{1}{a_{0}}+\frac{1}{2} d_{0} k^{* 2}-i k^{*}\right)^{-1}
$$

The scattering parameters are:

- a_{0} : scattering length
$-d_{0}$: effective range

Correlation function for an attractive potential

The shape of the correlation function

Shape of the CF \rightarrow interaction:

$$
C \begin{cases}>1 & \text { attraction: } a_{0}>0 \\ <1 & \text { repulsion: } a_{0}<0 \\ \lessgtr 1 & \text { bound state: } a_{0}<0\end{cases}
$$

The CF allows us to determine the nature of the interaction

The typical observables:

- scattering length
- effective range

Bound states

Formation of a bound state:

- non-trivial solution of the Schröd. eq.
- the wave function is depleted at intermediate r

Different sources probe different regions of the wavefunctions, according to

$$
C\left(k^{*}\right)=\int \mathrm{d} \boldsymbol{r}^{*} S\left(r^{*}\right)\left|\Psi\left(r^{*}, k^{*}\right)\right|^{2}
$$

For large sources $\rightarrow \mathrm{CF}<1$

Experimental setup

Analyzed data:

- Run 2 data, collected by ALICE
\leadsto ALICE Coll., IJMP A 2014 29:24
proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$
- high-multiplicity trigger (V0)

Particle identification (PID) and reconstruction:
$-\pi^{ \pm}, \mathrm{K}^{ \pm}$: ITS + TPC + TOF

- D^{+}: via $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+}+$c.c.
$>\mathrm{D}^{*+}$: via $\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0}\left(\rightarrow \mathrm{~K}^{-} \pi^{+}\right) \pi^{+}+$c.с.
Selection of $\mathrm{D}^{ \pm} \rightarrow$ decay-vertex topology + PID
- prompt D (from charm)

- non-prompt D (from beauty)
- combinatorial background

Modeling the correlation function

Physics: extracted from $C_{\text {gen }}$
Other terms \rightarrow background contributions

- estimated with various techniques
λ-parameters \rightarrow weight each term based on
- purity
- fraction

$$
\lambda_{i}^{\mathrm{D} \pi}=p_{i}^{\mathrm{D}} f_{i}^{\mathrm{D}} p_{i}^{\pi} f_{i}^{\pi}
$$

Results

Available theoretical models:
\leadsto Huang et al, PRD $15036016 \leadsto$ L. Liu et al, PRD 87014508
$\leadsto \quad$ Z.-H. Guo et al, EPJC $7913 \longrightarrow \quad$ X.-Y. Guo et al, PRD 98014510
\leadsto J. M. Torres-Rincon et al, arXiv 2307.02102
Correlation functions of

Deviation from Coulomb \rightarrow strong
interaction

Results for $\mathrm{D} \pi$

(Plot not public)

Results for $\mathrm{D}^{*} \pi$

(Plot not public)

Extraction of the scattering parameters

(Plot not public)
Use the Lednický-Lyuboshits model
\leadsto R. Lednický et al, Czech. J. Phys. B 3612811287

- effective range approximation
- use effective range $d_{0}=0$

Isospin channels:

- $\mathrm{D}^{+} \pi^{+}$: pure ($I=3 / 2$)
$>\mathrm{D}^{+} \pi^{-}:$mixed $(I=3 / 2 \oplus I=1 / 2)$
Use a combined fit procedure where the scattering parameter $a_{0}^{\mathrm{D} \pi}(I=3 / 2)$ is shared

Extraction of the D π scattering length

(Plot not public)

Extraction of the $\mathrm{D}^{*} \pi$ scattering length

(Plot not public)

Scattering lenghts

(Plot not public)

Tension with the theoretical models for both isospin channels

Conclusions

Femtoscopy \rightarrow hadron-hadron interactions

- complementary tool to scattering experiments
- works also for charm hadrons!

Results of charm femtoscopy:

- shallow interactions
- $\mathrm{D} \pi$ and $\mathrm{D}^{*} \pi$ interactions are similar
\rightarrow heavy-quark spin symmetry
- tension with theory

Conclusions:
$>$ small effect on heavy-ion observables

- is the source larger for charm?

Additional material

The source function

To determine the source size:

- use a potential for the pp interaction
- solve the Schrödinger equation $\rightarrow \Psi$
- fold with the source $\rightarrow C\left(k^{*} ; r^{*}\right)$
- fix the source size with a fit

Differentially in trasnverse mass m_{T}
Depends on the collision system:

- proton-proton \rightarrow small source: $\left\langle r^{*}\right\rangle \approx 1 \mathrm{fm}$
- lead-lead \rightarrow large source: $\left\langle r^{*}\right\rangle \approx 8 \mathrm{fm}$

$$
m_{\mathrm{T}}=\sqrt{k_{\mathrm{T}}^{2}+m^{2}}, \quad k_{\mathrm{T}}=\left|p_{\mathrm{T}, 1}+p_{\mathrm{T}, 2}\right| / 2
$$

It's different for pp and $\mathrm{p} \Lambda$...
... or is it?

The contribution of resonances

Not all particles are primary
short-living resonances \rightarrow enlargment of the source
To describe the effective source size $r_{\text {eff }}^{*}$:

- angular distributions from EPOS
- yields from the statistical hadronization model

The contribution of resonances

Not all particles are primary
short-living resonances \rightarrow enlargment of the source
To describe the effective source size $r_{\text {eff }}^{*}$:

- angular distributions from EPOS
- yields from the statistical hadronization model

The source core is the same for pp and $\mathrm{p} \Lambda$

- Assume a universal source

The framework is calibrated: new particle pairs can be studied

Determination of the source

To determine $r_{\text {eff }}^{*}$ for a new pair of particles:

- use the pp data (most precise)

The procedure:

- compute the average m_{T} for the pair of interest
- compute the $r_{\text {core }}$ corresponding to that m_{T}
- include the resonances
- compute the effective size $r_{\text {eff }}^{*}$ of the source

Once the effective source is known, the interaction can be accessed

Results for DK

(Plot not public)

Results for D*K

(Plot not public)

Charm hadron femtoscopy with ALICE 3

ALICE 3: a next generation experiment

$\leadsto ~ A L I C E ~ C o l l ., ~ a r X i v: 2211.02491$

Planned for the Run 5 and Run 6
The study of exotic charm states will be possible Test the formation of DD^{*} and $D \overline{\mathrm{D}}^{*}$ bound states:
$-\mathrm{T}_{\mathrm{cc}}^{+}$could be a $\mathrm{D}^{0} \mathrm{D}^{*}$ molecule

- $\chi_{\mathrm{c} 1}(3872)$ could be a $\mathrm{D} \overline{\mathrm{D}}^{*}$ molecule

Upgrade projection:

- pythia 8 event generator

- proton-proton collisions at $\sqrt{s}=14 \mathrm{TeV}$
- assume a gaussian potential (with bound state)
- scan different source radii

Charm hadron femtoscopy with ALICE 3

The $\mathrm{T}_{\mathrm{cc}}^{+}$: a DD^{*} molecule candidate

- Binding energy $\approx 360 \mathrm{keV}$
- scattering length $=-7.16+i 1.85 \mathrm{fm}$
$\leadsto \quad$ LHCb Coll, Nat. Com. 133351

Tune the potential \rightarrow mass and width of $\mathrm{T}_{\mathrm{cc}}^{+}$
Test 4 different source sizes

- proton-proton: $r^{*} \approx 1 \mathrm{fm}$
- lead-lead: $r^{*} \approx 5 \mathrm{fm}$

Bound state \rightarrow flip of the CF below 1

ALI-SIMUL-502575

Charm hadron femtoscopy with ALICE 3

The $\chi_{\mathrm{c} 1}(3872)$: molecule candidates

- $\mathrm{D}^{0} \overline{\mathrm{D}}^{* 0}$ (dominant)
- $\mathrm{D}^{+} \overline{\mathrm{D}}^{*-}$

Assume a $\mathrm{D}^{0} \overline{\mathrm{D}}^{* 0}$ molecule

- Binding energy $\approx 40 \mathrm{keV}$

Features of the CF:

- cusp at $120 \mathrm{MeV} / \mathrm{c}$ (due to $\mathrm{D}^{+} \overline{\mathrm{D}}^{*-}$ coupling)
- inversion of the CF for large systems
- source size dependence

ALI-SIMUL-502579

Charm hadron femtoscopy with ALICE 3

The $\chi_{\mathrm{c} 1}(3872)$: molecule candidates
$>\mathrm{D}^{0} \overline{\mathrm{D}}^{* 0}$ (dominant)

- $\mathrm{D}^{+} \overline{\mathrm{D}}^{*-}$

Assume a $\mathrm{D}^{+} \overline{\mathrm{D}}^{*-}$ molecule (subdominant)
\rightarrow Binding energy $\approx 8 \mathrm{MeV}$
Features of the CF:

- no cusp ($\mathrm{D}^{0} \overline{\mathrm{D}}^{* 0}$ coupling below threshold)
- no inversion of the CF for large systems
\approx no bound state
- almost no source size dependence

ALI-SIMUL-502583

